
Workload-Aware Partitioning for Maintaining Temporal Consistency
upon Multiprocessor Platforms

Jianjun Li†, Jian-Jia Chen‡, Ming Xiong§ and Guohui Li†

†School of Computer Science and Technology,
Huazhong University of Science and Technology (HUST), Wuhan, China, 430074

‡Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 76131 §Google Inc., USA
jianjunli@smail.hust.edu.cn, j.chen@kit.edu, mxiong@google.com, guohuili@hust.edu.cn ()

Abstract

Deriving deadlines and periods of update transactions for
maintaining timeliness and data freshness has long been recog-
nized as an important problem in real-time database research.
Despite years of active research, the state of the art only focuses
on uniprocessor systems. In this paper, we take a first step
of studying the workload-aware temporal consistency mainte-
nance problem upon multiprocessor platforms. We consider the
problem of how to partition a set of update transactions to
m ≥ 2 processors to maintain the temporal consistency of real-
time data objects under earliest deadline first (EDF) scheduling,
while minimizing the total workload on m processors. Firstly, we
only consider the feasibility aspect of the problem by proposing
a polynomial time partitioning scheme, Temporal Consistency
Partitioning (TCP), and formally showing that the resource
augmentation bound of TCP is (3− 1

m). Secondly, we address
the partition problem globally by proposing a polynomial time
heuristic, Density factor Balancing Fit (DBF), where density
factor balancing plays a major role in producing workload-
efficient partitionings. Finally, we evaluate the feasibility and
workload performances of DBF versus other heuristics with
comparable quality experimentally.

Keywords – Real-Time Databases; Temporal Consistency;
Deadline and Period; Partitioning; Multiprocessor

I. Introduction

Real-Time database systems (RTDBS) have been widely

used in many applications that require timely processing of

large amounts of real-time data, such as aerospace and defense

systems, industrial automation and air traffic control systems.

Typically, a real-time database (RTDB) is composed of real-

time objects which are updated by periodic sensor transactions.

An object in the database models the current status of a real

world entity in the external environment, for example, the

longitude and latitude of an aircraft. Different from data stored in

traditional databases, the state of a real-time object may become

invalid with the passage of time. Associated with the state is

a temporal validity interval. To monitor the states of objects

faithfully, a real-time object must be refreshed by a sensor

transaction before it becomes invalid, i.e., before its temporal

validity interval expires, otherwise the RTDBS cannot respond

to environmental changes timely.

The actual length of the temporal validity interval of a real-

time object is usually application-dependent. Sensor transactions

are generated by intelligent sensors which periodically sample

the values of real-time objects. When sensor transactions arrive

at RTDBs with sampled data values, their updates are issued

and real-time data are refreshed. Given the temporal consis-

tency requirement, one important issue in designing RTDBS

is to schedule sensor update transactions so that the temporal

consistency of real-time data objects can be maintained while

the resulting processor workload can be minimized. There are

a few important reasons to minimize the processor workload

imposed by sensor update transactions [16], [29], [30]: (1) it

helps save sensor energy; (2) the RTDBS is able to process more

sensor update transactions; and (3) more processor capacity can

be left to other application transactions that are triggered due to

environmental changes committed by update transactions.

In the past, while there has been much work devoted to the

temporal consistency scheduling problem, almost all of them

focus on uniprocessor systems. Some examples are Half-Half

(HH) [16], More-Less [30], DS-FP [14], [29], and HSEDF [31].

In this work, we take a first step to address the workload-aware

temporal consistency maintenance problem on multiprocessor

platforms. Our aim is to design efficient partition schemes which

can allocate update transactions to processors to guarantee the

temporal consistency of real-time data objects, while, at the

same time, reducing the workload (or utilization) of update

transactions on the platform.

Multiprocessor scheduling of periodic tasks is one of the

most extensively studied area in real-time systems research. In

general, the approaches fall into either global or partitioned

2011 32nd IEEE Real-Time Systems Symposium

1052-8725/11 $26.00 © 2011 IEEE

DOI 10.1109/RTSS.2011.19

126

scheduling categories. In global scheduling [3], [4], [6], there is

a single ready queue and task migrations among processors are

allowed, i.e., each task can execute on any available processor

in the run time. In contrast, partitioned scheduling [1], [5],

[9] allocates each task to one processor permanently (task

migrations are not allowed) and resorts to well-established

single-processor scheduling schemes to guarantee feasibility.

Global and partitioned approaches are known to have their own

advantages and disadvantages in traditional multiprocessor real-

time scheduling [11]. Recently, a number of works [2], [19]

have been conducted on partitioned scheduling with task splitting

(also referred to semi-partitioned scheduling). In this class of

scheduling, while most tasks are statically assigned to a fixed

processor as in partitioned scheduling, a small number of tasks

are split into several subtasks, and each subtask is assigned and

execute on a different but fixed processor. A recent survey on

multiprocessor real-time scheduling can be found in [8].

From workload-awareness perspective, the immediate advan-

tage of concentrating on partitioned multiprocessor scheduling is

the ability to apply well-established uniprocessor temporal con-

sistency scheduling schemes (likeMLEDF ,MLDM , etc.) once

transaction-to-processor assignments are determined. Another

obvious benefit of adopting partitioned approach stems from

the fact that well-established deferrable scheduling schemes for

aperiodic systems can be readily adopted on each processor

to further decrease workload once the transaction allocation is

made. In contrast, deferrable scheduling for global aperiodic

multiprocessor scheduling is an open problem to a considerable

extent. We believe that avoiding the overhead of transaction mi-

gration is another incentive to focus on the partitioned approach.

This work: We consider the problem of workload mini-

mization for periodic preemptive real-time update transactions

that are scheduled on an identical multiprocessor platform.

