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Energy-Efficient Scheduling in Nonpreemptive
Systems With Real-Time Constraints

Jianjun Li, LihChyun Shu, Member, IEEE, Jian-Jia Chen, Member, IEEE, and Guohui Li

Abstract—In the past decade, the development of mobile and
embedded systems has demanded energy efficiency for improving
the lifetime of embedded devices. To avoid preemption overhead
or ease timing verification, nonpreemptive scheduling has been
deemed useful or necessary in meeting system timing requirements
for certain applications built on embedded devices. In this paper,
our aim is to design nonpreemptive scheduling algorithms that
ensure timing correctness and optimize energy consumption on
a processor with variable speeds. We propose a representative
algorithm, ISA, which can produce lower speeds for a variety
of nonpreemptive task sets than other comparable methods, and
hence resulting in significant energy savings. When combined with
a selective frequency-inheritance policy we design to efficiently de-
termine if processor speedup can be disabled without jeopardizing
any task deadlines, ISA can achieve even larger gains, up to 30%
reduction in energy consumption. Finally, we propose a dynamic
slack reclamation policy built on ISA, namely ISA-DR, which can
result in additional energy savings when a task consumes less than
its worst-case execution time.

Index Terms—Energy efficiency, fixed priority, nonpreemptive
scheduling, real-time system.

I. INTRODUCTION

POWER CONSUMPTION has become one of the most
important issues when it comes to designing many mobile

and embedded real-time applications. When it is necessary to
trade system performance for reduced power consumption, the
system can exploit dynamic voltage scaling (DVS) to change
the supply voltage dynamically or dynamic threshold voltage
scaling by controlling the body bias voltage to change the
threshold voltage dynamically. Different supply voltages or
threshold voltages result in different processor speeds. There-
fore, how to choose the proper speeds, along with the supply
voltages and threshold voltages, is of importance for energy
reduction and meeting system timing requirements.

In this paper, we consider energy-efficient scheduling of
nonpreemptive tasks on uniprocessor systems that support dy-
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namic speed adjustment. Although a large body of past research
has focused on preemptive scheduling [4], [21], [25], nonpre-
emptive scheduling is still attractive in different application
domains where properties of device hardware and software
make preemption either prohibitively expensive or just impos-
sible [10]. Despite their inherent limitations, nonpreemptive
scheduling algorithms are easier to implement, have lower run-
time overhead, require less memory, and eliminate the need
for synchronization and its associated overhead [10], [12].
Nonpreemption also helps preserve program locality, which in
turn makes programs more amenable to worst-time execution
time analysis [23]. As a result, nonpreemptive scheduling has
been adopted in many avionics applications [18] as well as
in embedded systems, particularly in small embedded devices
with limited memory capacity [2], [16], [19], [32].

To the best of our knowledge, no specific algorithm has been
developed for scheduling of fully nonpreemptive fixed priority
tasks for energy minimization under real-time constraints in the
past. The most relevant ones are the dual-speed (DS) algorithm
due to Zhang and Chanson [34] and the uniform slowdown
algorithm with frequency inheritance (USFI) proposed by
Jejurikar and Gupta [13]. Both algorithms are designed for
tasks that need synchronization and hence have critical sections.
In this paper, we propose individual speed algorithm (ISA), a
novel scheme that computes one speed for each individual task
in a nonpreemptive task set. We address the challenging issue of
figuring out the exact workload of higher priority tasks on each
nonpreemptive task. The exact workload enables us to calculate
optimal processor speeds which give optimal energy consump-
tion while satisfying the given timing constraint. ISA achieves
considerable energy savings compared to existing methods with
comparable quality, particularly at high processor utilization.
Another scheme we devise to cowork with ISA is selective FI
(SFI) which efficiently determines if processor speedup can
be disabled without jeopardizing any task deadlines whenever
a task is blocked. We show that further improvement (20% to
30% reduction in energy consumption) can be obtained when
ISA is combined with the SFI policy, at the cost of slight
runtime overhead. Considering that the task actual execution
time is usually less than its worst-case execution time (WCET),
we further propose a dynamic slack reclamation scheme based
on ISA, which is named ISA-DR, for more energy savings.
Experimental study shows that up to 30% energy savings can
be achieved by ISA-DR compared to ISA. In addition to
their primary role in reducing processor energy consumption
for real-time applications, we also demonstrate an additional
use of our algorithms to trade off energy consumption against
transmission delay in saving communication energy.

2168-2216/$31.00 © 2012 IEEE



LI et al.: ENERGY-EFFICIENT SCHEDULING IN NONPREEMPTIVE SYSTEMS 333

The remainder of this paper is organized as follows:
Section II briefly discusses related work. Section III describes
task and power models along with some assumptions we make.
Section IV details the motivation and design of the ISA algo-
rithm. In the same section, the SFI policy applied to ISA is
also introduced. In Section V, the dynamic slack reclamation
policy is presented. The experimental results are discussed in
Section VI. Section VII shows an additional application of
our algorithms to energy-aware communication systems, and
finally, Section VIII concludes the paper with some remarks.

