
Efficient Optimistic Concurrency Control for Mobile Real-Time Transactions
in a Wireless Data Broadcast Environment*

Li Guohui,Yang Bing,Chen Jixiong
School of Computer Science & Technology, Huazhong University of Science & Technology

Wuhan, Hubei Province, 430074
Email: guohuili@hust.edu.cn

* This work is supported by National Science Foundation and a Project Sponsored by the Scientific Research Foundation for the
Returned Overseas Chinese Scholars, State Education Ministry

Abstract
In this paper, we introduce a variant of the

optimistic concurrency control protocols.The
broadcast cycle is divided into multiple sub-cycles.
Between two sub-cycles, there is a reserved space to
accomodate identities for all the data objects which
are updated by transactions in the server after the first
sub-cycle begins. A read-only mobile transaction can
validate its consistency autonomously by comparing its
read-set with the committed write-set of the update
transactions. If a read-only transaction cannot pass
the partial validation, it is not simply aborted and
restarted. Instead, an enhanced forward validation
policy is applied, which help read-only transactions
have more chances to commit. Extensive experiments
are conducted to evaluate the performance of the
proposed algorithms.
Keywords
Data Broadcast, Optimistic Concurrency Control,
Mobile Real-time Transaction Processing, Hybrid
Validation Policy
1. Introduction

In a mobile computing system, broadcast-based data
dissemination is a major mode of data transfer [1,2]. The
transactions processed by mobile clients are called
mobile transactions (MT). Some of the mobile
transactions can have timing constraints and require
the system to finish their processing before their
deadlines expire [3] . In this paper, it is assumed that if a
mobile real-time transaction (MRTT) misses its
deadline, the system just discards the transaction. In
this system , many of the MT’s are read-only
transactions and they do not modify any data items in a
database [4]. It is more efficient to process these read-
only transaction in a separate way, especially in the
wireless data broadcast environment, by taking

advantages of the information that they do not update
the database.

There are already many studies on data
management in a wireless environment [5,6].
Shanmugasundaram proposed a correctness criterion to
allow read-only transactions to read current and
consistent data without contacting the fixed database
server [7]. Victor discussed the disadvantages of
Shanmugasundaram’s algorithm and showed that two
different read-only transactions may perceive the
effects of update transactions in different serialization
order and this may cause hazard to the system under
certain circumstances [8].

In this paper, serializability is adopted as the
correctness criterion and efficient control information
are broadcast along with the database contents to help
mobile clients to process read-only MRTT’s without
contacting the fixed database server. A variant of the
optimistic concurrency control protocol is adopted
which is different from the traditional optimistic
concurrency control protocols and read-only MRTT’s
have more chances to commit before their deadlines
expire.
2. Optimistic Concurrency Control In

Broadcast Environments
In such circumstances where there are less data

conflicts among transactions, optimistic concurrency
control protocols are adopted to maintain the database
consistency.
2.1 Limitations of Existing Optimistic Concurrency
Control Protocols for MTs

In the following discussion, the read set of
transaction Ti is denoted as read-set(Ti) and the write
set of transaction Tj is denoted as write-set(Tj).

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Observation 1. In the backward validation, some
conflicts do not affect the correctness of transaction
execution.

Fig. 1. The three phases of a transaction
As depicted in Fig. 1, when transaction Tj performs

a backward validation, since Ti commits during its
execution, so Tj validates against Ti and read-set(Tj) is
compared with write-set(Ti) and there is an intersection
between the two sets. So the validation for Tj fails and
Tj aborts and restarts. Similarly, when Tk validates
against Ti, because there is an intersection between
write-set(Ti) and read-set(Tk), and Tk is aborts and
restarts. But actually Tk is different from Tj. The
correctness criterion of the optimistic concurrency
control protocol requires that the effect of the
concurrent execution is equal to that transaction Tj

come after Ti. However, Tj reads a data object x before
Ti writes x, this conflicts with the correctness criterion.
So Tj can’t pass the validation and is aborted. Such
kind of conflicts which do affect the correctness of
concurrent transactions are called severe conflicts. On
the contrary, even if there is an intersection between
write-set(Ti) and read-set(Tk), Tk reads y after Ti writes
y, so the data conflict does not affect the concurrent
execution correctness requirements that Tk come
after Ti. And the abortion of transaction Tk is
unnecessary because after Tk restarts, Tk will read the
same value of y as before (if no other transactions
write y). This kind of data conflicts is fake conflicts.

Now suppose that Ti is an update transaction
executed in the fixed database server, and Tj and Tk are
two read-only transactions in mobile clients. Tk reads y
after Ti writes y. In other words, the value of y read by
Tk is written by Ti. According to Victor’s algorithm,
before the commitment of Tk, it will find a read-write
conflict between Ti and Tk and Tk will be aborted and
restarts. However, as in the above discussion, such a
conflict is a fake conflict and this transaction abort and
restart is unnecessary. So it has a negative effect on
system performance.
2.2 Forward Validation Scheme for Mobile
Transactions

To differentiate severe conflicts from fake conflicts,
when an update transaction in the fixed database server
commits, its write set is included in a broadcast cycle
immediately. All the transactions in mobile clients
compare their read set with the broadcasted write set of

the committed update transaction in the fixed DB
server.