We adopt partitioned scheduling and assume that transactions

are assigned dynamic (earliest deadline first) priorities in each

single processor. Partitioned multiprocessor real-time scheduling

considers feasibility as the main objective. The problem is NP-

Hard and appears in two variations: Minimizing the number of

processors needed to guarantee the feasibility of the task set,

or alternatively, given a fixed multiprocessor platform, finding

sufficient schedulability (utilization) bounds. Our work opts for

the second setting, thus we assume the existence of a given

number of processors. Our work is based on the observation

that the transaction allocation can have a significant impact on

the overall workload of the system. In particular, we find that

a density factor1 balanced partition scheme tends to result in

lower workload. The main contribution of this paper can be

summarized as follows:

1) We first consider the feasibility aspect of the workload-

aware transaction assignment problem by proposing a

polynomial-time partition algorithm, Temporal Consistency

1Note here our definition of density factor, which will be detailed in Section II,
is different from the definition of the same words [8] in traditional multiprocessor
real-time scheduling.

Partition (TCP), and formally show that the resource aug-

mentation bound of TCP is (3− 1
m).

2) We address the workload-efficient transaction-to-processor

assignment problem globally by characterizing it as a density

factor balance problem and proposing a polynomial time

heuristic, Density factor Balancing Fit (DBF).
3) We evaluate and comment on the performance of DBF via

extensive simulation experiments. Our experimental study

shows that DBF has better feasibility/workload performance

than other heuristics with comparable quality.

Organization: The remainder of this paper is organized as

follows: Section II gives the definition of temporal validity and

presents some notations and assumptions. The problem to be ad-

dressed is also introduced. In Section III, we present and evaluate

the performance of a polynomial-time partitioning scheme TCP
for the partition problem when only considering the feasibility

aspect. Section IV addresses the problem globally by detailing

the design of our heuristic DBF. Evaluation results of DBF
versus other heuristics are described in Section V. Section VI

briefly reviews some related work and finally, conclusions are

drawn in Section VII.

II. Background, Assumptions and Problem Defi-
nition

In this section, we first review the definition of temporal

validity for data freshness, and then present some notations as

well as important assumptions made throughout the paper. We

also briefly introduce HSEDF , which will be used as the period

and deadline selection scheme on each single processor. Finally,

we define the problem to be addressed in this work.

A. Temporal Validity for Data Freshness

In a real-time database, a data object is a logic image of a

real-world entity. As the state of a real-world entity changes

continuously, to monitor the entity’s state faithfully, real-time

data objects must be refreshed by update transactions, which are

generated periodically by intelligent sensors, before they become

invalid. The actual length of the temporal validity interval of a

real-time data object is usually application-dependent [23], [26],

[27].

Definition 1. [26] A real-time data object (xi) at time t is
temporally valid if, for (any of) its jth update finished last before
t, the sampling time (ri,j) plus the validity interval (Vi) of the
data object is not less than t, i.e., ri,j + Vi ≥ t.

According to Definition 1, a value for real-time data object

xi sampled at any time t will be valid from t up to (t + Vi).
To satisfy the validity constraint, for each xi, the corresponding

update transaction τi should execute at least twice during Vi.
Traditional methods, such as Half-Half, More-Less (for both

EDF and DM) and DS-FP, have been proposed to solve the

127

TABLE I: Symbols and definitions

Symbol Definition
xi Real-time data object i
τi Sensor update transaction updating xi
Ci Execution time of τi
Vi Validity interval length of xi
Ti Period of τi
Di Relative deadline of τi
Ui Processor workload (or utilization) of τi
Usum Workload of {τi}ni=1

λi Density factor of τi, λi = Ci
Vi

λmax Maximum density factor among τ1, τ2, . . . , τn
λsum Density factor of {τi}ni=1M A set of multiprocessors {M1, M2, . . . Mm}

problem of how to assign periods and deadlines to update trans-

actions to maintain the validity consistency while minimizing the

utilization on a single processor. Among these approaches, More-
Less [30] is the best one based on periodic transaction model

for both EDF and DM scheduling. Illustration of More-Less is

depicted in Figure 1. As can be observed, in order to satisfy the

validity constraint (execute twice during Vi) and minimize the

workload, there is Vi = Ti+Di, where Ti and Di represent the

period and deadline of τi, respectively. Hence, in the following

discussion, if not explicitly indicated, we assume Vi = Ti+Di.

B. Notations and Assumptions

In this paper, we use T = {τi}ni=1 and X = {xi}ni=1

to denote a set of periodic sensor update transactions and a

set of real-time or temporal data, respectively. We consider

the scheduling of T on a set of m-identical multiprocessors

M = {Mi}mi=1 and adopt partitioned multiprocessor scheduling.

Transactions are assigned permanently to processors. On each

processor, we use HSEDF [31], a search-based More-Less

scheme, which is by far the best choice under EDF, to derive

period and deadline for transactions. All temporal data are

assumed to be kept in main memory. Each data xi (1 ≤ i ≤ n)
is associated with a validity interval length Vi. Transaction τi is

responsible for updating the corresponding data xi periodically.

Since each sensor transaction updates a distinct data object, no

concurrency control is considered.

Each update transaction τi is periodic and is characterized by

the following 3-tuple: {Ci, Di, Ti}, where Ci is the execution

time, Di is the relative deadline and Ti is the period. As Di

and Ti are to be determined by our schemes, we choose to

consider constrained transaction deadlines, i.e., Di ≤ Ti. We

use Ui and λi to denote the utilization and density factor of τi,
respectively, i.e., Ui = Ci

Ti
and λi = Ci

Vi . Since each transaction

must be assigned to exactly one processor, it is clear that the total

utilization and total density factor of T is Usum =
∑n

i=1
Ci

Ti
and

λsum =
∑n

i=1
Ci

Vi , respectively. For presentation simplicity, we

use T (Mk) to denote the transactions that have been assigned

to Mk. Lastly, preemptive scheduling algorithms are assumed.