II. RELATED WORK

Power consumption has become a critical problem in em-
bedded and mobile systems with real-time constraint in recent
years. Researchers have tackled energy reduction on a proces-
sor with variable speeds for both periodic and aperiodic real-
time tasks [4], [21], [25], [31], as well as tasks with critical
sections [13], [34], scheduling using a hybrid of the slowdown
and shutdown strategies [14], [22], energy reduction based
on slack reclamation [4], [11], [20], energy-aware scheduling
with reliability requirements [35]–[37] (or on fault-tolerance
systems [15]), energy-efficient scheduling on wireless networks
[5], [7], [24], multiprocessor energy-efficient scheduling [1],
[6], and energy-aware scheduling at a broader system level
[3], [38]. Note that all the aforementioned studies focused on
preemptive scheduling.

Hong et al. [9] first reported superior results yielded by
nonpreemptive scheduling policies on power minimization of
variable-voltage core-based systems. The authors proposed a
synthesis approach that explores static scheduling algorithms,
determines the cache size and configuration, and selects the
processor core. The effectiveness of the approach was demon-
strated on a variety of industrial-strength multimedia and com-
munication applications. Zhang and Chanson [33] addressed
energy-efficient scheduling of nonpreemptive periodic tasks
on uniprocessor systems and presented the DS algorithms for
dynamic priority [earliest deadline first (EDF)-based)] systems.
DS computes two speeds for the task system consisting of
periodic tasks with nonpreemptive critical sections. A low
speed L is obtained by assuming the task set is independent,
while a high speed H is computed by taking the blocking time
due to nonpreemption of critical sections into consideration.
The algorithm executes each task at speed L for most of the
time and switches to speed H only when some task is blocked.
Jejurikar and Gupta [12] proposed using the optimal feasibility
test for EDF scheduling of nonpreemptive periodic tasks in [10]
to obtain a H speed that is lower than the one computed in [33].

Swaminathan and Chakrabarty [28] presented a novel low-
energy earliest deadline first (LEDF) scheduling algorithm
for nonpreemptive periodic task sets, and an implementation
of LEDF in RT-Linux is described in [29]. Nonpreemptive
scheduling is considered necessary for some energy-intensive
applications, e.g., in executing wireless packet transmission
tasks. An example can be found in [16], in which the authors
addressed the problem of power-aware scheduling of nonpre-
emptive aperiodic task sets, and developed a DVS algorithm
by exploiting the structure of optimal sample paths. Note that

all the studies mentioned above considered dynamic priority
scheduling.

For fixed-priority systems, Zhang and Chanson proposed the
DS algorithm [34] for RM scheduling. Jejurikar and Gupta [13]
proposed the USFI, which assumes the same task and processor
model as [34] and determines a uniform slowdown for each task
in the task set. While DS assumes fully nonpreemptive critical
sections, USFI can work together with well-known synchro-
nization protocols such as PCP and SRP to bound task blocking
times and to reduce energy consumption. The FI policy in USFI
requires that when blocking occurs, if the blocked task has a
higher slowdown factor, this slowdown factor is inherited by
the blocking task. This policy is important in the algorithm’s
bounding of maximum blocking time.

III. MODEL AND ASSUMPTIONS

We consider a set of n nonpreemptively periodic tasks that
are scheduled by the deadline-monotonic (DM) algorithm on a
uniprocessor system. That is, the tasks with shorter deadlines
have higher priority. Without loss of generality, we index the
n periodic tasks from the highest priority to the lowest pri-
ority and denote them by τ1, τ2, . . . , τn. When the processor
becomes available, the scheduler chooses the task instance with
the highest priority, and this task instance is executed until
it finishes. Each task τi is characterized by three parameters
(Ti, Di, Ci), where Ti, Di, and Ci represent task τi’s period,
relative deadline, and worst-case computation time (WCET),
respectively. For each τi, we assume Di ≤ Ti, and Ci is esti-
mated at maximum processor speed. Each instance of a task
is called a job, and the kth job of task τi is denoted as τi,k.
As in [12], the overhead of context switching is included in
task computation times and the overhead of task scheduling is
assumed to be zero. Associated with the task set, the system
utilization is defined as U =

∑n
i=1 Ci/Ti. A job is said to be

blocked if it is waiting in the ready queue for the completion of
the currently executing lower priority job, and the lower priority
executing job is called the blocking job.

For ease of presentation, we will first focus on systems
with continuous frequencies/speeds and negligible frequency
transition overhead, deferring discussion of systems with dis-
crete speeds and non-negligible frequency transition overhead
to Section IV-D. We assume that the operating frequency of the
processor can be scaled within [fmin, fmax]. For convenience,
we define a slowdown factor η (the normalized processor speed)
as the ratio of the current operating frequency to the maximum
frequency. Hence, we have slowdown factors varying in the
interval [ηmin, 1], where ηmin = fmin/fmax. We will use the
terms frequency and speed interchangeably in the following
discussion, if no confusion arises. For the simplicity of de-
signing schedulers, we further assume that a frequency change
can occur only when a job begins execution or when a higher
priority job is blocked.

Suppose that the power consumption is PI when the system
is idle and the power consumption is PI + Pd(f) when the
system is executing a task at frequency f (Note that Pd(f)
could also be task-dependent), we assume that running at a
higher frequency in the range of [fmin, fmax] will result in
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higher energy consumption for execution. That is, Pd(f)/f is
an increasing function of f . In particular

Pd(f) = Pind + Pdep(f)

Pind is contributed by the components of memory and proces-
sor power that can be efficiently removed by putting the system
to sleep (or standby), and is independent of the supply voltage
and frequency, while Pdep is contributed by the switching
power for charging and discharging the load capacitance, which
can be represented as Pdep(f) = CefV

2
ddf , where Cef and Vdd

denote the effective switch capacitance and the supply voltage,
respectively. Moreover, as the frequency f is approximately
proportional to the supply voltage Vdd, the power consumption
Pd(f) is roughly proportional to the cube of the frequency.
Since Pd(f)/f is a convex function where fee has the minimum
Pd(f)/f in the range of [fmin, fmax], we have to set fmin as
fee to ensure that only energy-efficient operation frequencies
are selected.