The set of data objects read by a transaction TM up
to a time point is denoted as read-set (TM). At time ,
an update transaction TU in the fixed database server
commits and its write set is included in the data
broadcast cycle. For a mobile transaction TM and a
committed update transaction TU (Note that the
committed write data objects are included in the
broadcast cycle), if write-set(TU) read-set (TM) ,
then TM aborts and restarts. Such a comparison is
called a partial validation for a mobile transaction.

For a read-only mobile transaction TM, if it passes
all its partial validations during its execution, it is
ready to commit. Before the final commit, it waits for
the commit of the next update transaction TU’, if write-
set(TU) read-set(TM) = , then TM is committed and
the query results are returned to the user. Otherwise,
TM aborts and restarts.

For an update transaction TMU, it is transmitted to
the fixed database server for final validation. Even it is
necessary to transfer mobile update transactions to the
fixed DB server via the upstream bandwidth. By using
the partial validation scheme, a destined-to-fail
transaction aborts and restarts in advance and it is
unnecessary to transfer them for final validation. This
can increase the transaction success ratio.
2.3 Enhanced Validation Policy

The validation policy proposed in section 2.2
cannot predict when an update transaction in the fixed
DB server commits and the number of data items an
update transaction can modify. So a mobile client has
to stay in active state and tune in to get the interesting
data items continuously. This increases the power
consumption for mobile clients tremendously.

To solve this problem, we design a new data
broadcast method. A broadcast period is divided into
several broadcast sub-periods (SP) which are of the
same length. Between two SP’s, we reserve a space
with a fixed size for the set of data items which are
updated by transactions in the fixed database server.
Such a space is reserved mainly for mobile
transactions to validate themselves autonomously. In
the middle of two consecutive broadcast SP’s, the set
of identities for all the data items that are updated in
the fixed database server after the first broadcast SP is
included in the broadcast channel.

The size of the reserved space between two
consecutive broadcast SP’s has a subtle impact on the
system performance. If the size of the reserved space is
too large, of course, more transaction aborts caused by
fake conflicts can be avoided. However, large size of
the reserved space means an extended data broadcast

Read Validatio Write

time

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

period. This can increase the data accessing time
latency for mobile transactions.

Since the size of the reserved space between two
consecutive broadcast SP’s are predefined, it is
possible that the number of the data items updated by
transactions in the fixed database server between two
SP’s exceeds the reserved space between the two
broadcast SP’s, i.e., the only penalty for such reserved
space inadequacy is that some fake conflicts cannot be
differentiated and thus some transactions are aborted
unnecessarily due to the fake conflicts.

Suppose that the set of committed transactions
which commit after the previous broadcast sub-cycle is
denoted as T. T={ti|1 i n} and transactions in T are
sorted according to the committing order, i.e.,
transaction ti commits before ti+1 commits (1 i n-1).
Suppose that:

1

((()))
j

i

i

space ID write set t reserved space

and
1

1

((()))
j

i

i

space ID write set t reserved space

The set of transactions in T are partitioned into two
sub-sets: T1={t1, t2, …., tj} and T2={tj+1, tj+2, …., tn},
i.e., T=T1 T2. Note that T2 can be an empty
transaction set. After the partitioning, the identities of
all the data items which are updated by any transaction
in T1 are included in the reserved space after the
current broadcast sub-cycle. The identities of all the
data items which are updated by any transaction in T2
are included in the next reserved space. Furthermore, a
flag (bit) is included in the reserved space to specify
whether there is enough space to accommodate all the
identities of the data items updated by all the
transactions in the fixed database server that commit in
the previous data broadcast sub-cycle.

The main steps executed by a mobile transaction are
described as follows:

(1)Based on the data index preceding a data
broadcast cycle, a mobile transaction determines the
relative position of the interesting data items in the
broadcast cycle. Then the mobile client turns into the
doze state.

(2)Before an interesting data item appears in the
broadcast channel, the mobile client turns from the
doze state to the active state and then accesses the data
items.

(3)When there comes the reserved space between
two consecutive data broadcast sub-cycle, the mobile
client turns from the doze state to the active state and
then extracts the set of identities for the updated data
items and the flag in the reserved space.

(4)The mobile client compares the set of data items
included in the current reserved space, denoted as WS,
with the set of data items read by the mobile
transaction, TM, up to now-the time point is

if WS read-set (TM)
THEN Transaction TM aborts and restarts
ELSE TM continues its execution.
Compared with the algorithm in section 2.2, our

algorithm is more power-efficient. By using the data
index, a mobile client can turns into the doze state
before the interesting data appear in the wireless
broadcast channel. However, in section 2.2, we cannot
predict when a transaction in the fixed database server
commits and a mobile client has to stay in active state
and tunes in to access the interesting data.
3. Performance Evaluation

The simulation experiments are aimed at studying
the performance of our proposed protocol in contrast
with the conventional OCC protocol and protocol in
[8] in real-time broadcast disk environments. The
major performance metric of these protocols is the
miss rate, which is the percentage of transactions
missing their deadlines. Another performance metric is
the restart rate, which is the average number of aborts
and restarts before a transaction can be committed. The
statistics of read-only mobile transactions (ROMT) and
update mobile transactions (UMT) under conventional
OCC protocol in [8] (FBOCC) and our proposed
protocol (EOCC) are collected separately.