The symbols used in this paper are presented in Table I.

ri,j di,j ri,j+1 ri,j+2di,j+1

(= ri,j + Di) (= ri,j + Ti + Di)(= ri,j + Ti) (= ri,j + 2Ti)

τi,j τi,j+1

Vi = Ti + Di

Fig. 1: Illustration of More-Less scheme.

C. HSEDF : A Heuristic More-Less Scheme On a Single
Processor

To derive periods and deadlines which can guarantee temporal

validity of data objects while minimizing the update workload

on a single processor, HSEDF is proposed by Xiong et al. [31],

in which EDF is used to schedule periodic update transactions.

HSEDF is a search-based heuristic and is capable of finding

a solution if one exists. HSEDF starts by setting all transac-

tions’ period to Vi − Ci (1 ≤ i ≤ n), and then checks the

schedulability of the initial solution. If this solution is feasible,

the algorithm terminates and returns it as the final solution.

Otherwise, HSEDF involves solving a selection problem to

determine which transaction’s period should be decreased. The

selection problem is a knapsack problem which is solved by

using a branch and bound method. After that, a schedulability

test is conducted on the new solution to check its feasibility.

The above process is repeated until a solution is found to be

feasible. Full description ofHSEDF is omitted here due to space

limitation, where the details can be found in [31].

D. Problem Definition

Our aim in this paper is to address the following workload-

aware real-time temporal consistency scheduling problem (de-

noted by W-PARTITION).

W-PARTITION: Given a set T of real-time update transactions
and a set M of m identical processors, find a transaction-to-
processor assignment and compute deadlines and periods for
transactions on each single processor by a period deadline
selection scheme, such that:
1. the transactions assigned to each processor can be scheduled

in a feasible manner, and
2. the total workload on M is minimized (among all feasible

transaction allocations).

It can be observed that W-PARTITION is NP-Hard in the

strong sense. Given a set of tasks with known execution times

and with the same relative deadline/period as T on m identical

processors, determining a feasible task assignment to meet the

timing constraint is NP-Complete in the strong sense [25]. The

reduction is as follows: For each task, we generate a correspond-

ing real-time update transaction by setting its execution time as

the execution time of the task and the validity interval length as

128

2T . Clearly, there exists a feasible solution for the reduced W-
PARTITION input instance if and only if the input task set has a

feasible solution. Therefore, deriving a feasible solution for the

W-PARTITION is NP-Complete in the strong sense. With the

optimization of total workload, W-PARTITION is NP-Hard in

the strong sense.

III. TCP: Temporal Consistency Partition

Considering the intractability of the problem, we first do

not take the workload issue into consideration, but only focus

on how to derive feasible transaction partitioning. Specifically,

we present a polynomial-time partition algorithm: Temporal
Consistency Partition (TCP) in Section III-A, and provide the

theoretical evaluation in Section III-B.

A. Design of TCP: Temporal Consistency Partition

First, to distinguish from the traditional real-time multipro-

cessor scheduling problem, we make the following definition.

Definition 2. A transaction set T is said to be temporal

consistency schedulable if, for each transaction, a couple of
period and deadline can be derived by a period and deadline
selection algorithm (e.g. HSEDF) to make T schedulable under
EDF with constrained deadlines on a single processor.

Below we present a useful theorem, which identifies a suffi-

cient condition for any transaction set to be temporal consistency

schedulable on uniprocessor systems, and thus paves the way for

our design of TCP.

Theorem 1. Given a transaction set T , if the density factor of
T is not larger than 0.5, i.e., λsum ≤ 0.5, then T is deemed to
be temporal consistency schedulable on a uniprocessor system.

Proof: Given that λsum ≤ 0.5, it is obvious for each

transaction τi, we can derive a couple of period and deadline

by setting both Ti and Di to be half of τi’s validity interval

length Vi
2 . We then have,

Usum =
n∑

i=1

Ci

Ti
=

n∑

i=1

Ci

Vi/2
= 2λsum ≤ 1, (1)

which means T is EDF-schedulable, and further, is temporal

consistency schedulable, the theorem thus follows.

Based on Theorem 1, we design the temporal consistency

partition algorithm as follows: For any processor Mk, let T (Mk)
denote the transactions from among {τ1, τ2, . . . , τi−1} that have

already been allocated to processor Mk. Considering the pro-

cessors M1, M2, . . . , Mm, in any order, Algorithm TCP assigns

transaction τi to a processor Mk, that satisfies the following

condition:

λi +
∑

τj∈T (Mk)
λj ≤

1
2

. (2)

If no such Mk exists, then TCP declares failure: it is unable

to conclude that the transaction set T is feasible upon the m-

processor platform.

Since Theorem 1 provides a sufficient condition for any

transaction set to be temporal consistency schedulable on a

single processor, it is straightforward to conclude that TCP can

guarantee the assignment is feasible if it succeeds to return a

partition on transaction set T . TCP is quite time-efficient due to

that when allocating one transaction τi, it only need to evaluate

the density factor of the previously allocated (i−1) transactions

on each of the m processors by (2). Since this value can be

computed in constant time, it is obvious that the run-time of TCP
in assigning all n transactions is no more than O (nm). Next,

we offer a quantitative evaluation of the efficacy of Algorithm

TCP.

B. Theoretical Evaluation of TCP

Resource augmentation (or speedup factor) has been widely

used to quantify the ”goodness” of an algorithm for solving

problems for which optimal solutions are either computationally

intractable or just impossible in practice. In this evaluation

method, the performance of a given algorithm is compared

with that of a hypothetical optimal one, under the assumption

that the given algorithm can access more resources (e.g., more

processors, or processors of higher speeds) than the optimal

algorithm. The partitioned multiprocessor real-time scheduling

for sporadic real-time tasks, in which the relative deadlines are

different from the periods, has been recently studied by Baruah

and Fisher in [5], Chen and Chakraborty in [7], and Fisher et

al. in [9]. Resource augmentation bounds have been derived to

quantify the worst-case performance of their partition schemes.