IV. INDIVIDUAL-SPEED ALGORITHM

Section IV-A introduces the motivation of ISA. We describe
the design detail of ISA in Section IV-B. Section IV-C consid-
ers a policy, namely SFI, to reduce the frequency of processor
speedup at task blocking times with ISA. Remarks for practical
systems and a note on DS are presented in Section IV-D.

A. Motivation

Algorithm DS [34] computes two speeds for the task sys-
tem consisting of periodic tasks with nonpreemptive critical
sections that are executed on a variable-speed uniprocessor,
while algorithm USFI [13] determines a uniform slowdown for
each task in the task set. Both DS and USFI can be applied
to nonpreemptive scheduling by treating each task as one
critical section. However, both approaches would overestimate
preemption times on nonpreemptive tasks, and hence, result in
task slowdown factors higher than necessary. We will give an
example later to illustrate this problem. Since DS only computes
two static speeds for the entire task set and the improvement on
it is trivial, a short discussion of this algorithm is postponed
to Section IV-D. In the following, we first review how USFI
works, and then present an example to illustrate why USFI is
not energy-efficient for fully nonpreemptive task set.
USFI iteratively computes slowdown factors for all tasks,

from highest to lowest priority. An index q, initialized to 1,
is used to record the fact that at any instant in time, the
slowdown factors for tasks τ1 to τq−1, denoted η1, η2, . . . , ηq−1,
have been determined. During each iteration, it first finds
candidate slowdown factors for tasks from τq to τn, i.e.,
ηq, ηq+1, . . . , ηn. Suppose ηm(q ≤ m ≤ n) is the maximum of
ηq, ηq+1, . . . , ηn.1 USFI selects ηm as the slowdown factor for
all tasks from τq to τm. It then updates q to be m+ 1 and
continues the next iteration until all n tasks have slowdown
factors determined. When determining candidate slowdown

1If there are more than one task with maximal value, then USFI selects the
slowdown factor of the task with the largest index.

factor ηi for each task in {τq, τq+1, . . . , τn} at each iteration,
USFI uses the following time-demand-based feasibility test
(a direct extension of the schedulability test in [27]):

( ∑
1≤r<q

Cr

ηr

⌈
Si,j

Tr

⌉)
+

1

ηi,j

⎛
⎝Bi+

∑
q≤p≤i

Cp

⌈
Si,j

Tp

⌉⎞⎠=Si,j . (1)

Si,j is a scheduling point of task τi, and ηi,j is the
candidate slowdown factor corresponding to Si,j . Si,j is
a member of Si defined as: Si = {(t ∈ S) ∧ (t < Di)} ∪
{Di}, where S={kTj |j=1, . . . , i; k=1, . . . , �Ti/Tj�}. Bi=
maxj∈lp(i){Cj} is the blocking factor due to nonpreemptabil-
ity, where lp(i) is the set of tasks having lower priority than τi’s.
When there are more than one scheduling point for task τi, i.e.,
more than one candidate slowdown factor, to achieve the best
energy savings, USFI chooses the minimum candidate slow-
down factor as the slowdown factor for τi, i.e, ηi = minj(ηi,j).

Whenever blocking occurs, USFI adopts the FI policy to
change the processor speed immediately by employing the
slowdown factor of the blocked job in order to ensure task
deadlines. In all the other cases, each job will execute at its
slowdown factor to save energy. Note that the slowdown factors
computed by USFI are in a nonincreasing order.

The following example explains why USFI has room for im-
provement when applied to fully nonpreemptive task schedul-
ing and motivates us to push forward.

Example 1: Consider the following three periodic tasks τ1 =
(5, 5, 1), τ2 = (10, 10, 2), τ3 = (20, 20, 1) specified with their
periods, relative deadlines, and WCETs. The slowdown factors
computed by USFI are η1 = 0.6, η2 = 0.45, and η3 = 0.225,
respectively.

Now we look into how USFI works. Suppose we have
finished the first iteration of the algorithm and determined η1
to be 0.6, and we continue to determine η2 at the second
iteration. Consider how USFI determines η22 for S22 (one of
the scheduling points of τ2) by applying (1) to get the following
equation:

1

0.6

⌈
10

T1

⌉
+

1

η22

(
1 +

∑
2≤p≤2

Cp

⌈
10

Tp

⌉)
= 10. (2)

In (2), the workload from τ1 has been counted for two times
(i.e., �10/5	), which means that in the worst case, τ1 can
execute twice before τ2 starts its execution. However, actually,
this is an overestimation. To see this, we assume τ1,1 and τ2,1
arrive at time t = 0 while τ3,1 arrives just a little earlier. It is not
hard to see that this is a case when τ2 has its longest response
time. Initially, USFI schedules τ3,1 to execute. τ1,1 and τ2,1
arrive immediately while τ3,1 is executing. Since τ1,1 (as well
as τ2,1) is blocked, the processor speed is increased to η1 = 0.6.
At t = 5/3, τ3,1 is finished, and τ1,1 begins execution still at
speed η1 = 0.6. At t = 10/3, τ1,1 finishes and τ2,1 finally gets
its chance to execute at speed η2. Fig. 1 shows the schedule
during the first 10 time units (the lifetime of τ2,1).

