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Partitioned Multiprocessor Platforms
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Abstract—Maintaining timeliness and data freshness for real-time data objects has long been recognized as an important problem in
real-time database research. Despite years of active research, most of the past work focuses on uniprocessor systems. In this paper,
we study the workload-aware temporal consistency maintenance problem upon multiprocessor platforms. We consider the problem of
how to partition a set of update transactions to m ≥ 2 processors to maintain the temporal consistency of real-time data objects under
both earliest deadline first (EDF) and deadline monotonic (DM) scheduling in each processor, while minimizing the total workload on
m processors. Firstly, we only consider the feasibility aspect of the problem by proposing two polynomial time partitioning schemes,
Temporal Consistency Partitioning under EDF (TCPEDF) and Temporal Consistency Partitioning under DM (TCPDM), and formally
showing that the resource augmentation bounds of both TCPEDF and TCPDM are (3− 1

m
). Secondly, we address the partition problem

globally by proposing a polynomial time heuristic, Density factor Balancing Fit (DBF), where density factor balancing plays a major
role in producing workload-efficient partitionings. Finally, we evaluate the feasibility and workload performances of DBF versus other
heuristics with comparable quality experimentally.
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1 INTRODUCTION

Real-Time database systems (RTDBS) have been widely
used in many applications that require processing of
massive amount of real-time data in a timely manner,
such as aerospace and defense systems, industrial au-
tomation and air traffic control systems. Typically, a real-
time database (RTDB) is composed of real-time objects
which are updated by periodic sensor update trans-
actions. An object in the database models the current
status of a real world entity in the external environ-
ment, for example, the longitude, latitude and velocity
of an aircraft. Different from data stored in traditional
databases, the state of a real-time object may become
invalid with the passage of time. Associated with the
state is a temporal validity interval. To monitor the states
of objects faithfully, a real-time object must be refreshed
by a sensor update transaction before it becomes in-
valid, i.e., before its temporal validity interval expires,
otherwise the RTDBS cannot respond to environmental
changes timely.

The actual length of the temporal validity interval of
a real-time object is usually application-dependent [28].
Sensor update transactions are generated by intelligent
sensors, which are incorporated with dedicated signal
processing functions and periodically sample the values
of real-time objects. When sensor update transactions
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arrive at RTDBs with sampled data values, their up-
dates are issued and real-time data are refreshed. Given
the temporal consistency requirement, one important
issue in designing RTDBS is to schedule sensor update
transactions so that the temporal consistency of real-
time data objects can be maintained while the result-
ing processor workload can be minimized. There are
important reasons to minimize the processor workload
imposed by sensor update transactions [16], [36], [37]: (1)
it helps save sensor energy, because an inappropriate and
unnecessarily short period of sensor update transactions
may drive the sensor batteries flat quickly; (2) given
the same portion of processor capacity, the RTDBS is
able to accommodate more sensor update transactions;
and (3) system efficiency can be improved because more
processor capacity can be left to other user transactions
that are triggered due to environmental changes brought
by sensor update transactions.

In the past, while there has been much work devoted
to the temporal consistency scheduling problem, most of
them are focused on uniprocessor systems. Some exam-
ples are Half-Half (HH) [16], More-Less (MLDM ) [37],
DS-FP [13], [36], and HSEDF [38]. In this work, we
address the workload-aware temporal consistency main-
tenance problem on multiprocessor platforms, while in
each single processor we consider both dynamic priority
scheduling by the Earliest Deadline First (EDF) [27]
algorithm and static priority scheduling by the Deadline
Monotonic (DM) [24] algorithm. Our aim is to design
efficient schemes which can allocate sensor update trans-
actions to processors to guarantee the temporal consis-
tency of real-time data objects, while, at the same time,
reducing the workload (or utilization) of sensor update
transactions on all the processors to the greatest extent.
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Multiprocessor scheduling of periodic tasks is one of
the most extensively studied areas in real-time systems
research. In general, the approaches fall into either global
or partitioned scheduling categories. In global schedul-
ing [3], [4], [6], there is a single ready queue and task
migrations among processors are allowed, i.e., each task
can execute on any available processor in the run time.
In contrast, partitioned scheduling [1], [5], [9] allocates
each task to one processor permanently (task migrations
are not allowed) and resorts to well-established single-
processor scheduling schemes to guarantee feasibility.
Global and partitioned approaches are known to have
their own advantages and disadvantages in traditional
multiprocessor real-time scheduling [11]. Recently, a
number of works [2], [20] have been conducted on
partitioned scheduling with task splitting (also referred
to semi-partitioned scheduling). In this class of scheduling,
while most tasks are statically assigned to a fixed pro-
cessor as in partitioned scheduling, a small number of
tasks are split into several subtasks, and each subtask is
assigned and execute on a different but fixed processor.
A recent survey on multiprocessor real-time scheduling
can be found in [8].

This work: We consider the problem of workload
minimization for periodic preemptive real-time sensor
update transactions that are scheduled on an identical
multiprocessor platform. We adopt partitioned schedul-
ing and in each single processor, we consider both EDF
and DM scheduling. Partitioning-based multiprocessor
real-time scheduling considers feasibility as the main ob-
jective. The problem is invariably NP-Hard and appears
in two variations: Minimizing the number of processors
needed to guarantee the feasibility of the task set, or al-
ternatively, given a fixed multiprocessor platform, finding
sufficient schedulability (utilization) bounds. Our work
opts for the second setting, thus we assume the existence
of a given number of processors. The main contribution
of this paper can be summarized as follows:

1) We first examine the feasibility aspect of the
workload-aware transaction assignment problem
by proposing a polynomial-time partition algo-
rithm, Temporal Consistency Partitioning under EDF
(TCPEDF). We also formally show that the resource
augmentation bound of TCPEDF is (3− 1

m ).
2) We theoretically prove that the upper density factor1

bound for temporal consistency maintenance under
DM scheduling on a single processor is 1

2 . Based on
this result, we propose a polynomial-time partition
algorithm, Temporal Consistency Partitioning under
DM (TCPDM), and show that TCPDM has the same
resource augmentation bound of (3− 1

m ) as TCPEDF.
3) We characterize the workload-efficient transaction-

to-processor assignment problem as a density fac-
tor balance problem and propose a polynomial time

1. Note here our definition of density factor, which will be detailed
in Section 2, is different from the definition of the same words [8] in
traditional multiprocessor real-time scheduling.

heuristic, Density factor Balancing Fit (DBF).
4) We evaluate and comment on the performance of

DBF via extensive simulation experiments. Our ex-
perimental study shows that DBF has better feasibil-
ity/workload performance than other heuristics with
comparable quality.

Organization: The remainder of this paper is organized
as follows: Section 2 gives the definition of temporal
validity and presents some notations and assumptions.
The problem to be addressed is also introduced. In
Section 3, we present and evaluate the performance of
two polynomial-time partitioning schemes, TCPEDF and
TCPDM, for the partition problem when only considering
the feasibility aspect. Section 4 addresses the problem
globally by detailing the design of our heuristic DBF.
Experimental evaluation results of DBF versus other
heuristics are described in Section 5. Section 6 briefly
reviews some related work and finally, conclusions are
drawn in Section 7.

2 BACKGROUND, ASSUMPTIONS AND PROB-
LEM DEFINITION

In this section, we first review the definition of temporal
validity for data freshness, and then present some nota-
tions as well as important assumptions made through-
out the paper. We also briefly introduce GEEDF and
MLDM , which will be used as the period and deadline
calculation schemes on each single processor under EDF
and DM scheduling, respectively. Finally, we define the
problem to be addressed in this work.