In this work, similar to [5], [7], [9], we also offer a quantitative

evaluation of our algorithm in terms of resource augmentation

bound. But it should be noted that the problem we addressed

here is different from theirs in two ways: (1) transaction period

and deadline are initially unknown in our problem; (2) the sum

of a transaction’s period and deadline is bounded by its validity

interval length.

Below, we derive a resource augmentation bound (upper

bound here) for Algorithm TCP, which characterize its perfor-

mance. We first present a useful lemma.

Lemma 1. If T is temporal consistency schedulable on an
identical multiprocessor platform comprised of m processors
each of computing capacity ξ, then it must be the case that

λmax ≤
1
2
· ξ and λsum < m · ξ.

Proof: For each transaction τi, there is Ci ≤ Di ·ξ ≤ Ti ·ξ.
Given that Vi = Ti + Di, we have,

λi =
Ci

Vi
=

Ci

Ti + Di
≤ Ci

2Di
≤ 1

2
· ξ. (3)

129

Hence, λmax ≤ 1
2 · ξ indicates that no individual transaction’s

density factor may exceed half of the computing capacity of a

processor.

For any transaction set on a uniprocessor, if it is temporal

consistency schedulable, then its density factor must be less than

its utilization, which in turn is 1 in the maximum. λsum < m · ξ
thus reflects the requirement of the cumulative density factor on

m processors of computing capacity ξ each.

Note that Lemma 1 above essentially specifies a necessary

condition for Algorithm TCP (or in fact, any partition algorithm)

to successfully partition a transaction set. We now present a

theorem below, which specifies a sufficient condition for TCP
to successfully partitioning a transaction set.

Theorem 2. Any transaction set T can be successfully scheduled
by TCP on m unit-capacity processors, given that

m ≥ 2λsum − 2λmax

1− 2λmax
. (4)

Proof: We prove this by considering the case when TCP
fails to assign τi. Then, it must be the case that on each processor

Mk (1 ≤ k ≤ m), there is

λi +
∑

τj∈T (Mk)
λj >

1
2

. (5)

Let T (M) denote {τ1, τ2, . . . , τi−1} that have already been

allocated to the m processors. By summing the above inequality

on m processors, we get

mλi +
∑

τj∈T (M)
λj >

1
2
·m. (6)

Since λsum ≥
∑

τj∈T (M) λj + λi, it is clear that

(m− 1)λi + λsum >
1
2
·m ⇒ m <

2λsum − 2λi

1− 2λi
. (7)

Therefore, when

m ≥ 2λsum − 2λi

1− 2λi
≥ 2λsum − 2λmax

1− 2λmax
,

TCP can successfully schedule T on m processors.

By Theorem 2, we now present a resource augmentation

result regarding TCP.

Theorem 3. TCP can guarantee the following performance:
if a transaction set is temporal consistency schedulable on m
identical processors each of computing capacity ξ, then TCP
will successfully partition this transaction set on m processors
that are each

(
3− 1

m

)
times as fast as the original.

Proof: Assume that T = {τ1, τ2, . . . τn} is a transaction

set that is temporal consistency schedulable on m processors

each of computing capacity ξ. We will prove below that T is

guaranteed to be successfully partitioned by TCP on m unit-

capacity processors for ξ ≤ m
3m−1 .

Since T is temporal consistency schedulable on m ξ-speed
processors, by Lemma 1, the transactions in T should satisfy

the following properties:

λmax ≤
1
2
· ξ, λsum < m · ξ.

By replacing the above conditions in inequality (4), we have

m ≥ 2λsum − 2λmax

1− 2λmax
⇐ m ≥ 2mξ − ξ

1− ξ

≡ ξ ≤ m

3m− 1
≡ 1

ξ
≥ 3− 1

m
,

which is as claimed in the theorem.

It should be noted that the bound derived above is not tight.

The main reason comes from that λsum < m · ξ is pessimistic

for necessary condition of feasibility.

IV. DBF: A Polynomial-Time Heuristic for W-
PARTITION

In this section, we address the W-PARTITION problem

globally. As discussed in Section II, W-PARTITION is NP-

Hard in the strong sense. Hence, in this work, we concentrate

on how to design workload-efficient transaction assignment

schemes which allocate transactions to processors to guarantee

temporal consistency in a feasible manner while achieving a

total processor workload as low as possible. The period and

deadline computation for transactions on each single processor

is conducted by using the HSEDF algorithm, which is by far

the best choice [31] under EDF for reducing the workload on

uniprocessor systems.

An intuitive way is to modify the four traditional heuristics for

the feasibility problem from multiprocessor real-time scheduling,

viz next fit (NF), first fit (FF), best fit(BF), and worst fit

(WF), to make them applicable to our problem. To facilitate

distinction, we use Temporal Consistency Fit, abbreviated TCNF
(TCFF, TCBF and TCWF, resp.), to denote the corresponding

algorithms which are adopted to solve our problem. The process

of TCNF (TCFF, TCBF and TCWF, resp.) is quite similar

to their correspondences. The difference comes from that: 1)

Inequality (2), rather than the traditional real-time schedulability

test, is utilized to conduct the temporal consistency schedulabil-

ity check when assigning a transaction to a processor; 2) The

remaining capacity in TCBF and TCWF is the density factor

rather than the utilization in our problem.

But simply applying traditional approaches to our problem

may lead to workload-inefficient partitions, as will be illus-

trated later. To address the W-PARTITION problem in a more

workload-efficient way, we first give a simple example to show

what dimensions can be got.

Example 1. Consider three transactions with execution times
and validity interval lengths

T ≡ {τ1 = (2, 16), τ2 = (3, 17), τ3 = (2, 30)}

130

M1

M2

τ2 M1

M2

τ1 τ3 τ2τ1

τ3

Fig. 2: Transaction Assignment Options 1 and 2.

