
Location Update Generation in
Cellular Mobile Computing Systems==

GuoHui Li1*, Kam-Yiu Lam1 and Tei-Wei Kuo2

Department of Computer Science1

City University of Hong Kong
83 Tat Chee Avenue, Kowloon

Hong Kong

Department of Computer Science and
 Information Engineering2

National Taiwan University
Taipei, Taiwan, ROC

= The work described in this paper was partially supported by a grant from the Research Grants Council of Hong Knog SAR, China [Project No.
9040512].
* The work is done while Dr GuoHui Li is visiting the Department of Computer Science, City University of Hong Kong. Currently , Dr Li is an
associate professor in the School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Abstract
An important issue in the design of a mobile

computing system is how to manage the real-time
locations of mobile clients. In the existing commercial
cellular mobile computing systems, a two-tier
architecture is used [13]. However, the two-tier
architecture is not scalable and is not suitable to the new
mobile computing applications. In the literatures [1, 12],
a hierarchical database structure is proposed in which
the location information of the mobile clients within a cell
is managed by the location database responsible for the
cell. The location databases of different cells are
organized into a tree structure to facilitate the search of
mobile clients. Although this architecture can distribute
the update and searching workload amongst the location
databases in the system, it has the problem of heavy
location update overhead and long search delay. Thus, it
is not suitable to the system which is supporting real-time
queries. In this paper, we study how to generate location
update in the distance-based update method. Two
methods are proposed for calculating the optimal
distance threshold with the objectives to minimize the
total location management cost and the latency in
searching the location of a mobile client.

1 Introduction
One of the most important issues in the design of

a mobile computing system is location management of
mobile clients [1, 2, 3, 4]. In a cellular mobile network,
the whole service area is divided into a collection of inter-
connected cells. In each cell, there is a base station which

communicates with the mobile clients in the cell. The
base stations are connected by a high-speed wired
network. The mobile clients may move within their
current cells or move into other cells. While a mobile
client is moving, the system has to record down its real-
time location since other mobile clients may generate
queries on the location of the client and may want to
communicate with the client.

To efficiently manage the locations (and other
real-time information) of mobile clients, location
databases are defined. It is obvious that the data items for
the locations of mobile clients are real-time data. Their
validity may change rapidly with time especially for the
case where the mobility of the clients is high. On the
other hand, the queries submitted from mobile clients are
always associated with timing constraints on their
completion time. For example, a driver of an ambulance
may ask, “to identify all the other ambulances, which are
within 5 km of my current position”. The result of the
query depends on the current locations of the querying
ambulance and other ambulances. In order to provide
valid location information to a mobile client and to meet
the deadlines of the queries, the issues on how to manage
and organize the databases become important.

In the existing cellular mobile network, a two-
tier database structure is used to manage the locations of
mobile clients [13, 14]. In the system, one of the base
stations is defined with a location database, called Home
Location Register (HLR) which maintains the client
profiles, including the real-time locations of the mobile
clients. In addition, each base station (or a group of base
stations) also maintains a Visitor Location Register (VLR)

to record the mobile clients which are currently within the
cell responsible by the base station. When a mobile client
moves out of its current cell and enters another cell, a new
entry of the client location is added into the VLR of the
new cell and then the HRL will be also updated. In
locating a mobile client for a query, the VLR of the cell,
where the query is initiated, will be searched first. If the
client cannot be found in the VLR, a request will be sent
to the HLR of the client to find out its location. Once the
cell, where the location of the client is recorded, has been
identified, polling messages will be sent out in the cell to
communicate with the client to ensure that it is the right
cell where the client is now residing.

This two-tier architecture is simple. However, it
has several serious performance problems which make it
not suitable to the many new mobile computing
applications. The number of mobile clients in a mobile
computing system can be very large and the system may
need to maintain a large amount of real-time information
for mobile clients. It is obvious that the two-tier
architecture is not scalable. Because a mobile client is
permanently associated to an HLR, the overheads for
locating a client can be very heavy if the mobility of the
client is high. It is obvious that the cost for locating a
mobile client highly depends on the locations of the
calling mobile client and the called mobile client.