2.1 Temporal Validity for Data Freshness

In an RTDB, a data object is a logical image of a real-
world entity. As the state of a real-world entity changes
continuously, to monitor the entity’s state faithfully, real-
time data objects must be refreshed by update trans-
actions, which are generated periodically by intelligent
sensors, before they become invalid. The actual length of
the temporal validity interval of a real-time data object
is usually application dependent [28], [31].

Definition 1. [31] A real-time data object (xi) at time t is
temporally valid if, for its jth update finished last before t, the
sampling time (ri,j) plus the validity interval (Vi) of the data
object is not less than t, i.e., ri,j + Vi ≥ t.

According to Definition 1, a value for real-time data
object xi sampled at any time t will be valid from t up
to (t+ Vi). To satisfy the validity constraint, for each xi,
suppose τi is the sensor transaction that is responsible
for updating xi, then the farthest distance (based on the
arrival time of an instance of τi and the finishing time of
its next instance) of two consecutive sensor transactions
of τi is Vi, which means τi should execute at least twice
during Vi. Traditional methods, such as Half-Half, More-
Less (for both EDF and DM) and DS-FP, have been
proposed to solve the problem of how to assign periods
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ri,j di,j ri,j+1 ri,j+2di,j+1

(= ri,j +Di) (= ri,j + Ti +Di)(= ri,j + Ti) (= ri,j + 2Ti)

τi,j τi,j+1

Vi = Ti +Di

Fig. 1: Illustration of More-Less scheme.

and deadlines to update transactions and schedule them
to maintain the validity consistency while minimizing
the utilization on a single processor. Among these ap-
proaches, More-Less [37] is the best one based on periodic
transaction model for both EDF and DM scheduling.
Illustration of More-Less is depicted in Figure 1. As can
be observed, in order to satisfy the validity constraint
(execute twice during Vi) and minimize the workload,
there is Vi = Ti + Di, where Ti and Di represent
the period and deadline of τi, respectively. Hence, in
the following discussion, if not explicitly indicated, we
assume Vi = Ti +Di.

2.2 Notations and Assumptions
In this paper, we use T = {τi}ni=1 and X = {xi}ni=1

to denote a set of periodic sensor update transactions
and a set of real-time or temporal data, respectively. We
consider the scheduling of T on a set of m-identical multi-
processorsM = {Mi}mi=1 and adopt a partitioning-based
approach to multiprocessor scheduling. Transactions are
assigned permanently to processors. On each processor,
determined by whether the EDF or DM scheduling
algorithm is adopted, we use GEEDF or MLDM , which
will be introduced later, to derive period and deadline
for transactions. All temporal data are assumed to be
kept in main memory. Each data xi (1 ≤ i ≤ n) is
associated with a validity interval length Vi. Transaction
τi is responsible for updating the corresponding data xi
periodically. Since each sensor transaction updates dif-
ferent data, no concurrency control is considered. Each
update transaction τi is periodic and is characterized
by the following 3-tuple: {Ci, Di, Ti}, where Ci is the
execution time, Di is the relative deadline and Ti is
the period. Transaction deadlines are considered to be
constrained, i.e., Di ≤ Ti. We use Ui and λi to denote
the utilization and density factor of τi, respectively, i.e.,
Ui = Ci

Ti
and λi = Ci

Vi . Since each transaction must
be assigned to exactly one processor, it is clear that
the total utilization and total density factor of T are
Usum =

∑n
i=1

Ci

Ti
and λsum =

∑n
i=1

Ci

Vi , respectively.
When there is no confusion, we also use UT (λT , resp.) to
denote the workload (density factor, resp.) of T . Lastly,
we use T (Mk) to denote the transactions that have been
assigned to Mk. Formal definitions of symbols used in
this paper are presented in Table 1.

2.3 GEEDF : Deadline and Period Calculation
Scheme under EDF scheduling
To derive periods and deadlines which can guarantee
temporal validity of data objects while minimizing the

TABLE 1: Symbols and definitions
Symbol Definition
xi Real-time data object i
τi Sensor update transaction updating xi
Ci Execution time of τi
Vi Validity interval length of xi
Ti Period of τi
Di Relative deadline of τi
Ui Processor workload (or utilization) of τi
Usum Workload of {τi}ni=1
UT Workload of T
λi Density factor of τi, λi =

Ci
Vi

λmax Maximum density factor among τ1, τ2, . . . , τn
λsum Density factor of {τi}ni=1
λT Density factor of T
M A set of multiprocessors {M1,M2, . . .Mm}
T (Mk) Transactions which have been assigned to Mk

workload of update transactions scheduled under EDF
on a single processor, OSEDF and HSEDF are proposed
in [38]. OSEDF is a branch-and-bound-based search algo-
rithm which can find the optimal solutions. The problem
with OSEDF is that it does not scale well with increasing
problem size. HSEDF is a search-based heuristic and is
capable of finding a solution if one exists. Compared
with OSEDF , HSEDF is more efficient, and its efficiency
is achieved at the expense of increased processor work-
load. To further advance the state-of-the-art, the GEEDF
algorithm is proposed in [26]. GEEDF is a two-phase
algorithm. The first phase can find a solution in linear
time, while the second phase is a search scheme based on
the initial result of MLDM , an algorithm which will be
introduced next. Compared to HSEDF , GEEDF is able to
find a solution with lower (or equal at most) workload in
a more time-efficient manner. Since computing deadline
and period for transactions under EDF scheduling is not
the focus of this paper, we do not present the detail
and would like to refer readers to [38] and [26] for full
descriptions of the above three mentioned algorithms.

2.4 MLDM : Deadline and Period Calculation
Scheme under DM scheduling
To guarantee temporal validity of data objects while min-
imizing the workload of update transactions scheduled
under DM on a single processor, MLDM is proposed
in [37]. MLDM works as follows: Given a transaction
set indexed in Shortest Validity First (SVF) order, i.e.,
Vi ≤ Vi+1 (i = 1, . . . , n − 1), MLDM first computes
deadline Di for τi by finding the minimum solution of
the recursive equation (starting with Di = Ci)∑i

j=1
dDi/TjeCj = Di (1)

and then assigns period to τi by Ti = Vi − Di. Note
here the SVF order meansMLDM starts the computation
from the update transaction with the shortest validity
interval. It should be pointed out that although MLDM
has been reported to exhibit higher processor work-
load than EDF-based deadline and period calculation
schemes such as HSEDF and GEEDF , it is still the best
choice under fixed-priority scheduling.
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2.5 Problem Definition
Our aim in this research effort is to address the following
workload-aware real-time temporal consistency schedul-
ing problem (denoted by W-PARTITION).

W-PARTITION: Given a set T of real-time update transac-
tions and a setM of m identical processors, find a transaction-
to-processor assignment and compute deadline and period for
transactions on each single processor such that:
1. the transactions assigned to each processor can be scheduled

under EDF or DM in a feasible manner and,
2. the total workload of M is minimized (among all feasible

transaction allocations).

It can be observed that W-PARTITION is NP-Hard in
the strong sense. Given a set of tasks with known execu-
tion times and with the same relative deadline/period
as T on m identical processors, determining a feasible
task assignment to meet the timing constraint is NP-
Complete in the strong sense [30]. The reduction is as
follows: For each task, we generate a corresponding
update transaction by setting its execution time as the
execution time of the task and the validity interval
length as 2T . Clearly, there exists a feasible solution for
the reduced W-PARTITION input instance if and only
if the input task set has a feasible solution. Therefore,
deriving a feasible solution for W-PARTITION is NP-
Complete in the strong sense. With the optimization of
total workload, W-PARTITION is NP-Hard in the strong
sense.