M1

M2

M1

M2

τ1 τ1τ3

τ3τ2 τ2

Fig. 3: Transaction Assignment Options 3 and 4.

to be executed on m = 2 identical processors. It is not difficult to
see that any assignment of these transactions to two processors
can lead to a feasible schedule under EDF (λsum ≤ 0.5). If
we ignore symmetrical allocations, we have only four possible
partitionings:

1 All three transactions are allocated to one processor (Figure
2-left): Resulted workload = 2/14 + 3/12 + 2/23 = 0.4798.

2 τ1 and τ2 are allocated to one processor and τ3 is allocated
to the other processor (Figure 2-right): Resulted workload
= 2/14 + 3/12 + 2/28 = 0.464.

3 τ1 and τ3 are allocated to one processor and τ2 is allocated
to the other processor (Figure 3-left): Resulted workload =
2/14 + 3/14 + 2/26 = 0.434.

4 τ2 and τ3 are allocated to one processor and τ1 is allocated
to the other processor (Figure 3-right): Resulted workload
= 2/14 + 3/14 + 2/25 = 0.437.

This simple example with two processors illustrates that

workload characteristics of feasible partitions can differ sig-

nificantly: the most workload efficient transaction assignment

(partitioning 3) results in about 4% less workload than the first

partition. In addition, we observe that the best choice in this

example turns out to be the one which yields the most density

factor balanced partitioning on two processors.

The above example reveals us some useful information. That

is, a more density factor balanced partition tends to produce a

lower processor workload. Moreover, Figure 4, which is derived

from [31], illustrates why a density factor balanced partitioning

is more possible to achieve a lower workload.

Based on Figure 4, we can observe that the workload gen-

erated on a single processor versus the total density is like a

convex curve. If the convexity holds, given two density factors

λ1 and λ2 on two different processors, let the resulting processor

workload be U(λ1) and U(λ2), respectively, while the processor

workload corresponds to density factor λ1+λ2
2 be U

(
λ1+λ2

2

)
,

it can be seen from Figure 4 that U
(
λ1+λ2

2

)
< U(λ1)+U(λ2)

2 .

Consequently, in order to decrease the total processor workload

as much as possible, it is better to balance density factor

among all processors to the greatest extent. Note that the above

U(λ1+λ2

2)

U(λ1)+U(λ2)
2

λ1 λ2
λ1+λ2

2

U(λi)

λi

Fig. 4: Balancing density factor leads to lower workload.

Algorithm 1: DBF: Density factor Balancing Fit

Input : A set of update transactions T = {τi}ni=1 sorted

in non-decreasing order of Vi.
Output: Assigning each transaction τi to a processor.

for i = 1; i ≤ n; i = i + 1 do1

for j = 1; j ≤ m; j = j + 1 do2

if τi satisfies Conditions (8) and (2) on Mj then3

assign τi to Mj ;4

break and proceed to next transaction τi+1;5

if τi is not assigned to any processor then6

for k = 1; k ≤ m; k = k + 1 do7

if τi satisfies Condition (2) on Mk then8

assign τi to Mk;9

break and proceed to next transaction τi+1;10

if τi is not assigned to any processor then11

/* Fail to derive a solution. */12

Return PARTITIONING FAILED;13

convexity assumption is based on our observations instead of

formal proofs.

Based on the above discussion, we propose our heuris-

tic, Density factor Balancing Fit, as follows: Considering the

processors {M1, M2, . . . , Mm} in any order, Algorithm DBF
assigns transaction τi to the first processor Mj that satisfies

inequality (2) and the following condition:

λi +
∑

τj∈T (Mk)
λj ≤

λsum

m
(8)

If no such Mj exists, then DBF assigns transaction τi to the

first processor Mk which satisfies condition (2). If again no such

Mk exists, DBF declares failure: it is unable to conclude that

the transaction set T is feasible on the m-processor platform.

Detail of DBF is shown in Algorithm 1.

The proposed heuristic DBF is efficient from the two perfor-

mance dimensions: feasibility and workload. We will detail its

131

TABLE II: Partition Results for Example 2

TCNF / TCFF / TCBF TCWF DBF
M1 M2 M1 M2 M1 M2

τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti

τ1 2 2 7 τ3 2 2 14 τ1 2 2 7 τ3 3 3 8 τ1 2 2 7 τ2 3 3 8

τ2 3 5 6 τ4 1 3 15 τ2 2 4 12 τ4 1 4 14 τ3 2 4 12 τ5 3 6 18

τ5 3 6 18 τ6 2 6 34 τ5 3 7 17 τ4 1 5 13

τ6 2 8 32 τ6 2 7 33

λ = 0.495 λ = 0.3556 λ = 0.39722 λ = 0.45328 λ = 0.45277 λ = 0.3977
Total workload: 1.2244 Total workload: 1.1341 Total workload: 1.13157

performance in Section V. But at first, it should be noted that

DBF has the same resource augmentation bound as TCP, which

identifies a feasibility performance guarantee theoretically.

Theorem 4. Algorithm DBF preserves a resource augmentation
bound of (3− 1

m).

Proof: Since only inequality (2) is used to check feasibility,

while inequality (8) is for balancing density factor, the claim

follows directly.

Complexity of DBF: When allocating transaction τi, observe
that DBF essentially evaluates, in (8) and (2), the density factor

of the previously allocated (i − 1) transactions on each of the

m processors. Since these values can be computed in constant

time, it is clear that the run-time of the algorithm in allocating

all n transactions is no more than O (nm).
The following example illustrates the advantage of DBF

compared to the four schemes evolved from traditional methods

for multiprocessor scheduling.