Fig. 2 shows the restart rate of mobile transactions
under different concurrency control protocols.

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100 120 140 160 180 200
Server Transaction Arrival Rate

R
es

ta
rt

 R
at

e
 %

UMT- OCC ROMT- OCC
UMT- FBOCC ROMT- FBOCC
UMT- EOCC ROMT- EOCC

 Fig.2. Restart rate versus server transaction arrival rate
Note that a transaction may be restarted more than

once. OCC owns the highest restart rate and response
time for all of the mobile transactions must be sent to
fixed host to validate. FBOCC reduces both
performance metrics by utilizing partial validation. For
our proposed protocol, the performance is similar to
that of FBOCC in case of low data contention.
However, with the increase of server transaction
arrival rate, our protocol does better than FBOCC
because the enhanced validation method can
differentiate between severe conflicts and fake

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

conflicts Fig. 3 illustrates the miss rates of several
protocols.

0

5

10

15

20

20 40 60 80 100 120 140 160 180 200
Server Transaction Arrival Rate

M
is

s
R

at
e

 %

UMT- OCC ROMT- OCC
UMT- FBOCC ROMT- FBOCC
UMT- EOCC ROMT- EOCC

Fig.3. Miss rate versus server transaction arrival rate
For OCC, there is no discrimination between

ROMT and UMT. Both are required to submit to the
server for validation. Therefore, the performance of
these two transaction types is almost the same. The
miss rate increases with the server transaction arrival
rate. Although the load at the server is not high such
that the impact of resource contention is not great, the
increasing number of server transactions increases the
chance of data conflicts between mobile transactions
and server transactions. Consequently, mobile
transactions submitted to the server for validation will
be restarted if any data objects that have been read are
over-written by a committed sever transaction. Since
the delay overhead in broadcast environments is much
higher than that in wired systems, it is more likely for a
restarted transaction to miss its deadline. The
performance of FBOCC is better than traditional OCC
thanks to the autonomous partial validation at mobile
clients. The performance of ROMT is even better than
that of UMT since the saving of validation of ROMT
at the server helps them to meet more deadlines. For
our proposed protocol, the performances of ROMT
and UMT both outperform those of FBOCC and
traditional OCC. The main reasons are that fake
conflicts can be differentiated from serve conflicts by
the enhanced validation method. Moreover, the
dynamic serialization order adjustment of read-only
transactions further reduces the probability of missing
deadlines for ROMT.
4. Conclusion

The proposed algorithm in this paper supports
autonomous read-only mobile transaction processing

without contacting the fixed database server.
Furthermore, we can make difference between severe
conflicts and fake conflicts. This results in more
possibility of successful commitment for mobile
transactions.

Furthermore, for a mobile read-only transaction, we
combine the backward validation and forward
validation to achieve more transaction commitment a
read-only transaction has more its chance to commit
correctly. In the broadcast cycle, we can preserve
spaces to accommodate the write sets of the committed
update transaction in the fixed database server.

In this paper, a data broadcast cycle is divided into
a pre-defined number of sub-cycles and the size for the
space reserved between two consecutive sub-cycles is
also fixed. Actually, the number of sub-cycles and the
size for the reserved space between two sub-cycles
have an impact on the system performance. We are
now focusing on this problem in both analytical and
experimental ways.
6. References
[1] R. Alonso, H. Korth, Database systems issues in nomadic
computing, Proc. Of the ACM SIGMOD Conference,
Washington D. C., June 1993, pp. 388-392
 [2] T. Imielinski and B. r. Badrinath, Mobile wireless
computing: challenges in data management, Communications
of the ACM, Vol. 37, No. 10, October 1994, pp18-28
 [3] Stabjivic, J. A., Son, S. H., Hansson, J., Misconceptions
about real-time databases, Computer 199, 32(6), pp29-37
 [4] Garcia-Molina, H., Wiederhold, G., Read-only
transactions in a distributed database, ACM Transactions on
Database Systems, 1982,7(2): 209-234
 [5] Barbara, D., Certification reports: supporting
transactions in wireless systems, In: Proceedings of 17th
International Conference on Distributed Computing System,
USA, 1997: 466-473
 [6] Acharya, S., Alonso, R., Franklin, M., Zdonik, S.,
Broadcast disks: data management for asymmetric
communication environments, In: Proceedings of the ACM
SIGMOD conference, 1995: 199-210
 [7] Shanmugasundaram J., Nithrakashyap, A., Sivasankaran,
R., Ramamritham, K., Efficient concurrency control for
broadcast environments. In: ACM SIGMOD International
Conference on Management of Data. 1999
 [8] Victor C. S. Lee, Kwok Wa Lam, Tei-Wei Kuo,
Efficient validation of mobile transactions in wireless
environments, Journal of Systems and Software, 2004.1

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