3 TEMPORAL CONSISTENCY PARTITION

In view of the intractability of the problem, we first do
not take the workload issue into consideration, but only
focus on how to derive feasible partitionings. Specifi-
cally, for the multiprocessor platforms where transac-
tions are scheduled under EDF in each single proces-
sor, we propose a polynomial-time partition algorithm:
Temporal Consistency Partition under EDF (TCPEDF), and
offer the theoretical evaluation of it in Section 3.1.
Correspondingly, for the platforms where transactions
are scheduled under DM in each single processor, we
present a polynomial-time partition algorithm: Temporal
Consistency Partition under DM (TCPDM), and provide the
theoretical evaluation of it in Section 3.2. The discussion
of addressing the whole W-PARTITION problem is left
in Section 4.

3.1 TCPEDF: Temporal Consistency Partitioning un-
der EDF
3.1.1 Design of TCPEDF

First, to distinguish from the traditional real-time mul-
tiprocessor scheduling problem, we make the following
definition.

Definition 2. A transaction set T is said to be temporal
consistency schedulable under EDF with constrained deadlines
if, for each transaction, a two-tuple of period and deadline can

be derived by a period and deadline calculation algorithm (e.g.,
HSEDF , GEEDF ) to make T schedulable under EDF with
constrained deadlines on a single processor.

Below we present a useful theorem, which identifies a
sufficient condition for any transaction set to be temporal
consistency schedulable under EDF on uniprocessor sys-
tems, and thus paves the way for our design of TCPEDF.

Theorem 1. Given a transaction set T , if the density factor of
T is not larger than 0.5, i.e., λsum ≤ 0.5, then T is temporal
consistency schedulable under EDF on a uniprocessor system.

Proof: Given that λsum ≤ 0.5, it is obvious for each
transaction τi, we can derive a two-tuple of period and
deadline by setting both Ti and Di to be half of τi’s
validity interval length Vi2 . We then have,

Usum =

n∑
i=1

Ci
Ti

=

n∑
i=1

Ci
Vi/2

= 2λsum ≤ 1, (2)

which means T is EDF-schedulable, and further, is tem-
poral consistency schedulable under EDF, the theorem
thus follows.

Based on Theorem 1, we design the TCPEDF algorithm
as follows: For any processor Mk, let T (Mk) denote
the transactions from among {τ1, τ2, . . . , τi−1} that have
already been allocated to processor Mk. Considering
the processors M1,M2, . . . ,Mm, in any order, Algorithm
TCPEDF assigns transaction τi to a processor Mk, that
satisfies the following condition:

λi +
∑

τj∈T (Mk)
λj ≤

1

2
. (3)

If no such Mk exists, then TCPEDF declares failure: it is
unable to conclude that the transaction set T is feasible
upon the m-processor platform.

Since λsum ≤ 0.5 is a sufficient condition for any
transaction set to be temporal consistency schedulable
under EDF on a single processor, it is straightforward to
conclude that TCPEDF can guarantee the assignment is
feasible if it succeeds to return a partition on transaction
set T . TCPEDF is quite time-efficient due to the reason
that when allocating one transaction τi, it only needs to
evaluate the density factor of the previously allocated
(i − 1) transactions on each of the m processors by (3).
Since this value can be computed in constant time, it
is obvious that the run-time of TCPEDF in assigning all
n transactions is no more than O (nm). Next, we offer
a quantitative evaluation of the efficacy of Algorithm
TCPEDF.

3.1.2 Theoretical Evaluation of TCPEDF

The technique of resource augmentation has been widely
used to quantify the ”goodness” of an algorithm for solv-
ing problems for which optimal solutions are either com-
putationally intractable or just impossible in practice. In
this technique, the performance of a given algorithm is
compared with that of a hypothetical optimal one, under
the assumption that the given algorithm can access more
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resources (e.g., more processors, or processors of higher
speeds) than the optimal algorithm. The partitioned
multiprocessor real-time scheduling for sporadic real-
time tasks, in which the relative deadlines are different
from the periods, has been recently studied by Baruah
and Fisher in [5], Chen and Chakraborty in [7], and
Fisher et al. in [9]. Resource augmentation bounds have
been derived to quantify the worst-case performance
of their partition schemes. In this work, similar to [5],
[7], [9], we also offer a quantitative evaluation of our
algorithm in terms of resource augmentation bound. But
it should be noted that the problem we addressed here is
different from theirs in two ways: (1) transaction period
and deadline are initially unknown in our problem;
(2) the sum of a transaction’s period and deadline is
bounded by the validity interval length of the data object
it updates, i.e., Ti +Di = Vi.

Below, we derive a resource augmentation bound
(upper bound here) for TCPEDF, which characterizes its
performance. We first present a useful lemma.

Lemma 1. If T is temporal consistency schedulable under
EDF on an identical multiprocessor platform comprised of m
processors each of computing capacity ξ, then we have that

λmax ≤
1

2
· ξ and λsum < m · ξ

Proof: Since each job of τi can receive at most Di · ξ
units of execution by its deadline, we have Ci ≤ Di · ξ ≤
Ti · ξ. Given Vi = Ti +Di, we can get

λi =
Ci
Vi

=
Ci

Ti +Di
≤ Ci

2Di
≤ 1

2
· ξ (4)

Hence, λmax ≤ 1
2 · ξ indicates that no individual transac-

tion’s density factor may exceed half of the computing
capacity of a processor.

For any transaction set on a uniprocessor, if it is
temporal consistency schedulable under EDF, then its
density factor should be less than its utilization, which
in turn is 1 in the maximum. λsum < m · ξ thus reflects
the requirement of the cumulative density factor on m
processors of computing capacity ξ each.

Note that Lemma 1 above essentially specifies a nec-
essary condition for TCPEDF (or in fact, any partition
algorithm) to successfully partition a transaction set.
We now present a theorem below, which specifies a
sufficient condition for TCPEDF to successfully partition
a transaction set.

Theorem 2. Any transaction set for which the following
formula is true

m ≥ 2λsum − 2λmax
1− 2λmax

(5)

can be scheduled by TCPEDF on m unit-capacity processors.

Proof: We prove this by considering the case when
TCPEDF fails to assign τi. In such a case, we know that

on each processor Mk (1 ≤ k ≤ m), there is

λi +
∑

τj∈T (Mk)
λj >

1

2
(6)

Let T (M) denote {τ1, τ2, . . . , τi−1} that have already
been allocated to the m processors. By summing the
above inequality on m processors, we get

mλi +
∑

τj∈T (M)
λj >

1

2
·m (7)

Since λsum ≥
∑
τj∈T (M) λj + λi, it is clear that

(m− 1)λi + λsum >
1

2
·m ⇒ m <

2λsum − 2λi
1− 2λi

(8)

Therefore, when

m ≥ 2λsum − 2λi
1− 2λi

≥ 2λsum − 2λmax
1− 2λmax

,

TCPEDF can successfully schedule T on m processors.
By Theorem 2, we now present a resource augmenta-

tion result regarding TCPEDF.

Theorem 3. TCPEDF can guarantee the following perfor-
mance: if a transaction set is temporal consistency schedulable
under EDF on m identical processors each of computing
capacity ξ, then TCPEDF can partition this transaction set
on m processors that are each

(
3− 1

m

)
times as fast as the

original.

Proof: Assume that T = {τ1, τ2, . . . τn} is a transac-
tion set that is temporal consistency schedulable under
EDF on m processors each of computing capacity ξ. We
will prove below that T is guaranteed to be successfully
partitioned by TCPEDF on m unit-capacity processors for
ξ ≤ m

3m−1 .
Since T is temporal consistency schedulable under

EDF on m ξ-speed processors, by Lemma 1, the transac-
tions in T should satisfy the following properties:

λmax ≤
1

2
· ξ, λsum < m · ξ

By replacing the above conditions in inequality (5), we
have

m ≥ 2λsum − 2λmax
1− 2λmax

⇐ m ≥ 2mξ − ξ
1− ξ

≡ ξ ≤ m

3m− 1
≡ 1

ξ
≥ 3− 1

m
,

which is as claimed in the theorem.