As one can see from Fig. 1, although τ1 is released twice
during the lifetime of τ2,1, it executes only once before τ2,1
starts. This is because with nonpreemptive scheduling, once
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Fig. 1. τ1 executes just once before τ2 starts execution.

a task has seized the control of the processor, no other tasks
can preempt it until it finishes. Hence, the workload from τ1
should be counted just once when determining a candidate
slowdown factor for τ2. Since USFI is a scheduling algorithm
for tasks with nonpreemptive critical sections, when adapting to
fully nonpreemptive tasks, its calculation of slowdown factors
must be reconsidered. Otherwise, the algorithm will be energy
inefficient.

B. Designing ISA

Based on the above discussion, our main challenge is to
come up with a more precise feasibility test formula for the
calculation of slowdown factors. Specifically, our goal is to
calculate new slowdown factors such that all task deadlines
are guaranteed and more energy savings can be achieved.
Our approach is to check, for every task τ in a given task
set, whether τ can execute at a slowdown factor determined
by USFI and finish some time before one of its scheduling
points, even after τ experiences worst-case blocking and all task
instances with priority higher than τ ’s have completed. If this
condition holds for a scheduling point of τ , say S, other than
the one that USFI uses to determine τ ’s slowdown, then we
can compute a more precise workload on τ from higher priority
tasks with respect to S in the schedulability test. From that, we
obtain a new slowdown for τ .

The skeleton of the proposed ISA algorithm is given in
Algorithm 1. We use ηi to denote the new candidate slowdown
factor obtained for each task τi by using our approach, to
distinguish from ηi that is obtained using USFI. At each
iteration, the first q − 1 (q = 1 in the beginning) tasks already
have their new slowdown factors determined. Now we need to
calculate ηi for every task τi(q ≤ i ≤ n). For each τi, we first
use (3) (obtained from (1) with ηr replaced by ηr) and (4) to
compute an intermediate slowdown factor η̃i( ∑

1≤r<q

Cr

ηr

⌈
Si,j

Tr

⌉)
+

1

ηi,j

⎛
⎝Bi+

∑
q≤p≤i

Cp

⌈
Si,j

Tp

⌉⎞⎠ = Si,j

(3)

η̃i = MinSi,j∈Si
(ηi,j). (4)

Suppose η̃i is obtained from ηi,l corresponding to Si,l that
belongs to Si, i.e., η̃i = MinSi,j∈Si

(ηi,j) = ηi,l. Now, consider
the following Inequality for the scheduling points in Si:( ∑

1≤r<q

Cr

ηr

⌈
Si,j

Tr

⌉)
+

1

η̃i

⎛
⎝Bi +

∑
q≤p<i

Cp

⌈
Si,j

Tp

⌉⎞⎠ < Si,j .

(5)

Algorithm 1 The ISA algorithm

1: Given tasks sorted in nondecreasing order of periods;
2: q = 1; //Initialization
3: while q ≤ n do
4: for i = q; i ≤ n; i++ do
5: Compute η̃i by (3) and (4);
6: Si={Si,k|Si,k∈Si, and Inequality (5) holds for Si,k};
7: for each Si,k ∈ Si do
8: Compute ηi,k by (6), and ηi,k by (7);
9: η′i,k = Max(ηi,k, ηi,k);
10: end for
11: ηi = MinSi,k∈Si

(η′i,k);
12: end for
13: ηm = maxni=q(ηi); //Choose the maximum candidate

slowdown factor
14: for i = q; i ≤ m; i++ do
15: ηi = ηm;
16: end for
17: q = m+ 1;
18: end while

The left-hand side of the Inequality represents (a). the
computational load of those higher priority tasks whose new
slowdown factors have been determined; and (b). worst-case
blocking of τi and the computational load of those higher
priority tasks who do not have new slowdown factors yet,
with the processor slowed down to η̃i. By comparing (3) and
Inequality (5), Inequality (5) certainly holds for Si,l. How-
ever, if the Inequality also holds for another scheduling point
Si,k �= Si,l, then we know that with the processor slowed down
to η̃i, τi will begin execution at some time before Si,k, even
in the worst case. When τi begins execution, no other tasks
can preempt it. This implies that the workload from tasks with
priorities higher than τi should be calculated with respect to
Si,k, instead of Si,l as in USFI.

Let Si = {Si,k|Si,k ∈ Si, and Inequality (5) holds for Si,k}.
We know Si �= ∅, since there is at least one scheduling point
in it, i.e., Si,l. Now for each Si,k ∈ Si, we calculate a new
candidate slowdown factor ηi,k using the following equation:

∑
1≤r<q

Cr

ηr

⌈
Si,k

Tr

⌉
+

1

ηi,k

⎛
⎝Bi +

∑
q≤p≤i

Cp

⌈
Si,k

Tp

⌉⎞⎠ = Di.

(6)

At first glance, one may wonder why Di (deadline of τi),
rather than Si,k, is used on the right-hand side of (6)? The
following lemma justifies why it is beneficial to do so.

Lemma 1: Using Di on the right-hand side of (6) is a better
strategy than using Si,k in terms of minimizing the slowdown
factor of τi.