Example 2. Consider a transaction set comprised of six trans-
actions with execution times and validity interval lengths

T ≡ {τ1 = (2, 9), τ2 = (3, 11), τ3 = (2, 16),

τ4 = (1, 18), τ5 = (3, 24), τ6 = (2, 40)}

to be executed on m = 2 identical processors. The resulted
solutions under TCNF, TCFF, TCBF, TCWF and DBF are
stated in Table II, with all periods and deadlines derived by
HSEDF . Note here for the given transaction set, TCNF, TCFF
and TCBF produce the same result.

This example demonstrates that density factor balancing plays

an important role in minimizing the processor workload. As can

be seen from Table II, the most density factor balanced partition,

i.e., the one-derived by DBF, results in about 9% less workload

than TCNF, TCFF and TCBF, the least density factor balanced

partitions. Note here TCWF produces almost the same workload

as DBF. In fact, TCWF has a better workload performance than

DBF in most cases. This is because TCWF tends to distribute

the density factor evenly among all the processors, and thus can

produce density factor balanced partitions. But it should also be

noted that TCWF has a higher run-time complexity than DBF,

TABLE III: Experimental parameters and settings

Para. Class Parameters Meaning Value
NCPU No. of CPU {2,4,8,16,32}

System NT No. of data objects [10,500]
Vi(ms) Validity interval of xi [4000,8000]

Update Ci(ms) Time for updating xi [5-15,15-150,150-800]

Transactions Trans.length No. of data to update 1

and its feasibility performance is bad, as will be shown in the

experiment study.

V. Performance Evaluation

In this section, we provide an experimental evaluation of

DBF versus TCNF, TCFF, TCBF and TCWF. In addition to

the theoretical evaluation of DBF’s feasibility aspect stated in

Theorem 4, we also evaluate DBF by comparing it with an

algorithm FF-HS, a variant of First-Fit which uses HSEDF as

the feasibility check when allocating a transaction to a processor.

The aim of this evaluation is to characterize the schedulability

loss of DBF due to using a sufficient - but not necessary -

polynomial time feasibility test on each processor.

A. Simulation Model and Assumptions

Performance Metrics: Our problem has two equally important

performance dimensions: temporal consistency schedulability (or

feasibility) and processor workload. Given a transaction set to be

scheduled on a multiprocessor platform, an algorithm with high

temporal consistency feasibility performance, low workload, and

low computational cost is favorable. But as we will see later,

there is an inherent tradeoff between feasibility and workload

performances of the schemes we investigated. Hence, judging

by the feasibility and workload it is not always possible to

point to a clear winner. Consequently, we define an additional

hybrid metric (namely feasibility/workload) that combines both

feasibility and workload performance dimensions. In summary,

we measure the performance of a given heuristic H in terms of

the following three metrics:

132

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Density factor

Fe
as

ib
ili

ty
 P

ef
or

m
an

ce
 (F

P
)

TCNF

TCFF

TCBF

TCWF

DBF

Fig. 5: Feasibility performance

0 1 2 3 4

1

2

3

4

5

6

Density factor

W
or

kl
oa

d
P

ef
or

m
an

ce
 (W

P
)

TCNF

TCFF

TCBF

TCWF

DBF

Density factor

Fig. 6: Workload performance

(1) The Feasibility Performance (F PH), given as the percent-

age of the transaction sets that are schedulable by H.

(2) The Workload Performance (WPH), given as average

workload of transaction sets that are scheduled by H in feasible

manner.

(3) The Feasibility/Worklaod (F WH) metric, given as FPH
WPH

.

It is not difficult to see that F WH favors the heuristics with

high feasibility performance and low processor workload.

Simulation Settings: Table III shows a summary of the param-

eters and default settings used in our experiments. Note here we

use similar baseline values for the parameters as [30] and [31],

which are originally from air traffic control applications [23], to

keep consistency and continuity with previous work. Two cate-

gories of parameters are defined: system and update transaction.

For system configurations, an m (selected from {2, 4, 8, 16, 32})
processors, a main-memory-based RTDBS is considered. The

number of real-time data objects NT ranges from 10 to 500
to generate different density factor loads in the system. The

validity interval length Vi of each real-time data object is as-

sumed to be uniformly distributed in [4000, 8000]ms. For update

transactions, it is assumed that each update transaction updates

one data object, and each transaction has a uniform probability

of having short (5-15ms), medium (15-150ms), or long (150-
800ms) execution time. Observe that the range of transaction

execution time implicitly means the maximum density factor

for individual transaction is λmax = 800/4000 = 0.2.
We have generated a total of 100000 transaction sets by vary-

ing the number of processors m, the total density factor λsum

of the update transaction set, and the number of transactions n.
We considered systems with 2, 4, 8, 16 and 32 processors while

generating transaction sets with different number of transactions

which range in [10, 500]. Due to the lack of space, we present

our results only in the context of 50-200 transactions that are to

be scheduled on 8 processors, however we must underline that

the trends and relative performances of techniques are similar in

other settings as well.

For each point plotted in the figure, the simulations continued

until a confidence interval of 95% with half-width of less than

5% about the mean was achieved.

B. Experimental Results

Figure 5 shows the feasibility performance. It can be seen

that under low to medium (about 2.5) density factor, feasibility

can be easily achieved and all heuristics yield 100% feasibility.

As density factor increases, the feasibility performance of all

schemes drops sharply, and eventually it becomes zero (when

λsum exceeds 4). Among the five heuristics, TCWF has the

worst feasibility performance, while DBF, TCFF and TCBF
have almost the same, and the best, feasibility performance.

Figure 6 presents the workload performance. As can be observed,

TCWF obtains the best workload performance, followed by

DBF, of which is a bit higher compared to TCWF. The

remaining three, i.e., TCNF, TCFF and TCBF have almost

the same and, worst workload performance. The largest gap

between the most workload-efficient (TCWF) and the least

workload-efficient (TCFF, TCWF, TCNF) is about 60%. It

is also interesting to note that TCFF and TCBF are hardly

distinguishable in both workload and feasibility dimensions in

this set of experiments. By examining the performance of the

five heuristics, we observe that DBF is by far the best heuristic

in terms of overall performance: Its feasibility performance is the

best (Figure 5); Moreover, its workload performance, though is

higher than TCWF, clearly dominates TCNF, TCFF and TCBF,
throughout the entire density factor spectrum (Figure 6). This

fact is even more emphasized by the feasibility/workload curves

of heuristics (Figure 7).