3.2 TCPDM: Temporal Consistency Partitioning un-
der DM
3.2.1 Design of TCPDM

Similar to the EDF case, we first make the following
definition.

Definition 3. A transaction set T is said to be temporal
consistency schedulable under DM if, for each transaction,
a two-tuple of period and deadline can be derived by a period
and deadline calculation algorithm (e.g., MLDM ) to make T
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TABLE 2: Transaction sets T and T
(a) Parameters of transactions in T

WCET Validity Interval Deadline Period
C1 V1 D1 T1

...
...

...
...

Ca−1 Va−1 Da−1 Ta−1

Ca Va Da Ta

Ca+1 Va+1 Da+1 Ta+1

...
...

...
...

Cb Vb Db Tb

...
...

...
...

Cn−1 Vn−1 Dn−1 Tn−1

Cn Vn Dn Tn

(b) Parameters of transactions in T
WCET Validity Interval Deadline Period
C1 = C1 V1 = V1 D1 = D1 T 1 = T1

...
...

...
...

Ca−1 = Ca−1 Va−1 = Va−1 Da−1 = Da−1 T a−1 = Ta−1

Ca = Ca Va = Va + δ Da = Da T a = Ta + δ
Ca+1 = Ca+1 Va+1 = Va+1 Da+1 = Da+1 T a+1 = Ta+1

...
...

...
...

Cb = Cb Vb = Vb Db = Db T b = Tb

...
...

...
...

Cn−1 = Cn−1 Vn−1 = Vn−1 Dn−1 = Dn−1 Tn−1 = Tn−1

Cn = Cn Vn = Vn Dn = Dn Tn = Tn

schedulable under DM with constrained deadlines on a single
processor.

Below, we present a useful theorem (Theorem 4),
which essentially identifies a sufficient condition for any
transaction set to be temporal consistency schedulable
under DM on uniprocessor systems. But first, we need an
important lemma (Lemma 3), which will be used in the
proof of Theorem 4. We start by giving two definitions
as follows. Note in the remainder of this section, unless
stated explicitly, we assume that the transactions in a
transaction set are indexed in Shortest Validity First (SVF)
order, i.e., ∀i = 1, . . . , n− 1, Vi ≤ Vi+1.

Definition 4. A transaction set T = {τi}ni=1 is said to be
MLDM -schedulable if the deadline and period of each transac-
tion τi can be derived by solving Di =

∑i−1
j=1 dDi/TjeCj+Ci

and Ti = Vi −Di, respectively, and Di ≤ Ti.
Definition 5. T = {τi}ni=1 is an extreme transaction set
if T is MLDM -schedulable with Dn = Tn, and the density
factor of T , i.e., λT , is smaller than or equal to the density
factor of all other transaction sets consisting of n transactions
that are MLDM -schedulable with Dn = Tn.

From the above definition, we have the following
property regarding extreme transaction set.

Lemma 2. If T = {τi}ni=1 is an extreme transaction set,
then for any two transactions τa and τb (1 ≤ a < b ≤ n) in
T , there is, ⌈

Db

Ta

⌉
>
Db

Ta

Proof: We prove it by contradiction. Since dDb/Tae ≥
Db/Ta is always true, the opposition to dDb/Tae > Db/Ta
is dDb/Tae = Db/Ta. Without loss of generality, suppose
transactions τa and τb (1 ≤ a < b ≤ n) are the first
two transactions which satisfy dDb/Tae = Db/Ta. Now
we have two cases to consider: (1) τa and τb (1 ≤ a <
b ≤ n) are the only pair of transactions that satisfies
dDb/Tae = Db/Ta, and for any other two transactions
τc and τd (1 ≤ c < d ≤ n), there is dDd/Tce > Dd/Tc;
(2) Except for τa and τb, there exists some other pairs

of transactions τc and τd (a ≤ c < d ≤ n) that satisfies
dDd/Tce = Dd/Tc.

We first consider Case (1). Based on T , we construct a
new transaction set T . In order to facilitate the distinc-
tion, we use Ci and Vi to represent the execution time
and validity interval length of transaction τ i in T , and
use Di and T i to denote the corresponding deadline and
period of τ i.

We start by setting Ci = Ci, Di = Di, T i = Ti, and
Vi = Vi for the first (a− 1) transactions. In other words,
the first (a−1) transactions τ i (1 ≤ i ≤ a−1) remain the
same as τi (1 ≤ i ≤ a− 1) in T . Clearly, the first (a− 1)
transactions in T are still MLDM schedulable. Now for
transaction τa, we let Ca = Ca and T a = Ta+ δ, where δ
is a sufficient small positive number, and useMLDM to
compute Da. Since the first (a − 1) transactions are the
same as their correspondence in T (Ci = Ci and T i = Ti
for 1 ≤ i ≤ a − 1) and Ca = Ca, from the computation
process ofMLDM , i.e., finding the minimum solution of
the recursive equation

∑a−1
j=1

⌈
Da/T j

⌉
Cj +Ca = Da, we

know the calculated Da is equal to Da. Consequently,
we have Va = T a+Da = Va+ δ, as shown in Table 2(b).

We go on by considering the remaining transactions
τ i (a+1 ≤ i ≤ n). For τa+1, we let Ca+1 = Ca+1 and use
MLDM to calculate Da+1. Given that

⌈
Da+1

Ta

⌉
> Da+1

Ta
,

as long as δ is small enough such that Da+1

Ta+δ
is not an

integer, we have
⌈
Da+1

Ta

⌉
=
⌈
Da+1

Ta+δ

⌉
=
⌈
Da+1

Ta

⌉
. Moreover,

since Ci = Ci (1 ≤ i ≤ a+1) and T i = Ti (1 ≤ i ≤ a−1),
by finding the minimum solution of∑a

j=1

⌈
Da+1

T j

⌉
Cj + Ca+1 = Da+1 (9)

we can get that Da+1 = Da+1. Then by setting T a+1 =
Ta+1, we have Va+1 = Va+1. The following transactions
τ i (a + 1 < i < b) can be processed in a similar way by
first setting Ci = Ci, T i = Ti (a + 1 < i < b), and then
calculating a deadline Di (a+ 1 < i < b) which is equal
to Di.

Now we proceed to transaction τ b. First, we let Cb =
Cb and T b = Tb. Given that

⌈
Db

Ta

⌉
= Db

Ta
and δ is a
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TABLE 3: Parameters of transaction set T ′

WCET Validity Interval Deadline Period
C′1 = C1 + ε1 V ′1 = V1 D′1 = D1 + ε1 T ′1 = T1 − ε1
C′2 = C2 + ε2 V ′2 = V2 D′2 = D2 + k12ε1 + ε2 T ′2 = T2 − k12ε1 − ε2

...
...

...
...

C′i = Ci + εi V ′i = Vi D′i = Di +
∑i−1

j=1 k
j
i εj + εi T ′i = Ti −

∑i−1
j=1 k

j
i εj − εi

...
...

...
...