Proof: Suppose Si,k is used on the right-hand side of (6)
to calculate ηi,k. Obviously, this still meets the deadline of task
τi. In addition, Inequality (5) will hold if we replace η̃i by ηi,k
and Si,j by Si,k in (5). Hence, the new slowdown for τi can
be calculated simply as MinSi,k∈Si

(ηi,k). Since Si ⊆ Si, this
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new slowdown factor for τi is certainly no smaller than η̃i. On
the other hand, by comparing (3) and (6), it is obvious that
the ηi computed by using our approach is not larger than η̃i.
Combining these two facts, the lemma follows. �

Note that using ηi,k in (6) as τi’s slowdown factor can
guarantee τi’s deadline, but Inequality (5) may no longer hold
if we replace η̃i by ηi,k and Si,j by Si,k in (5), which means
τi may not begin execution some time before Si,k. This is
impermissible since in nonpreemptive scheduling, once the task
instance has seized the control of processor, it will not release
it until it finishes its execution. Thus, if τi does not start its
execution before Si,k, the slowdown factor calculated by (6),
which uses Si,k to bound the span of higher priority tasks,
cannot guarantee that τi will meet its deadline. To address this
problem, consider the following ratio:

Bi +
∑

q≤p<i Cp

⌈
Si,k

Tp

⌉
Si,k −

∑
1≤r<q

Cr

ηr

⌈
Si,k

Tr

⌉ . (7)

Based on our definitions of Si and Inequality (5), η̃i is larger
than the value in (7). We choose a value that is a little larger
than (7), but is smaller than η̃i. We call this value ηi,k. Clearly,
Inequality (5) still holds when we replace η̃i by ηi,k in (5). We
let η′i,k = Max(ηi,k, ηi,k). Now we are sure that using η′i,k
as τi’s slowdown factor cannot only meet τi’s deadline, but
also ensure τi’s kick-off before Si,k. In order to achieve better
energy savings we let τi’s new candidate slowdown factor ηi =
MinSi,k∈Si

(η′i,k). Finally, Lines 13–15 of Algorithm 1 further
choose the maximum candidate slowdown factor from among
ηq, . . . , ηn as the final slowdown factor for tasks τq, . . . , τm.

In the following, we present an example to illustrate our
approach.

Example 2: We compute new slowdown factors for the task
set given in Example 1. The same as USFI, ISA involves three
iterations of computation, and the calculation details are shown
in Table I. Since the slowdown factor for τ1 computed by ISA
is the same as that of USFI, i.e., η1 = 0.6, we omit to show the
detail of computing η1. Now, we come to the second iteration,
with η1 = 0.6, we continue to find η2 and η3. By using (3)
and (4) with q = 2, we obtain η̃2 = 0.45 and η̃3 = 0.375.
For task τ2, Inequality (5) holds at S2,1 = 5 and S2,2 = 10,
hence S2 = {S2,1(5), S2,2(10)}. We go on to find η2,1 = 0.36,
η2,1 = 0.3001, η2,2 = 0.45, and η2,2 = 0.15001. Hence, η2 =
Min(η′2,1, η

′
2,2) = 0.36. Following the same steps, we get η3 =

0.3001. Since η2 > η3, the second iteration is concluded with
η2 = 0.36. Finally, our third iteration determines η3 to be
0.09. In summary, the new slowdown factors computed by our
method are η1 = 0.6, η2 = 0.36, and η3 = 0.09, respectively.

Now, we need to be sure that all task deadlines can still be
met with our new slowdown factors. We first introduce two
important facts. From the computation process of ISA, it is not
difficult to derive the following fact.

Lemma 2: Given the tasks are ordered in a nondecreasing
order of their periods, the new slowdown factors computed by
ISA are in a nonincreasing order.

Proof: This property follows from the sequence in which
the ISA algorithm assigns slowdown factors to tasks. Note

TABLE I
CALCULATION OF OUR NEW SLOWDOWN FACTORS FOR THE TASK SET

GIVEN IN EXAMPLE 1 IN THREE ITERATIONS

that ISA first computes one candidate slowdown factor for
each unassigned task by (6) and (7), in which the same slow-
down factor is assumed for all unassigned tasks (lines 7–11 of
Algorithm 1). Then, in each iteration of the algorithm, the max-
imum over the task candidate slowdown factors, η̄m (line 13 of
Algorithm 1), is assigned to the unassigned tasks up to index m
(lines 14–16). Since the maximum over all candidate slowdown
factors is assigned to some tasks, the candidate slowdown factor
in future iterations can only be lower. Therefore, the candidate
slowdown factor of each task and the maximum over the candi-
date slowdown factors is nonincreasing in sequential iterations,
which means the final task slowdown factors computed by ISA
are also in nonincreasing order. �

With our new slowdown factors computed, the run-time
scheduler will use them to control the processor speed at dif-
ferent points in time so as to reduce energy consumption, while
still guaranteeing all task deadlines. In this paper, we consider
two policies to control the processor speed: 1) FI [13]: When
blocking occurs, if the blocked job has a higher slowdown
factor, this slowdown factor is inherited by the blocking job.
In all other cases, each job will execute at its corresponding
slowdown factor to save energy; 2) SFI. We consider FI in
this section and will discuss SFI in Section IV-C. By Lemma 2
and the FI policy, we have the following fact.

Lemma 3: During the time period when τi is executing, the
minimum slowdown of the processor is ηi.

With the FI policy, we prove that the slowdown factors
computed by ISA can guarantee all task deadlines, as stated
below.

Theorem 1: Based on the DM scheduling policy, the slow-
down factors computed by ISA along with the FI policy of
controlling the processor speed guarantee all task deadlines.