In fact, much of the performance differences among the parti-

tioning heuristics, in terms of both feasibility and workload, can

be explained in terms of their density factor balancing behavior.

TCFF and TCBF tend to yield unbalanced partitions, while

133

0 1 2 3 4 5
0

0.5

1

1.5

2

Density factor

Fe
as

ib
ili

ty
/W

or
kl

oa
d

P
er

fo
rm

an
ce

 (F
W

)
TCNF

TCFF

TCBF

TCWF

DBF

Fig. 7: Feasiblity/Worklaod performance

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Density factor

Fe
as

ib
ili

ty

FF-HS

DBF

Fig. 8: Feasibility loss comparison

TCWF and DBF tend to produce balanced ones. This different

density factor-balancing behavior leads to different feasibility

and workload characteristics. On one hand, by distributing the

density factor evenly among the available processors can result in

balanced partitions and thus lead to a relatively lower workload.

On the other hand, by greedily packing as many transactions

as possible on a few processors (just in the case of TCFF and

TCBF), it is possible to accommodate additional transactions on

the remaining (idle) processors and thus improve the feasibility.

In view of the intrinsical tradeoff between feasibility and work-

load performance, it would be better to design a heuristic which

can balance these two factors in a certain degree. DBF happens

to be such a choice. As can be observed, DBF combines both

the advantage of TCWF and TCFF. First, when allocating one

transaction, it checks whether the density factor exceeds λsum

m
to guarantee density factor balancing, and hence can result in

a relatively lower workload. This policy is similar to that of

TCWF, which always allocates one transaction to the processor

with maximum remaining capacity to balance density factors

among all processors. Second, DBF places as many transactions

as possible on one processor when a balance cannot be achieved,

with the objective of accommodating more transactions on a

single processor to improve feasibility. This behavior is analog

to that of TCFF, which always selects the first processor that

verifies the schedulability test. In summary, the experimental

result verifies DBF’s better feasibility/workload performance

compared to the other four heuristics.
Figure 8 shows the feasibility performance comparison be-

tween DBF and FF-HS. Under low to medium density factor

parameters, feasibility can be easily achieved and both heuristics

yield 100% feasibility. As density factor load increases, the

feasibility performance of DBF drops sharply, and eventually

it becomes zero (when λsum exceeds 4). But FF-HS can still

derive feasible solutions until λsum approaches to 5.8. This

is because according to Theorem 1, any transaction set with

λsum ≤ 0.5m is deemed to be temporal consistency schedulable,

and hence can also be scheduled by FF-HS. But the converse is

not true, which means when λsum exceeds 0.5m, FF-HS may

still find a solution, while DBF definitely fails. This illustrates

why FF-HS has better feasibility performance than DBF.

VI. Related Work

There has been a lot of work on RTDBSs for maintaining

real-time data freshness [10], [12], [17], [18], [20]–[22], [27],

[28]. In [28], Song et al. study the performance of two well-

known concurrency control algorithms, two-phase locking and

optimistic, in maintaining temporal consistency of shared data in

a hard real-time systems. In [21], Kuo et al. investigate real-time

data-semantics and propose a class of real-time access protocol

called SSP (Similarity Stack Protocol). The trade-off between

data consistency and system workload is exploited in [16],

where similarity-based principles are combined with the Half-
Half scheme to reduce workload by skipping the execution of

task instances. In [13], Gustafsson et al. focus on maintaining

data freshness in soft real-time embedded systems and propose

an on-demand scheduling algorithm (ODDFT) for guaranteeing

the freshness of base and derived data. In [12], Gustafsson et al.

propose an algorithm (ODTB) for updating data items that can

skip unnecessary updates allowing for better CPU utilization.

All the work mentioned above assumes the deadlines and

periods of update transactions are given, hence gives no answer

to the period and deadline assignment problem for maintaining

temporal consistency. To address the period and deadline as-

signment problem, the More-Less scheme is proposed in [30]

with Deadline Monotonic scheduling. While More-Less is based

on periodic task model, the deferrable scheduling algorithm for

fixed priority transactions (DS-FP) proposed in [29] follows

a sporadic task model. DS-FP reduces processor workload by

adaptively adjusting the separation of two consecutive instances

of update transactions while satisfying the validity constraint.

134

In [17], Jha et al. investigate how to maintain the mutual

temporal consistency of real-time data objects. In [15], Han et

al. study the problem of how to maintain the temporal validity

of real-time data in the presence of mode changes in flexible

real-time systems, the authors propose to use different schedul-

ing policies in different modes and introduce two algorithms

to search for proper switch points. The period and deadline

assignment problem for real-time update transactions scheduled

under EDF is addressed in [31].

Most of the previous work mentioned above focuses on

uniprocessor systems. To our best knowledge, the only work con-

siders temporal issue on multiprocessor platforms is the one con-

ducted by Lundberg [24], which focuses on age-constraint global

multiprocessor scheduling. Our work is different from [24] in

that we address partitioned scheduling.

VII. Conclusions

In this paper, we studied the workload-aware transaction

partitioning problem for maintaining temporal consistency of

real-time data objects upon multiprocessor platforms. As far

as we know, this work is the first attempt to solve the given

problem. We first only considered the feasibility aspect of the

problem and proposed a polynomial-time partitioning algorithm

TCP. We formally proved that the resource augmentation bound

of TCP is (3− 1
m). Secondly, we addressed the problem globally

by proposing a density factor balancing scheme DBF, showing

that a more balanced partitioning tends to produce a lower

workload. Our experimental evaluation demonstrates that DBF
is by far the best choice from the perspectives of feasibility and

workload.