C′n−1 = Cn−1 + εn−1 V ′n−1 = Vn−1 D′n−1 = Dn−1 +
∑n−2

j=1 k
j
n−1εj + εn−1 T ′n−1 = Tn−1 −

∑n−2
j=1 k

j
n−1εj − εn−1

C′n = Cn − εn V ′n = D′n + T ′n D′n ≤ Dn T ′n = D′n

sufficiently small positive number, we can get
⌈

Db

Ta+δ

⌉
=⌈

Db

Ta

⌉
. Then, by finding the minimum solution of∑b−1

j=1

⌈
Db

T j

⌉
Cj + Cb = Db (10)

we can derive Db = Db, which indicates that Vb = Vb.
The remaining transactions τ i (b < i ≤ n) can be handled
in a similar way as transactions τ j (a + 1 < j < b) and
we omit to detail the process here.

Up to now, we have constructed a new MLDM
schedulable transaction set T with Dn = Tn, as shown
in Table 2(b). Based on the parameters presented in
Table 2, it can be verified that the density factor of T ,
λT =

∑n
i=1

Ci

Vi
, is strictly lower than the density factor

of T , λT =
∑n
i=1

Ci

Vi , and this contradicts the assumption
that T is an extreme transaction set.

We now consider Case (2), in which there exist some
other pairs of transactions τc and τd (a ≤ c < d ≤ n) that
satisfies dDd/Tce = Dd/Tc. For this case, we have two
subcases to consider: (i) c = a, i.e., dDd/Tae = Dd/Ta (b <
d); (ii) c > a, i.e., dDd/Tce = Dd/Tc. Note that in subcase
(ii), d can be smaller than, equal to, or larger than b.
For subcase (i), when constructing T by increasing the
period of τa in Case (1), due to the similar reason as
that of processing τb, we can get that Dd = Dd. Hence,
the new transaction set T can still be constructed, but
dDd/Tae = Dd/Ta no longer holds. We thus come to
a contradiction to the assumption that T is an extreme
transaction set. For subcase (ii), when constructing T in
Case (1), it is clear to see that the deadline and period
of τd and τc would not be impacted. After obtaining
T , we can repeat a similar process as in Case (1) (by
adding a sufficient small positive number to the period
of τ c) to construct a new transaction set, say T , with
lower density factor than that of T . Consequently, we
can also reach a contradiction to the assumption that T
is an extreme transaction set.

Based on the above discussions, the lemma follows.
By Definition 5 and its property presented above, we

now introduce an important lemma.

Lemma 3. Given a transaction set T = {τi}ni=1, if it is
MLDM -schedulable with Dn = Tn, then λτ ≥ 1

2 .

Proof: We consider the case that T is an extreme
transaction set. Obviously, if we can prove λT ≥ 1

2 ,

then by the definition of extreme transaction set, we can
conclude that all the other transaction sets consisting of n
transactions that are MLDM schedulable with Dn = Tn
also have a density factor no less than 1

2 .
From the computation process of MLDM , we

know for each transaction τi in T , there is Di =∑i−1
j=1 dDi/TjeCj + Ci. For presentation convenience, we

use kji to denote dDi/Tje, i.e., Di =
∑i−1
j=1 k

j
iCj + Ci.

Now based on T , we construct a new transaction set T ′.
In order to facilitate the distinction, we use C ′i and V ′i to
represent the execution time and validity interval length
of transaction τ ′i in T ′, and use D′i and T ′i to denote the
corresponding deadline and period of τ ′i . For the worst
case execution time of τ ′i (1 ≤ i ≤ n− 1), we consider a
modification of the WCET of τi (1 ≤ i ≤ n− 1), from Ci
to C ′i so that,

C ′i = Ci + εi = Ci +
εCi∑n−1

j=1 Cj/Vj
(11)

where ε is an infinitely small positive value, and let C ′n =
Cn − εn = Cn − Vnε. It can then be verified that,∑n

i=1

Ci
Vi

=
∑n

i=1

C ′i
Vi

(12)

For the validity interval length, we let V ′i = Vi (1 ≤ i ≤
n− 1), and let V ′n be equal to D′n + T ′n, where T ′n = D′n,
and D′n needs to be computed later.

Now with C ′i and V ′i (1 ≤ i ≤ n − 1), we use MLDM
to derive new deadline and period for each transaction
τ ′i (1 ≤ i ≤ n − 1). For τ ′1, it is straightforward to
see that D′1 = D1 + ε1 and T ′1 = V ′1 − D′1 = T1 − ε1,
as shown in Table 3. We now proceed to transaction
τ ′2. From the computation process of MLDM , we know
D2 = dD2/T1eC1+C2 = k12C1+C2. Since T is an extreme
transaction set, by Lemma 2, we know for any two
transactions τk and τj (k > j) in T , there is

⌈
Dk

Tj

⌉
> Dk

Tj
.

Hence,
⌈
D2

T1

⌉
> D2

T1
obviously holds. Given

⌈
D2

T1

⌉
> D2

T1
,

and ε (and thus ε1 and ε2) is sufficiently small, we can
get that

⌈
D2

T1

⌉
=
⌈
D2+k

1
2ε1+ε2

T1−ε1

⌉
= k12 . Then, by finding

the minimum solution of dD′2/T ′1eC ′1 + C ′2 = D′2, we
can obtain D′2 = D2 + k12ε1 + ε2. Consequently, we have
T ′2 = V ′2 − D′2 = Vi − D′2 = T2 − k12ε1 − ε2. Following
a similar way and due to the same reason, for each
transaction τ ′i (3 ≤ i ≤ n−1), we can compute a new pair
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of deadline and period to be D′i = Di +
∑i−1
j=1 k

j
i εj + εi

and T ′i = Ti −
∑i−1
j=1 k

j
i εj − εi, as shown in Table 3.

Till now, we have finished the process of the first
(n−1) transactions of T ′, which areMLDM schedulable
with the new computed deadlines and periods. Now
with C ′n = Cn − Vnε, we use MLDM to calculate D′n.
We first suppose that D′n calculated by MLDM is larger
than Dn. By setting T ′n = D′n and V ′n = T ′n+D′n = 2D′n,
the following result

λT ′ =

n∑
i=1

C ′i
V ′i

=

n−1∑
i=1

C ′i
V ′i

+
C ′n
2D′n

(by D′n > Dn)

<

n−1∑
i=1

C ′i
Vi

+
C ′n
2Dn

=

n∑
i=1

C ′i
Vi

(by {V ′i = Vi}n−1i=1 )

(13)

can be obtained. Combining Formula (13) with Equa-
tion (12), we can get

λT ′ <

n∑
i=1

C ′i
Vi

=

n∑
i=1

Ci
Vi

= λT ,

which contradicts the assumption that T is an extreme
transaction set. Hence, we can conclude that D′n cal-
culated by MLDM must be no larger than Dn, i.e.,
D′n ≤ Dn.

Given
⌈
Dn

Ti

⌉
> Dn

Ti
(1 ≤ i ≤ n − 1) and ε (and thus

εi (1 ≤ i ≤ n)) is sufficiently small, we have,⌈
Dn

Ti

⌉
=

⌈
Dn

T ′i

⌉
=

⌈
Dn +

∑n−1
j=1 k

j
nεj − εn

T ′i

⌉
(1 ≤ i ≤ n−1)

(14)
Then, by finding the minimum solution of∑n−1

j=1

⌈
D′n/T

′
j

⌉
C ′j + C ′n = D′n (15)

we can get D′n = Dn +
∑n−1
j=1 k

j
nεj − εn. Since D′n ≤ Dn,

we have Dn +
∑n−1
j=1 k

j
nεj − εn ≤ Dn, which means,

εn ≥
∑n−1

j=1
kjnεj ⇒ Vnε ≥

ε
∑n−1
i=1 dDn/TieCi∑n−1
j=1 Cj/Vj

⇒ Vn
∑n−1

j=1

Cj
Vj
≥ Vn

2
− Cn ⇒ λT =

n∑
j=1

Cj
Vj
≥ 1

2

The claim is thus proved.
Based on Lemma 3, we introduce Theorem 4 below,

which identifies a sufficient condition for temporal con-
sistency maintenance under DM.