Proof: Our approach assigns every task a slowdown factor
that is larger than or equal to the slowdown values given in
(6) and (7). Based on this, we know that for every task τi,
i = 1, . . . , n, there exists a scheduling point Si,k such that the
following two inequalities hold:

1

ηi
Bi +

∑
1≤j<i

Cj

ηj

⌈
Sik

Tj

⌉
+

1

ηi
Ci ≤Di (8)

1

ηi
Bi +

∑
1≤j<i

Cj

ηj

⌈
Sik

Tj

⌉
<Si,k. (9)
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Fig. 2. (a) Task schedule by USFI for the three tasks given in Example 1.
Assuming τ1, τ2 and τ3 arrive at time 0, 1, and 3, respectively. (b) Task
schedule by ISA with FI. ISA-FI consumes 9% less frequency-dependent
energy than USFI. (c) Task schedule by ISA with SFI. Compared to USFI,
14% dynamic energy savings can be achieved by ISA-SFI. (a) Task schedule
produced by USFI. (b) Task schedule produced by ISA-FI. (c) Task schedule
produced by ISA-SFI.

We prove the above claim by contradiction. Suppose an in-
stance of task τi misses its deadline. Let t be the time when
the instance was released, and A be the set of jobs that arrive
during [t, t+Di] with priority higher than that of τi, i.e., A ⊆
{τ1, . . . , τi−1}. The workload from jobs in A during the interval
is clearly bounded by

∑i−1
j=1(Cj/ηj)�Di/Tj	. According to

(9), there exists a scheduling point Si,k during the lifetime of
τi before which τi can starts its execution. Therefore, the work-
load from jobs in A during [t, t+Di] should be characterized
as

∑i−1
j=1(Cj/ηj)�Si,k/Tj	 instead. The maximum execution

time of τi at full speed is bounded by Bi. By Lemma 3,
τi’s maximum blocking is (1/ηi)Bi. Thus, the total execution
time of the jobs during [t, t+Di] is bounded by (1/ηi)Bi +∑i−1

j=1(Cj/ηj)�Si,k/Tj	+ (1/ηi)Ci, which is larger than Di

by our assumption. However, this contradicts (8). Hence, all
tasks are guaranteed to meet their deadlines. �

Fig. 2(a) shows the schedule of the first 20 time units
produced by USFI for the task set given in Example 1. We
assume τ1, τ2 and τ3 arrive at time 0, 1, and 3, respectively.
As seen in Fig. 2(a), blocking occurs at time 1, 3, and 13, hence
the processor speed is changed accordingly. With our new slow-
down factors computed in ISA and the FI policy, the processor
speed is changed at time 1, 3, 8, and 13, as shown in Fig. 2(b).
As dynamic energy consumption (Pdep) is proportional to the
cubic of slowdown factors, the energy consumed by USFI and
ISA-FI in this example is 2.88 and 2.62, respectively, which
means 9% dynamic energy savings can be obtained by using our
slowdown factors, in the first 20 time units. Notice here we do
not include frequency-independent power Pind for comparison
since by [37], there exists a minimum threshold slowdown
factor, below which lower frequency will increase the energy
consumption. We will address this issue later in our experiment
study in Section VI.

Complexity: The time complexity of ISA is dominated by
the computation of the candidate slowdown factors. Since the
number of scheduling points in Si is pseudopolynomial in the
exact deadline monotonic analysis, ISA is also in the pseu-
dopolynomial time complexity. Nevertheless, in practice, the
number of scheduling points is not large, and the algorithm is
very efficient. Moreover, one can utilize the approach presented
by Fisher et al. in [8] to derive a polynomial time algorithm by
taking some approximation for the schedulability tests.

C. SFI: Selective Frequency Inheritance

From our discussions in Section IV-B, one can see that our
computation of the candidate slowdown factor for a task τi, as
given by (6), assumes the same slowdown for τi and its blocking
section, with Bi/ηi as the maximum blocking duration for τi
when our approach determines ηi. This assumption is reflected
in the FI policy: When blocking occurs, if the blocked task
has a higher slowdown factor, this slowdown factor is inherited
by the blocking task. However, is the FI policy of changing
the processor speed whenever blocking occurs a good strategy
in minimizing energy consumption, while guaranteeing task
deadlines? We will argue below that the answer is negative by
presenting our solution.

Suppose one can estimate the maximum remaining compu-
tation time needed for each active task. Assuming an instance
of τi arrives while a lower priority task τj is executing, and τj
requires at most Rj of computation time to finish at the current
processor speed. We propose the SFI policy as follows: If Rj is
not larger than Bi/ηi, we continue to execute τj at the current
speed. Otherwise, the processor speed is promoted to ηi. The
SFI policy also employs the slowdown factors computed by
ISA. We will show in Theorem 2 below that our ISA algorithm
along with the SFI policy still guarantees all task deadlines.
The correctness of the theorem follows from Theorem 1 and
the following lemma.

Lemma 4: When τa arrives while a lower priority task τb
is executing, if the SFI policy leaves the processor speed
unchanged because Rb ≤ Ba/ηa, with Rb being the remaining
execution time of τb at the current processor speed, then none
of the tasks already blocked by τb will be affected in terms of
meeting its deadline.