To improve the system performance and reduce
the total cost for locating a mobile client, a hierarchical
database structure [1, 12] is proposed to organize the
location databases in the system. Under the hierarchical
database structure, each cell (or a group of cells) has a
location database for the mobile clients in the cell. The
location databases of different cells are organized into a
tree structure with the location database at each cell as the
leaf node of the tree. Although the hierarchical structure
of the databases can improve the search of the locations of
mobile clients, the update overhead for maintaining the
real-time locations of mobile clients can be very heavy.
When a mobile client crosses a cell boundary into another
cell, several location databases may have to be updated
and the number of location databases to be updated
depends on how the databases are organized and how the
client moves.

Although various location update generation
methods have been proposed in the research in the area,
most of them are mainly designed for the two-tier
database architecture. To our best knowledge, it still
completely lacks of any research in the design of efficient
update generation policy for the mobile clients to report
their locations specifically for the system using the
hierarchical database structure.

One of the proposed methods for the two-tier
architecture is called distance-based update method.
Although it is simple, it is efficient and it has been widely
used in many existing cellular mobile network systems.

However, one of the main problems of the distance-based
method is that it is very difficult to define the distance
threshold which is the key parameter of the method. In
this paper, we design two efficient ways to calculate the
value for distance threshold such that the total cost for
location management is minimized. Since an important
requirement of the mobile computing systems is to meet
the query deadlines, we also provide a solution for
generating location updates with the objective to
minimize the latency for locating a mobile client. The
remaining parts of this paper are organized as follows.
Section 2 is the Related Work. Section 3 discusses the
two new methods for calculating the distance threshold
value. Section 4 presents a brief discussion on the
properties of the proposed methods. Finally, the
Conclusions and Future Work of the paper are given in
Section 5.

2 Related work
The research in mobile computing systems has

received a lot of interests in recent years. One of the most
important topics is location management. In the last few
years, different location update methods have been
proposed. Most of proposed methods are for system using
the two-tier location database structure. These proposed
methods can be summed up into the following four basic
policies, location-area update, time-based update,
distance-based update and movement-based update.

In the location-based update method, the
collection of all the cells in the system is grouped into a
number of disjointed location areas. A mobile client
updates its location when it enters another location area.
In the time-based update method, a mobile client updates
its location periodically every pre-specified time interval
[5]. In the distance-based update method, a mobile client
updates its location whenever the distance between the
current cell and the last registered cell exceeds a pre-
defined threshold value. In the movement-based update
method, a mobile client updates its location if the number
of cells it has travelled since the last location update
exceeds a pre-defined threshold value. In this paper, we
will concentrate on the distance-based update method
since it is widely used in the existing cellular mobile
network systems.

In addition to the above methods, in [9], a
paging method is proposed in which the whole service
area is divided into location areas (LAs) and the cells in a
location area are paged simultaneously. When there is an
incoming call to a mobile client, the LAs are sequentially
paged for the client following a pre-defined paging
strategy, which defines the order for paging the LAs. To
improve the probability of finding the mobile client and
reduce the paging cost, in [10], based on the velocity and
direction information of a mobile client, the system
estimates the most possible cell that the client is residing.

In [11], an active tracking policy is proposed to find out
the location information of a mobile client by using non-
utilized system resources to get the more detailed
information on mobile clients’ locations.

In recent years, a hierarchical location database
structure is proposed to organize the location databases in
the system [1]. It also discusses the problems such as
location caching, replication, concurrency control in the
hierarchical location databases. Although the hierarchical
location database architecture can speed up locating a
mobile client, up to now, to our best knowledge, it still
lacks of any efficient location update generation policy
for the hierarchical structure. It is the purpose of this
paper to study how to generate location update based on
the distance-based method for a system with hierarchical
databases for location management. Our main focus is on
the definition of the optimal distance threshold for the
distance-based method.