For future work, we intend to investigate the temporal con-

sistency scheduling problem on multiprocessors with aperiodic

task model, as well as the resource sharing issue. We also plan to

study the temporal consistency scheduling problem upon global

multiprocessor platforms.

Acknowledgments

We are grateful to the anonymous reviewers for their con-

structive comments. This research was partially supported by the

National Science Foundation of China [Award No. 60873030]

and the Research Fund for the Doctoral Program of the Ministry

of Education of China [Award No. 20090142110023].

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on
multiprocessors. In Proc. of IEEE RTSS, pages 193–202, 2001.

[2] B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline
sporadic task systems on multiprocessors. In Prodeedings of Real-Time
Systems Symposium, pages 385–394. IEEE, 2008.

[3] T. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In Proc. of Real-Time Systems Symposium, pages 120–129, 2003.

[4] S. Baruah. Techniques for multiprocessor global schedulability analysis.
In Proc. of IEEE Real-Time Systems Symposium, pages 119–128, 2007.

[5] S. Baruah and N. Fisher. The Partitioned Multiprocessor Scheduling of
Sporadic Task Systems. In Proc. of IEEE RTSS, pages 321–329, 2005.

[6] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions on
Parallel and Distributed Systems, 20(4):553–566, 2009.

[7] J.-J. Chen and S. Chakraborty. Resource Augmentation Bounds for
Approximated Demand Bound Functions. In Proc. of IEEE RTSS, 2011.

[8] R. Davis and A. Burns. A survey of hard real-time scheduling algorithms
and schedulability analysis techniques for multiprocessor systems. Univer-
sity of York, Department of Computer Science, Tech. Rep. YCS-2009-443,
2009.

[9] N. Fisher, S. Baruah, and T. Baker. The Partitioned Scheduling of Sporadic
Tasks According to Static-Priorities. In Proc. of 18th Euromicro Conference
on Real-Time Systems, pages 118–127, 2006.

[10] R. Gerber, S. Hong, and M. Saksena. Guaranteeing end-to-end timing
constraints by calibrating intermediate processes. In Proceedings of IEEE
Real-Time Systems Symposium, pages 192–203, 1994.

[11] J. Goossens, S. Baruah, and S. Funk. Real-time scheduling on multipro-
cessor. In Proc. of International Conference on Real-Time System, 2002.

[12] T. Gustafsson and J. Hansson. Data management in real-time systems: a
case of on-demand updates in vehicle control systems. In Proc. of IEEE
RTAS, pages 182–191, 2004.

[13] T. Gustafsson and J. Hansson. Dynamic on-demand updating of data
in real-time database systems. In Proc. of ACM symposium on Applied
Computing, pages 846–853. New York, USA, 2004.

[14] S. Han, D. Chen, M. Xiong, and A. Mok. A Schedulability Analysis of
Deferrable Scheduling Using Patterns. In Proc. of ECRTS, pages 47–56,
2008.

[15] S. Han, D. Chen, M. Xiong, and A. Mok. Online Scheduling Switch for
Maintaining Data Freshness in Flexible Real-Time Systems. In Proc. of
IEEE Real-Time Systems Symposium, pages 115–124, 2009.

[16] S. Ho, T. Kuo, and A. Mok. Similarity-based load adjustment for real-time
data-intensive applications. In Proc. of RTSS, pages 144–154, 1997.

[17] A. Jha, M. Xiong, and K. Ramamritham. Mutual Consistency in Real-Time
Databases. In Proc. of IEEE RTSS, pages 335–343, 2006.

[18] K. Kang, S. Son, J. Stankovic, and T. Abdelzaher. A QoS-Sensitive Ap-
proach for Timeliness and Freshness Guarantees in Real-Time Databases.
In Proc. of Euromicro Conference on Real-Time Systems, 2002.

[19] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on
multiprocessors. In Proc. of RTAS, pages 23–32, 2009.

[20] Y. Kim and S. Son. Predictability and consistency in real-time database
systems. Advances in real-time systems, pages 509–531, 1993.

[21] T. Kuo and A. Mok. SSP: A semantics-based protocol for real-time data
access. In Proc. of Real-Time Systems Symposium, pages 76–86, 1993.

[22] K. Lam, M. Xiong, B. Liang, and Y. Guo. Statistical Quality of Service
Guarantee for Temporal Consistency of Real-Time Data Objects. In Proc.
of IEEE Real-Time Systems Symposium, 2004.

[23] D. Locke. Real-Time Databases: Real-World Requirements. Kluwer
International Series In Engineering and Computer Science, pages 83–92,
1997.

[24] L. Lundberg. Multiprocessor Scheduling of Age Constraint Processes. In
Proceedings of RTCSA, page 42, 1998.

[25] A. K. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. Technical report, Cambridge, MA, USA, 1983.

[26] K. Ramamritham. Real-time databases. Distributed and Parallel
Databases, 1(2):199–226, 1993.

[27] K. Ramamritham. Where Do Time Constraints Come From? Where Do
They Go? Journal of Database Management, 7:4–11, 1996.

[28] X. Song and J. Liu. Maintaining temporal consistency: pessimistic vs.
optimistic concurrency control. IEEE Transactions on Knowledge and Data
Engineering, 7(5):786–796, 1995.

[29] M. Xiong, S. Han, K. Lam, and D. Chen. Deferrable scheduling for
maintaining real-time data freshness: algorithms, analysis, and results.
IEEE Transactions on Computers, pages 952–964, 2008.

[30] M. Xiong and K. Ramamritham. Deriving Deadlines and Periods for Real-
Time Update Transactions. IEEE Transactions on Computers, pages 567–
583, 2004.

[31] M. Xiong, Q. Wang, and K. Ramamritham. On earliest deadline first
scheduling for temporal consistency maintenance. Real-Time Systems,
40(2):208–237, 2008.

135