Proof: Consider any task τi that is already blocked by τb
when τa arrives. As shown in Fig. 3, let t1 and t2 be the time
instants when τi and τa become blocked by τb, respectively, and
t3 denotes the time when τb finishes. Consider the scheduling
point Si,k of τi from which we determine ηi. Since τa started
to be blocked from time t2, during the interval [t1, t1 + Si,k],
τi will await at most the following amount of time before it
becomes eligible to run: (1) τi has a higher priority than τa: t3 −
t1 +

∑i−1
j=1(Cj/ηj)�Si,k/Tj	; (2) τa has a higher priority than

τi: t3 − t1 +
∑i−1

j=1,j �=a(Cj/ηj)�Si,k/Tj	+ (Ca/ηa)�(Si,k +
t1 − t2)/Ta	. When looking at the terms in these two ex-
pressions, one can see that despite the decision to leave the
processor speed unchanged at time t2, only the term t3 − t1
is affected. To address the effect of applying the SFI policy
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Fig. 3. Illustration example for Lemma 4.

at time t2, we need to consider the following two situations at
time t1:

• τb inherits ηi at time t1: During [t1, t2], the processor
speed is certainly no less than ηi. No matter whether the
SFI policy promotes the processor speed at time t2 or not,
the processor speed is still no less than ηi during [t2, t3].
Hence, t3 − t1 is upper bounded by Bi/ηi.

• FI did not occur at time t1: This means that at time
t1, Rb ≤ Bi/ηi. During [t1, t2], the processor speed is
certainly no less than the speed at time t1. Again, no
matter whether the SFI policy promotes the processor
speed at time t2 or not, the processor speed during [t2, t3]
is no less than the speed at time t1. Hence, we know
t3 − t1 ≤ Bi/ηi.

Based on the above facts and our arguments given in the
proof of Theorem 1, τi can still finish its execution before
t1 + Si,k, and hence its deadline. �

As for τa, i.e., the newly blocked task when the SFI policy
is applied, it is not hard to see that its maximum blocking time
is bounded by Ba/ηa. The workload on τa from higher priority
tasks remains the same. By this fact, Lemma 4, and Theorem 1,
we thus have the following theorem.

Theorem 2: Based on the DM scheduling policy, the slow-
down factors computed by ISA along with the SFI policy can
guarantee all task deadlines.

Fig. 2(c) shows the schedule produced by the SFI policy for
the task set given in Example 1. At time 3, τ1,1 arrives while
τ3,1 is running at speed η2 = 0.36. At this time instant, τ3,1
needs at most 0.53 time units to complete at its current speed,
whereas τ1,1 can tolerate a maximum blocking of B1/η1 =
2/0.6. Based on Theorem 2, τ3,1 can keep running at speed
0.36 without jeopardizing the deadline of τ1,1. Likewise, τ2,1
can continue execution at speed η2 at time 8. In this case,
the energy consumed by our SFI policy is 2.48 in the first
20 time units, which is 13.8% improvement over USFI. Our
experimental results in Section VI show that the SFI policy
gives us a large gain in energy savings under a variety of
parameter settings. Note that the overhead involved with SFI
is small—the scheduler only needs to record the processor time
spent on executing each active job, and whenever blocking
occurs it performs a simple computation and test, as described
in Lemma 4, to determine if the processor speed must be
increased.

D. Remarks for Practical Systems and DS

1) Processors With Discrete Speeds: For commercial pro-
cessors, only discrete speeds might be available. To address
this problem, we can first derive a solution by assuming con-
tinuously available speeds as the approaches in Section IV-B,

and then use some available speeds to approximate the speeds
determined by ISA. For example, we first compute a speed for
τ1 by ISA. If this speed is unavailable, we then choose the
next higher speed (also called inflated speed) which is available
and assign it to τ1. After that, we utilize the inflated speed to
compute slowdown factors for the remaining tasks τ2, . . . , τn,
and choose the next higher available speeds for them, in a
similar way. Note here our method is similar to the one adopted
by the PM-Clock algorithm proposed in [25], which focuses on
fixed priority preemptive scheduling.

2) Non-Negligible Frequency Transition Overhead: It is
now a common knowledge that changing from one frequency
level to another takes a fixed amount of time (denoted Δt,
ranges from tens of microseconds to tens of milliseconds),
referred to as the transition (or switch) overhead [17]. When
frequency transition overhead is large enough that they cannot
be ignored, we need to recompute the slowdown factors by
considering such overhead. From the computation process of
ISA, it can be observed that for task τi, the number of fre-
quency switches, say λ, is bounded by the number of jobs with
higher priorities than τi, plus two additional possible switches,
one for τi itself (when the system state is changed from idle to
executing τi, or conversely), and the other for a lower priority
blocking job. Specifically, we have λ =

∑
1≤r<q�Si,j/Tr	+ 2

for formulas (3) and (5), and λ =
∑

1≤r<q�Si,k/Tr	+ 2 for
(6). Hence, if the transition workload is non-negligible, we
should add λΔt into the left-half-part of (3), (5) and (6) to
compute ηi. Note here our method for counting transition
workload is a conservative one since it considers the worst-
case scenario, but it is also a safe one as it suffices to guarantee
schedulability.

In addition to time overhead, transition also incurs energy
overhead [17], hence, it is important to guarantee that the
energy saved by slowdown policy must be no less than the
increased energy consumption resulted from the transition over-
head. However, since the actual number of frequency transition
may change during run-time and depends on the actual execu-
tion cycles of each job, it is hard to characterize a condition un-
der which the energy saved by slowdown is less than the energy
consumption by frequency transition. Because the focus of this
paper is handling time overhead while meeting deadlines, we
leave the problem of tackling the energy overhead of transition
for future work.