3 Location update generation
In this section, we will introduce two methods

for calculating the optimal distance threshold for the
distance-based update method so that the total location
management cost and the searching latency for a mobile
client can be minimised. In the distance-based method,
when a mobile client x moves from its previously-residing
cell, old_cell(x), into the current cell, cur_cell(x), an
update will be generated to update its location to the
location database of cur_cell(x) if the distance between
the two cells is greater than a pre-specified threshold. (We
call it distance threshold in this paper.)

In a hierarchical location database architecture,
the organisation of the location databases is static and the
system can pre-compute the distance between any two
cells and store the distances in a matrix. When a mobile
client moves across a cell boundary into another cell, the
system can easily query the matrix to get the distance
between the old cell and the new cell. However, how to
set the distance threshold is not an easy question.
Inappropriate distance threshold value can have a serious
impact on the system performance, i.e., heavy cost in
updating the location of a mobile client and a long delay
in locating a mobile client. If the distance threshold value
is small, the locations of mobile clients will be updated
frequently and a lot of system resources will be consumed
on processing the location updates. On the contrary, if the
distance threshold value is large, the location uncertainties
of mobile clients will be large and the total cost and time
delay for locating a mobile client will be very heavy.
Consequently, the timing requirement of many queries
cannot be satisfied. In the following sub-sections, we will
first introduce a cost-based method to determine the
optimal value for the distance threshold so that the total
update and searching cost can be minimised. Then, we
will introduce a time-based method to determine the

distance threshold so that the total latency delay for
locating a mobile client will be minimised.

3.1 A cost-based method for distance threshold
Basically, location management in a cellular

mobile computing system consists of two procedures:
location update to report the new location of a mobile
client and paging for a mobile client in case it is being
called. Thus, in the design of location update generation
policy, we need to consider the update cost and the
paging cost if we want to minimise the total location
management cost.

In the cost-based distance threshold method, we
first calculate the cost for processing a location update.
Then, we compare: (1) the total cost in locating a mobile
client when a location update is generated to report the
new location of a mobile client; with (2) the total cost in
locating a mobile client if a location update is not
generated to report its new location. Finally, we calculate
the optimal distance threshold value by letting the cost for
location update equal to the saving in cost. As can be seen
from the following discussion, the location update cost
increases linearly with the distance between the new cell
and the old cell of a mobile client. The saving in cost
increases exponentially with the distance between the
new cell and the old cell of a mobile client. When a
mobile client moves across a cell boundary and the
distance between the old cell and the current cell is
greater than the distance threshold, the generation of a
location update can decrease the total cost in locating a
mobile client dramatically. If the distance between the
former cell and the current cell of a mobile client is less
than the threshold, the generation of location update
should be deferred since the generation of location update
incurs more cost than the saving in cost due to the
location update.

3.1.1. Terminology
The ratio of the number of calls for locating a

mobile client over the number of cell boundary crossing
defined as call to mobility ratio (CMR) in [1] can have an
important impact on the optimal value of the distance
threshold. If CMR is small, i.e., there are not many
location calls to a mobile client per cell boundary
crossing, the generation of a location update from a
mobile client will not result in much saving in the cost for
locating the mobile client. So generation of a location
update should be deferred for this case. On the contrary, if
CMR is large, i.e., there are a large number of calls to a
mobile client per cell boundary crossing, the generation
of a location update can reduce the location cost
significantly.

The least common ancestor of location databases
DBi and DBj is denoted as LCA(DBi, DBj). The height of
LCA(DBi, DBj) to the leaf nodes of the tree is denoted as

lca(DBi, DBj). (We assume that all of the leaf nodes of the
location databases are at the same level in the hierarchical
location database tree).