Theorem 4. Given a transaction set T , if the density factor
of T is not larger than 1

2 , i.e., λT ≤ 1
2 , then T is temporal

consistency schedulable under DM on a uniprocessor system.

Proof: We prove the claim by contradiction. Suppose
T is NOT temporal consistency schedulable under DM
on a uniprocessor system. Then, we know that when
usingMLDM to compute deadline and period for some
transaction τk (1 ≤ k ≤ n), there is Dk >

Vk
2 , i.e., Vk <

2Dk. If k = 1, then from the computation process of

MLDM , we know Dk = Ck and it is clear to see λT ≥
C1

V1 >
1
2 ; If k ≥ 2, then by applying Lemma 3 to the first

k transactions, we can get
k∑
j=1

Cj
Vj

=

k−1∑
j=1

Cj
Vj

+
Ck
Vk

>

k−1∑
j=1

Cj
Vj

+
Ck
2Dk

≥ 1

2
(16)

which further indicates,

λT =

n∑
i=1

Ci
Vi
≥

k∑
j=1

Cj
Vj

>
1

2
(17)

In summary, we have λT > 1
2 , which contradicts the

assumption that λT ≤ 1
2 , the theorem thus follows.

To our best knowledge, Theorem 4 is the first result
concerning the sufficient condition for temporal con-
sistency maintenance under DM scheduling. It can be
seen the sufficient condition for temporal consistency
maintenance under DM happens to be the same as that
under EDF. Hence, we can design our TCPDM algo-
rithm, which is the same as TCPEDF, as follows: For
any processor Mk, let T (Mk) denote the transactions
from among {τ1, τ2, . . . , τi−1} that have already been
allocated to processor Mk. Considering the processors
M1,M2, . . . ,Mm in any order, TCPDM assigns transaction
τi to the first processor Mk, that satisfies the following
condition:

λi +
∑

τj∈T (Mk)
λj ≤

1

2
(18)

If no such Mk exists, then TCPDM declares failure: it
is unable to conclude that T is feasible upon the m-
processor platform.

Since TCPDM is essentially the same as TCPEDF, it also
has a time complexity of O (nm), which makes it very
time-efficient.

3.2.2 Theoretical Evaluation of TCPDM

We now derive a resource augmentation bound for
TCPDM, which characterize its performance. Similar to
TCPEDF, we have the following lemma and theorem,
which respectively specify a necessary condition and a
sufficient condition, for TCPDM to successfully partition
a transaction set. Their proofs are the same as that of
Lemma 1 and Theorem 2, respectively, and thus are
omitted here for simplicity.

Lemma 4. If T is temporal consistency schedulable under
DM on an identical multiprocessor platform comprised of m
processors each of computing capacity ξ, then we have

λmax ≤
1

2
· ξ and λsum < m · ξ

Theorem 5. Any transaction set T is successfully scheduled
by TCPDM on m unit-capacity processors, provided that

m ≥ 2λsum − 2λmax
1− 2λmax

(19)

Based on Lemma 4 and Theorem 5, we have the follow-
ing resource augmentation result (similar to Theorem 3)
regarding Algorithm TCPDM.
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M1

M2

τ2 M1

M2

τ1 τ3 τ2τ1

τ3

Fig. 2: Transaction Assignment Options 1 and 2.

M1

M2

M1

M2

τ1 τ1τ3

τ3τ2 τ2

Fig. 3: Transaction Assignment Options 3 and 4.

Theorem 6. AlgorithmTCPDM makes the following perfor-
mance guarantee: if a transaction set is temporal consistency
schedulable on m identical processors each of computing
capacity ξ, then TCPDM will successfully partition this trans-
action set upon a platform comprised of m processors that are
each

(
3− 1

m

)
times as fast as the original.

4 DBF: A POLYNOMIAL-TIME HEURISTIC
FOR W-PARTITION
In this section, we address the W-PARTITION problem
globally. As discussed previously in Section 2.5, W-
PARTITION is NP-Hard in the strong sense. Hence,
the focus of this work is to design workload-efficient
transaction assignment schemes which allocate transac-
tions to processors to guarantee temporal consistency
in a feasible manner while achieving a total processor
workload as low as possible. The period and deadline
calculation for transactions on each single processor can
be conducted by using GEEDF and MLDM under EDF
and DM scheduling policies, respectively.

Given the intractability of the W-PARTITION problem,
we must look for heuristics. An intuitive way is to
modify the four traditional heuristics for the feasibility
problem from multiprocessor real-time scheduling, viz
next fit (NF), first fit (FF), best fit (BF), and worst fit (WF),
to make them applicable to our problem. To facilitate dis-
tinction, we use Temporal Consistency Fit, abbreviated
TCNF (TCFF, TCBF and TCWF, resp.), to denote the
corresponding algorithms which are adopted to solve
our problem. The process of TCNF (TCFF, TCBF and
TCWF, resp.) is quite similar to their correspondences.
The difference comes from that: 1) Inequality (3), rather
than the traditional real-time schedulability test, are uti-
lized to conduct the temporal consistency schedulability
check when assigning a transaction to a processor; 2) The
remaining capacity in TCBF and TCWF is the density
factor rather than the utilization in our problem.

But simply applying traditional approaches to our
problem may lead to workload-inefficient partitions, as
will be illustrated later. To address the W-PARTITION
problem in a more workload-efficient way, we first give
a simple example to show what dimensions can be got.

U(λ1+λ2

2
)

U(λ1)+U(λ2)
2

λ1 λ2
λ1+λ2

2

U(λi)

λi

Fig. 4: Balancing density factor leads to lower work-
load.

Example 1. Consider three transactions with execution times
and validity interval lengths

T ≡ {τ1 = (2, 16), τ2 = (3, 17), τ3 = (2, 30)}
to be executed on m = 2 identical processors. It is not
difficult to see that any assignment of these transactions to
two processors can lead to a feasible schedule under EDF
(λsum ≤ 0.5). If we ignore symmetrical allocations, we have
only four possible partitionings (note here after allocating
transactions to processors, we use GEEDF to deadline and
period for them):
1 All three transactions are allocated to one processor (Figure

2-left): Resulted workload = 2/14+3/12+2/23 = 0.4798.
2 τ1 and τ2 are allocated to one processor and τ3 is allocated

to the other processor (Figure 2-right): Resulted workload
= 2/14 + 3/12 + 2/28 = 0.464.

3 τ1 and τ3 are allocated to one processor and τ2 is allocated
to the other processor (Figure 3-left): Resulted workload =
2/14 + 3/14 + 2/26 = 0.434.

4 τ2 and τ3 are allocated to one processor and τ1 is allocated
to the other processor (Figure 3-right): Resulted workload
= 2/14 + 3/14 + 2/25 = 0.437.

This simple example with two processors illustrates
that workload characteristics of feasible partitions can
differ significantly: the most workload efficient trans-
action assignment (partitioning 3) results in about 4%
less workload than the first partition. In addition, we
observe that the best choice in this example turns out to
be the one which yields the most density factor balanced
partitioning on two processors.

The above example reveals us some useful informa-
tion. That is, a more density factor balanced partition
tends to produce a lower processor workload. Moreover,
Figure 4, which is derived from [38], illustrates why a
density factor balanced partitioning is more possible to
achieve a lower workload.