Let the leaf node of a location database for
mobile clients at the cell i be LDB(i).

Definition 1: The distance between cells i and j,
termed dis(i, j), is defined as the height of the least
common ancestor of the two leaf location databases which
are responsible for cell i and cell j respectively:

dis(i,j) = lca(LDB(i),LDB(j))
If i = j then dis(i, j) = 0.

Let cur_cell(x) be the cell where mobile client x
is now residing at.

Definition 2: The distance between clients x and
y, termed dis(x, y), is defined as the distance of the two
cells in which x and y are now residing, namely,

 dis(x, y) = dis(cur_cell(x), cur_cell(y)) .

The above definition captures the locality of two
mobile clients. It can be seen easily that a mobile client
takes a smaller cost to find the location information of
another mobile client if the distance between them is
smaller.

Similar to [12], when we calculate the optimal
value for the distance threshold, we consider the
following related costs in location update and lookup
procedure:

F: The cost of sending a message to an arbitrary site
knowing its physical address;

L: The cost of following a link in the tree of the
location databases, i.e. , sending a message to the
parent or child node of a location database;

U: The cost of a database update;
Q: A database query cost;
P: The cost of polling for a specific client in a cell.

3.1.2 Cost-based distance threshold calculation
To simplify the discussion, we assume that in the

hierarchical location database structure, each internal
node has d sub-nodes and we denote dis(new_cell(x),
old_cell(x)) as dis. When a client x moves from cell
old_cell (x) to cell cur_cell (x), if a location update will be
generated, the database entries for x in both from
old_cell(x) up to LCA(cur_cell(x),old_cell(x)) and from
LCA(cur_cell (x),old_cell (x)) down to cur_cell (x) have
to be updated.

For example, when a mobile client x moves from
its old cell, j, into a new cell, i, its location entries in
databases LDB(i) and all the related location databases in

the tree have to be updated by performing the following
procedure.

First, a message is sent from location database
LDB(i) to its parent node to determine whether a location
entry for x already exists in it or not. If the entry cannot
be found, a record pointing to location database LDB(i)
will be created at the parent node. The searching
procedure is repeated until LCA(LDB(i),LDB(j)) is
reached. Then, the procedure continues from the database
LCA(LDB(i),LDB(j)) down to LDB(j) to clear the location
entry for x.

We can see that the whole searching procedure
consists of 2lca(LDB(i),LDB(j)) times of messages
passing and processing. Since all the database entries for
x from the database LDB(j) to the maximum child
database of LCA(LDB(i),LDB(j)) should be deleted and
the location information of x in the databases
LCA(LDB(i),LDB(j)) should be updated. For all the
databases from the other maximum child database to the
database LDB(i), there will be an additional database
update. Totally there are 2dis(old_cell (x),cur_cell (x)) +
1 times of location updates.

To illustrate the searching and update procedure,
we can refer to the example hierarchical location
databases shown in Figure 1. It is supposed that mobile
client x moves from the cell corresponding to the location
database DB5 to the cell corresponding to location
database DB8. To update the location of x, an entry for
x’s location is added into DB8. Then the system searches
the location information of x upward in the hierarchical
databases until reaching the least common ancestor of
DB5 and DB8, DB0. There is an entry for x's location
information at DB0. Then, the system continues to search
for the location information of x until it reaches the leaf
node DB5. After that, all the information for x’s location
in DB5 up to DB0's child nodes will be deleted, and in

DB 0

DB 1 DB 2 DB 3

 4 5 6 7 8 9 1110 12

Figure 1: Hierarchical databases to store the
mobile clients’ locations

each location database from DB0 down to DB8, an entry
for x’s location will be added. Thus, the total cost for the
location update of x will be:

update_cost(dis) = 2dis(old(x), new(x)) × L +
 (2dis(old(x), new(x))+1) × U eqn. (1)

It is assumed that after the completion of the
location update, a mobile client y in cell cur_cell(y) calls
x. To find the current location of x, a message is sent from
the cell in which y is now residing to its parent location
database node. If the parent node does not have an entry
for x’s location, a message is sent to the upper level node
until the database LCA(cur_cell(y),cur_cell (x)) is reached
where there exists an entry for x’s location. Then, a
message is sent downwards following the hierarchical
database structure until it reaches the current location cell
of x. Then, the system polls for mobile client x. In the
above procedure, we can see that there are totally
2lca(cur_cell(y),cur_cell(x)) times of message
transmission and processing, 2lca(cur_cell(y),cur_cell(x))
+ 1 times of database queries, and one polling for a
specific mobile client in a cell. Thus, the total cost for the
case where the mobile client generates an update to report
its new location is:

2dis(cur_cell(y), cur_cell (x)) × L +
(2dis(cur_cell(y), cur_cell (x)) + 1) × Q
+ P eqn. (2)

If x does not generate a location update after it
has crossed a cell boundary, the call from client y will be
processed according to x's old location entry in the
location databases. After finding x is not in old_cell(x),
the system polls all the possible cells to find the new
location of x. The average number of polling is 1/2ddis. At
last a forwarding pointer is linked from old_cell(x) to
cur_cell(x). For example, in the example hierarchical
location databases shown in Figure 1, a mobile client x
moves from the cell corresponding to DB12 to the cell
corresponding to the DB7 and the related location
databases are not updated. When there is a location call
for x, the old location information of x will be used first
and the system polls for x in the cell corresponding to
DB12. After finding that x is not in the cell, all the cells
whose distances from the cell old_cell(x) are less than the
distance between old_cell(x) and cur_cell(x) are all the
possible cell where x is now residing. They will poll for x
until x is found. At most, there are disd cells to be polled.
The average number of cells to be polled for x is thus
1/2ddis. In the example architecture shown in Figure 1, at
the worst case, all the nine cells are possible to be polled
for locating x and the average number of polling will be
32/2. So, the first location call cost without any location
update is:

2dis(cur_cell(y), old_cell (x)) × L+
 (2dis(cur_cell(y), old_cell (x)) + 1) × Q

+ P × disd
2
1 + F + U eqn. (3)

After the first location call for x is resolved, the
total costs for the following location calls of x for the case
where an location update is generated from x to report its
new location and for the case where no location update is
generated from x will be similar. The only difference is
that there will be one more database query and one more
message sending for the no update generation case.

When we subtract equation (2) equation from
(3), we can get the saving cost for processing the first
location call due to the generation of a location update:

(3) − (2) =
2(dis(cur_cell(y), old(x)) − dis(cur_cell(y), new(x))) ×

(L+Q) + F + U − P+ P × disd
2
1

In the following (CMR − 1) times of calls after
the cell boundary-crossing, the total searching costs at the
no update case is (CMR − 1) × (Q + F) more than the case
where location database updates are generated.

So the total saving cost in the CMR times of
location calls due to the generation of location updates is:

saving(dis) = 2(dis(cur_cell(y),old(x))−
dis(cur_cell(y), new(x))) × (L+Q) +

F + U + P × disd
2
1 +(CMR − 1) ×

(Q + F) − P

If we assume that the distance between y and x's
current locations and the distance between y’s current
location and x's previous location is the same, the saving
cost due to the location update is:

saving(dis) = F + U + P × disd
2
1 + (CMR − 1) ×

 (Q + F) − P eqn. (4)

Let saving(dis) = update_cost(dis), then

F + U + P × disd
2
1 + (CMR −1) × (Q + F) − P

= 2dis(L + Q) + Q + P eqn. (5)

We calculate the distance value,
Distance_Thresholdcost, which satisfies equation (5). It is
the distance threshold for location update generation.

When the distance between the new cell and old cell of x
is more than Distance_Thresholdcost, the location update
cost is smaller than the saving cost due to the location
update. For this case, the mobile client should generate a
location update.