From Figure 4, we can see that the workload generated
on a single processor versus the total density is like a
convex curve. Given two transaction sets with density
factors λ1 and λ2 (λ1 < λ2) on two different proces-
sors, let the resulting processor workload be U(λ1) and
U(λ2), respectively. Moreover, let the processor work-
load corresponds to the transaction set with density
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TABLE 4: Partition Results for Example 2
TCNF / TCFF / TCBF TCWF DBF
M1 M2 M1 M2 M1 M2

τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti τi Ci Di Ti

τ1 2 2 7 τ3 2 2 14 τ1 2 2 7 τ3 3 3 8 τ1 2 2 7 τ2 3 3 8
τ2 3 5 6 τ4 1 3 15 τ2 2 4 12 τ4 1 4 14 τ3 2 4 12 τ5 3 6 18

τ5 3 6 18 τ6 2 6 34 τ5 3 7 17 τ4 1 5 13
τ6 2 8 32 τ6 2 7 33

λ = 0.495 λ = 0.3556 λ = 0.39722 λ = 0.45328 λ = 0.45277 λ = 0.3977
Total workload: 1.2244 Total workload: 1.1341 Total workload: 1.13157

factor λ1+λ2

2 on a single processor be U
(
λ1+λ2

2

)
. If the

convexity holds, it can be observed from Figure 4 that
2× U

(
λ1+λ2

2

)
< U (λ1) + U (λ2), which means a density

factor balanced partitioning on two processors leads to
a lower workload. Consequently, in order to decrease
the total processor workload as much as possible, it is
better to balance density factor among all processors
to the greatest extent. Note that the above convexity
assumption is based on our observations instead of
formal proofs.

Based on the above discussion, we propose our heuris-
tic Density factor Balancing Fit as follows: Considering
the processors {M1,M2, . . . ,Mm} in any order, Algo-
rithm DBF assigns transaction τi to the first processor Mk

that satisfies condition (3) and the following condition:

λi +
∑

τj∈T (Mk)
λj ≤

λsum
m

(20)

If no such Mk exists, then DBF assigns transaction τi
to the first processor Mk which satisfies condition (3).
If again no such Mk exists, DBF declares failure: it is
unable to conclude that the transaction set T is feasible
on the m-processor platform. Detail of DBF is shown in
Algorithm 1.

The proposed heuristic DBF is efficient from the two
performance dimensions: feasibility and workload. We
will detail its performance in Section 5. But at first,
it should be noted that DBF has the same resource
augmentation bound as TCPEDF and TCPDM, which
guarantees its feasibility performance theoretically.

Theorem 7. Algorithm DBF preserves a resource augmenta-
tion bound of (3− 1

m ).

Proof: Since only condition (3) is used to check
feasibility, while condition (20) is for balancing density
factor, the claim follows directly.

Complexity: In attempting to allocate transaction τi,
observe that DBF essentially evaluates, in (20) and (3),
the density factor of the previously allocated (i − 1)
transactions on each of the m processors. Since these
values can be computed in constant time, the run-time
of Algorithm DBF is no more than O (nm).

The following example illustrates the advantage of
DBF compared to the four schemes evolved from tra-
ditional methods for multiprocessor scheduling.

Algorithm 1: DBF: Density factor Balancing Fit
Input : A set of update transactions T = {τi}ni=1.
Output: Assigning each τi to a processor.

1 for i = 1; i ≤ n; i = i+ 1 do
2 for j = 1; j ≤ m; j = j + 1 do
3 if τi satisfies Conditions (20) and (3) on Mj

then
4 assign τi to Mj ;
5 break and proceed to transaction τi+1;

6 if τi is not assigned to any processor then
7 for k = 1; k ≤ m; k = k + 1 do
8 if τi satisfies Condition (3) on Mk then
9 assign τi to Mk;

10 break and proceed to transaction τi+1;

11 if τi is not assigned to any processor then
12 Return PARTITIONING FAILED;

Example 2. Consider a transaction set comprised of six
transactions with execution times and validity interval lengths

T ≡ {τ1 = (2, 9), τ2 = (3, 11), τ3 = (2, 16),

τ4 = (1, 18), τ5 = (3, 24), τ6 = (2, 40)}
to be executed on m = 2 identical processors. The resulted
solutions under TCNF, TCFF, TCBF, TCWF and DBF are
stated in Table 4, with all periods and deadlines derived by
GEEDF . Note here for the given transaction set, TCNF, TCFF
and TCBF produce the same result.

Example 2 demonstrates that density factor balancing
plays an important role in minimizing the processor
workload. As can be seen from Table 4, the most density
factor balanced partition, i.e., the one-derived by DBF,
results in about 9% less workload than TCNF, TCFF
and TCBF, the least density factor balanced partitions.
Note here TCWF produces almost the same workload as
DBF. In fact, TCWF has a better workload performance
than DBF in most cases. This is because TCWF tends
to distribute the density factor evenly among all the
processors, and thus can produce density factor balanced
partitions. But it should also be noted that TCWF has a
higher run-time complexity than DBF, and its feasibility
performance is bad, as will be shown in the experiment
study.
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TABLE 5: Experimental parameters and settings
Para. Class Para(s) Meaning Value

NCPU No. of CPU {2,4,8,16,32}
System NT No. of data objects [10,500]

Vi(ms) Validity interval of xi [4000,8000]
Update Ci(ms) Time for updating xi [5-15,15-150,150-800]

Transactions Length No. of data to update 1

5 PERFORMANCE EVALUATION

In this section, we provide an experimental evaluation
of DBF versus TCNF, TCFF, TCBF and TCWF. Notice
here GEEDF is used to compute deadline and period
of update transactions for all algorithms evaluated in
the experiments. Moreover, in addition to the theoretical
evaluation of DBF’s feasibility aspect stated in Theo-
rem 7, we also evaluate DBF by comparing it with an al-
gorithm FF-GE, a variant of First-Fit which uses GEEDF
as the feasibility check when allocating a transaction to
a processor. The aim of this evaluation is to characterize
the schedulability loss of DBF due to using a sufficient
- but not necessary - polynomial time feasibility test on
each processor.

5.1 Simulation Model and Assumptions

Performance Metrics: Our problem has two equally im-
portant performance dimensions: temporal consistency
schedulability (or feasibility) and processor workload.
Given a transaction set to be scheduled on a multi-
processor platform, an algorithm with high temporal
consistency feasibility performance, low workload, and
low computational cost is favorable. But as we will
see later shortly, there is an inherent trade-off between
feasibility and workload performances of the schemes
we investigated. Hence, judging by the feasibility and
workload it is not always possible to point to a “clear”
winner. Consequently, we define an additional hybrid
metric (namely feasibility/workload) that combines both
feasibility and workload performance dimensions. In
summary, we measure the performance of a given
heuristic H in terms of the following three metrics:
1) The Feasibility Performance (FPH), given as the per-

centage of the transaction sets that are schedulable
by H.

2) The Workload Performance (WPH), given as average
workload of transaction sets that are scheduled by H
in feasible manner.

3) The Feasibility/Workload (FWH) metric, given as FPH
WPH

.
Notice that metric 3) favors the heuristics with high
feasibility performance and low processor workload.

Simulation Settings: Table 5 shows a summary of the
parameters and default settings used in our experiments.
Note here we use similar baseline values for the parame-
ters as [37] and [38], which are originally from air traffic
control applications [28], to keep consistency and conti-
nuity with previous work. Two categories of parameters
are defined: system and update transaction. For system
configurations, an m (selected from {2, 4, 8, 16, 32}) pro-
cessors, main memory based RTDBS is considered. The

number of real-time data objects NT ranges from 10
to 500 to generate different density factor loads in the
system. The validity interval length Vi of each real-time
data object is assumed to be uniformly distributed in
[4000, 8000]. For update transactions, it is assumed that
each update transaction updates one data object, and
each transaction has a uniform probability of having
short (5-15ms), medium (15-150ms), or long (150-800ms)
execution time. Observe that the range of execution
time implicitly means the maximum density factor for
individual transaction is λmax = 800/4000 = 0.2.

We have generated a total of 100000 transaction sets
by varying the number of processors m, the total density
factor λsum of the update transaction set, and the number
of transactions n. We considered systems with 2, 4, 8,
16 and 32 processors while generating transaction sets
with different number of transactions which range in
[10, 500]. Note that for simplicity, we present our results
only in the context of 50-200 transactions that are to be
scheduled on 8 processors, however we must underline
that the trends and relative performances of techniques
are similar in other settings as well.

All the algorithms to be evaluated are implemented in
C++. For each point plotted in the figure, the simulations
continued until a confidence interval of 95% with half-
width of less than 5% about the mean was achieved.

5.2 Experimental Results

Figure 5 shows the feasibility performance. It can be
seen that under low to medium (about 2.5) density
factor, feasibility can be easily achieved and all heuristics
yield 100% feasibility. As density factor increases, the
feasibility performance of all schemes drops sharply, and
eventually it becomes zero (when λsum exceeds 4). This
is because all the five heuristics use condition (3) as
the feasibility test, which is restricted to the number of
processors. It can be seen that TCWF has the worst fea-
sibility performance, while DBF, TCFF and TCBF have
almost the same performance on feasibility. Figure 6
presents the workload performance. As can be observed,
TCWF obtains the best workload performance, followed
by DBF, of which is a bit higher compared to TCWF.
Also note that TCNF, TCFF and TCBF have almost the
same and, worst workload performance. The largest gap
between TCWF and TCFF is about 60%. This is because
these algorithms greedily schedule the transactions on
one processor to the extent it is possible while keeping
other processors idle, and this results in unbalanced
density factor partitionings in many cases. It is also
interesting to note that TCFF and TCBF are hardly dis-
tinguishable in both workload and feasibility dimensions
in this set of experiments. By examining the performance
of the five heuristics, we observe that DBF is by far
the best heuristic in terms of overall performance: Its
feasibility performance is the best (Figure 5); Moreover,
its workload performance, though is higher than TCWF,
clearly dominates TCNF, TCFF and TCBF, throughout
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the entire density factor spectrum (Figure 6). This fact
is even more emphasized by the feasibility/workload
curves of heuristics (Figure 7).

In fact, much of the performance differences among
the partitioning heuristics, in terms of both feasibility
and workload, can be explained in terms of their den-
sity factor balancing behavior. TCFF and TCBF tend
to yield unbalanced partitions, while TCWF and DBF
tend to produce balanced ones. This different density
factor-balancing behavior leads to different feasibility
and workload characteristics. On one hand, by dis-
tributing the density factor evenly among the available
processors can result in balanced partitions and thus lead
to a relatively lower workload. On the other hand, by
greedily packing as many transactions as possible on a
few processors (just in the case of TCFF and TCBF), it
is possible to accommodate additional transactions on
the remaining (idle) processors and thus improve the
feasibility. So there is intrinsically a trade-off between
feasibility and workload performance, and it would be
better to design a heuristic which can balance these two
factors in a certain degree. DBF happens to be such a
choice. It combines both the advantage of TCWF and
TCFF. The experimental result also verifies DBF’s better
performance compared to other heuristics.

Figure 8 shows the feasibility performance comparison
between DBF and FF-GE. Under low to medium density
factor parameters, feasibility can be easily achieved and
both heuristics yield 100% feasibility. As density factor
load increases, the feasibility performance of DBF drops
sharply, and eventually it becomes zero (when λsum
exceeds 4). But FF-GE can still derive feasible solutions
until λsum approaches to 5.5. It can be seen that FF-
GE can schedule a larger number of transaction systems
than DBF for all distributions we have tested. This is
because according to Theorem 1, any transaction set with
λsum ≤ 0.5 can be scheduled by MLDM . Hence, for a
transaction set, if DBF can produce a feasible solution,
then FF-GE can also derive one. But the converse is
not true. This also illustrates why FF-GE has better
feasibility performance than DBF.

In summary, DBF shows its advantage on workload
performance and low computation cost (polynomial-
time complexity). But its feasibility is somewhat re-
stricted to the sufficient feasibility test, i.e., λsum ≤ 0.5m.
Nevertheless, DBF still guarantees a resource augmenta-
tion bound of 3− 1

m .

6 RELATED WORK

There has been a lot of work on RTDBSs for maintain-
ing real-time data freshness [10], [12], [17]–[19], [21]–
[23], [32]–[34]. [34] studies the performance of two well
known concurrency control algorithms, two-phase lock-
ing and optimistic, in maintaining temporal consistency
of shared data in a hard real-time systems. [22] inves-
tigates real-time data-semantics and proposes a class
of real-time access protocol called SSP (Similarity Stack
Protocol). The trade-off between data consistency and
system workload is exploited in [16], where similarity-
based principles are combined with the Half-Half scheme
to reduce workload by skipping the execution of task
instances. [12] focuses on maintaining data freshness
in soft real-time embedded systems and proposes an
algorithm (ODTB) for updating data items that can skip
unnecessary updates allowing for better CPU utilization.

All the work mentioned above assumes the deadlines
and periods of update transactions are given, hence
gives no answer to the period and deadline assign-
ment problem for maintaining temporal consistency. To
address the period and deadline assignment problem,
the More-Less scheme is proposed in [37] with Deadline
Monotonic scheduling. While More-Less is based on pe-
riodic task model, the deferrable scheduling algorithm
for fixed priority transactions (DS-FP) proposed in [36]
follows a sporadic task model. DS-FP reduces proces-
sor workload by adaptively adjusting the separation of
two consecutive instances of update transactions while
satisfying the validity constraint. [17] investigates how
to maintain the mutual temporal consistency of real-
time data objects. [14] studies the problem of how to
maintain the temporal validity of real-time data in the
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presence of mode changes in flexible real-time systems.
The authors propose to use different scheduling policies
in different modes and introduce two algorithms to
search for proper switch points. The period and deadline
assignment problem for real-time update transactions
scheduled under EDF is firstly addressed in [38], and
later an improved solution is given in [26]. Recently, Han
et al. [15] and Wang et al. [35] studied the co-scheduling
problem of periodic update and application transactions
and proposed several effective scheduling algorithms.

Most of the related work mentioned above focuses on
uniprocessor systems. The first work considers real-time
temporal issue on multiprocessor platforms is the one by
Lundberg [29], which focuses on age-constraint global
multiprocessor scheduling. Our work differs from [29]
in that we address partitioned scheduling.

7 CONCLUSIONS

In this paper, we studied the workload-aware transaction
partitioning problem for maintaining temporal consis-
tency of real-time data objects upon multiprocessor plat-
forms. As far as we know, this work is the first attempt
to solve the given problem. We first only considered
the feasibility aspect of the problem by proposing two
polynomial-time partitioning algorithms TCPEDF and
TCPDM under EDF and DM scheduling, respectively. We
formally proved that the resource augmentation bound
of both TCPEDF and TCPDM are 3− 1

m . Secondly, we
addressed the problem holistically and developed our
density factor balancing scheme DBF, showing that a
more balanced partitioning tends to produce a lower
workload. Our experimental evaluation demonstrates
that DBF is by far the best choice from the feasibil-
ity/workload performance point of view.

For future work, we intend to investigate the temporal
consistency scheduling problem on multiprocessors with
aperiodic task model, and the resource sharing issue. We
also plan to study the temporal consistency scheduling
problem upon global multiprocessor platforms.
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