3.2 A time -based method for distance threshold
Many mobile computing systems have to support

queries with constraints on their completion times and
meeting the query deadlines is critical to the usefulness of
the system. Thus, minimizing the total management cost
may not be the only performance objective. In this
section, we will discuss how to define the distance
threshold such that the latency in locating the mobile
clients can be minimized.

We assume the arbitrary calls distribution, in
other words, the distance between the new cell of x,
cur_cell(x), and the calling cell of y is almost the same as
the distance between the old cell of x, old_cell(x), and y.

Similar to Section 3.1, we use the following
definitions when calculating the latency for locating a
mobile client.

tU : the time required for a database update;
tQ : the time needed for a database query;
tP : the time requirement of polling for a specific

client in a cell;
tL : the time requirement of sending a message to

parent and child location database site;
 tF : the time requirement of sending a message to an

arbitrary site knowing its address.

When a mobile client x moves from the cell,
old_cell(x) to a new cell, cur_cell(x) and all the involved
databases are updated. The required time to complete the
location update is:

update_time = 2 dis(old(x), new(x)) (tL + tU) + tU

If a mobile client moves to another cell, the
procedure for searching the client if the client does not
generate a location update will be as follows: First the
location call is directed to the old cell of x. After finding
that x is not in old_cell(x), a message is sent to all the
cells within the distance in parallel. The delay is tF. Then,
in all the cells, x is polled and this will last for a time

disd
2
1 × tP in average. Finally, a link is created from the

database responsible for old(x) to new(x) . This will be last
for a time equal to tU.

So the first location call latency for a mobile
client if the mobile client does not generate an update to

report its new location is tF + tU + disd
2
1 × tP more than

that the case it generates a location update. After the first
location call, the time required for the following calls for
both cases are almost the same except that it is tF more for
the case with no location update generation. So similar to
equation (4), the time saving due to the generation of
location updates for CMR times of location calls is:

saving_time = tF + tU + disd
2
1 × tP +

(CMR − 1) × (tQ + tF) − tP

If saving_time = update_time, that is:

tF + tU + disd
2
1 × tP + (CMR − 1) × (tQ + tF) − tP

= 2 (tL + tU) dis + tU eqn. (6)

We calculate the distance value
Distance_Threshold time which satisfies equation (6). This
is the distance threshold when the time consumption is
considered. When the distance is more than the
Distance_Threshold time, the location database should be
updated to achieve the total time consumption reduction.

4 Discussion
One of the advantages of the presented methods

for calculating the distance threshold is that they are
simple to implement and can adapt to the dynamic
properties of mobile clients. Furthermore, unlike the
conventional distance-based method, we do not need to
assign a static value to the distance threshold. Actually, in
practice, it is very difficult to determine such a static
distance threshold value due to the dynamic properties of
the systems. Instead, the distance threshold is defined
based on the system parameters and how a mobile client
moves in our proposed methods. Every time, a new
distance threshold will be defined for a mobile client
when it moves across a cell boundary.

It can be seen that most of the system parameters
can be computed easily before the system setup, i.e., the
distance between the cells can be pre-calculated and
stored in a symmetric distance matrix A. In the time-
based distance threshold calculation, the time requirement
of each atomic operation involved in location update and
mobile client lookup is straightforward.

5 Conclusions and Future Work
Tracking the real-time locations of mobile

clients is central to many mobile computing systems. In
this paper, we studied a variance of distance-based
location update policy for hierarchical location database
structure. The hierarchical location database structure has
the ability to accommodate the increase in client
population in the system. However, the high location

update overhead can cause a serious penalty to the system
performance especially for the mobile computing
applications where the queries have time constraints on
their completion times. The location update distance
threshold must be deliberately set to achieve the total
location management cost reduction. We introduce two
distance threshold value setting policies which consider
the cost of location management and time requirement of
location management respectively.

As can be seen from the discussion, for a mobile
client moving from the cell i to cell j, if it generates
location update, the location databases along the nearest
path in the hierarchical location database tree between the
two leaf location databases which are responsible for the
clients in cell I and cell j respective are all updated. The
cost for generation of location update is proportional to
the distance of the two cells. However, for two
neighboring cells, the distance is not the same as that in
the topology structure and the distance between two cells
in different location database organization can be greatly
different. The distance between two neighboring cells can
be same as the height of the hierarchical tree. When
structuring the hierarchical location database tree, the
mobility pattern and call pattern of all the mobile clients
in the system are considered to minimize the total cost of
location registration and paging when there are calls.

In the future mobile computing systems, the
systems may need to manage a large amount of real-time
information in addition to the locations of mobile clients.
The static hierarchical database structure may not be able
to meet the real-time requirements of the systems since
the number of mobile clients within a cell can be highly
dynamic. The total delay in retrieving the real-time
information will be highly unpredictable. Currently, we
are modifying the static hierarchical tree structure to
accommodate the dynamic mobile workload properties in
a cell. The next step is to study how the proposed location
update generation method can be applied to the new
database architecture.

References
[1] Evaggelia Pitoura and George Samaras, “Locating Objects

in Mobile Computing”, to appear in IEEE Transactions on
Knowledge and Data Engineering .

[2] Sajak K. Das and Sanjoy K. Sen, “Adaptive Location
Prediction Strategies Based On a Hierarchical Network
Model in a Cellular Mobile Environment”, The Computer
Journal , vol. 42, no.6, 1999.

[3] Xie, H., Tabbane, S. and Goodman, D., “Dynamic
Location Area Management and Performance analysis”, in
Proceeding 43 rd IEEE Vehicular Technology Conference ,
May 1993.

[4] Plassmann, D., “Location Management Strategies for
Mobile Cellular Networks of 3rd Generation”, in
Proceedings of 44th IEEE Vehicular Technology Conf.,
June 1994.

[5] Rose, C., “Minimizing The Average Cost of Paging and
Registration: A Timer-Based Method”, Wireless Network ,
vol. 2, no. 2, pp. 109-116, 1996.

[6] Rokitansky, C. H., “Knowledge-Based Routing Strategies
for Large Mobile Networks with Rapidly Changing
Topology”, in Proceedings of ICCC'90 , New Delhi, India,
November 1990.

[7] Akyildiz, I. and Ho, J., “On Location Management for
Personal Communication Networks”, IEEE
Communications, vol. 34, 138-145, 1996.

[8] Jannink, J., Lam, D., Shivakumar, N., Widom, J. and Cox,
“Efficient and Flexible Location Management Techniques
for Wireless Communication Systems”, Wireless Network ,
vol. 3, 361-374, 1997.

[9] C. Rose and R. Yates, “Minimizing The Average Cost of
Paging Under Delay Constraints”, Wireless Network , vol.
2, no. 3, pp. 109-116, 1996.

[10] Guang Wan and Eric Lin, "Cost Reduction in Location
Management Using Semi-Realtime Movement
Information", Wireless Network , vol. 5, no. 5, pp. 245-256,
1999.

[11] Hanoch Levy and Zohar Naor, “Active tracking: Locating
Mobile Users in Personal Communication Service
Networks”, Wireless Network , vol., 5, no. 6, pp. 467-477,
1999.

[12] E. Pitoura and I. Fudos, “An Efficient Hierarchical Scheme
for Locating Highly Mobile Users”, in Proceedings of the
6th ACM International Conference on Information and
Knowledge Management (CIKM98) , November 1998, pp
218-225.

[13] M. Mouly and M.B. Pautet, The GSM System for Mobile
Communication , Cell and Sys, 1992.

[14] Yin-Bing Lin and Imrich Chlamtac, Wireless and Mobile
Network Architecture , John Wiley and Sons, 2000.