3) Refinement on DS: Even though we only present algo-
rithm ISA for deciding one individual speed for each task,
it is also applicable to refine algorithm DS[34]. A simple yet
efficient refinement would be choosing the highest speed by
ISA as the high speed in DS. This certainly will guarantee
the schedulability, while energy reduction can also be achieved
comparing to DS. Since the refinement is trivial and straightfor-
ward, we do not detail it in this work.

V. DYNAMIC SLACK RECLAMATION

The ISA algorithm computes one speed for each task to de-
crease the energy consumption under nonpreemptive schedul-
ing. However, in practice, many task instances may finish
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before their estimated completion times obtained under the
assumption of worst-case workload with the computed static
speeds. In this case, dynamic slack arises due to early task
completions. It is important to note that even tasks spend less
than their WCETs to complete, the feasibility of the task set
with the computed slowdown factors can still be guaranteed,
due to the FI (or SFI if possible) policy that is applied when
blocking occurs. Nevertheless, these slacks can be reclaimed to
further reduce the processor speed of later tasks as long as the
feasibility is guaranteed, which in turn can result in additional
energy savings. In fact, reclaiming unused computation time to
reduce the CPU speed while preserving feasibility has been
widely studied in numerous research papers in recent years
[4], [11], [20], though most of them focused on preemptive
scheduling.

Algorithm 2 The ISA-DR algorithm

1: When a new job(Ji) arrives:
2: Cr

i (t) = Ci;
3: Rr

i (t) = Ci/ηi;
4: if Pi(Priority of Ji) > Pc(Priority ofJc) then
5: if (Rr

c(t) ≤ Bi/ηc) then
6: continue execution with ηc; //SFI is employed.
7: else
8: setSpeed (ηi); //FI is employed.
9: end if
10: end if
11: When a job Ji is selected to run:
12: setSpeed (Cr

i (t)/(R
F
i (t) +Rr

i (t)));
13: Execute Ji;
14: When job Ji completes:
15: if Rr

i (t) > 0 then
16: Insert F-List(Rr

i (t), Pi);
17: end if

In this section, we present a reservation-based scheme which
dynamically collects the residue time from early task comple-
tions. Since the algorithm is an extension to the ISA algorithm,
we call it ISA with dynamic reclamation (ISA-DR). Our ap-
proach is based on the idea that when no higher priority tasks
are blocked, tasks can reclaim the unconsumed run-time from
higher priority (than the current running task’s priority) tasks
while meeting all task deadlines. First, we need to define the run
time of a job (or task instance), which can be viewed as a budget
assigned to the job. Specifically, the run time of a job with
a workload C (at maximum processor speed) and slowdown
factor η, is defined as C/η. Each run time has a time budget and
a priority associate with it. The system maintains a Free-run-
time List named F-List to collect the run time not consumed.
Each item in F-List contains two values: the run-time budget
and its priority, which is equal to the priority of the completed
task (τi) instance and defined as Pi. The F-List is sorted
in decreasing order of item priorities. In this way, ISA-DR
effectively reclaims unused run time for redistribution, which
in turn reduces the processor idle time and leads to more energy
savings.

Fig. 4. Dynamic slack reclamation.

When a task instance is scheduled to run, it is eligible to use
its own run time, as well as the run time in the F-List with
priority larger than its priority. With the additional free run time,
the task instance can be processed at a lower speed. If the run
time in an item of the F-List is depleted, this item is removed.
Before we formally present the ISA-DR algorithm, similar to
[11] and [34], we first introduce the following notations that
will be used in the algorithm:

• Jc: the current job of task τc executing in the system.
• Ji: the current job of task τi.
• ηi: the slowdown factor computed by ISA for τi.
• Rr

i (t): the available run time of job Ji at time t.
• RF

i (t): the run time in the F-List that can be used by Ji
at time t.

• Cr
i (t): the worst-case residue execution time of job Ji

under the maximum speed at time t.

The skeleton of ISA-DR is given in Algorithm 2. The
execution speed is computed according to the usable run time
RF

i (t) +Rr
i (t) and the WCET Ci (line 12), except when the

current job is blocking another job, where the FI (or SFI)
policy is employed (line 4–10). On job completion, the uncon-
sumed run time is added to the F-List with the same priority
of the job Ji (line 16). To complete the ISA-DR algorithm, the
following rules are applied to update the run time and the worst-
case remaining execution time of a job, as well as the run time
in the F-List.

1) As job Ji executes, it consumes run time at the same
speed as wall clock. If RF

i (t) > 0, the run time is used
from the F-List; Otherwise, Rr

i (t) is used. Cr
i (t) is

reduced by the processor execution speed per time unit.
2) When the processor is idle, if RF

i (t) > 0, the run time in
F-List is consumed at the same speed as wall clock.

Note that the rules only need to be applied on the arrival and
completion of a task instance in the system. Since the FI (or
SFI if possible) policy is always adopted when task blocking
occurs, it is relatively easy to see that ISA-DR can guarantee
all task deadlines.

We now give an example to illustrate how ISA-DR works.
Consider again the task set given in Example 1, assume that
τ1,1 completes earlier at time t = 4, leaving an unused run
time of 1.2 time units, as shown in Fig. 4. This run time
has higher priority than τ2,1 and hence can be reclaimed to
further reduce the speed of τ2,1. When τ2,1 starts to execute,
the available run time is 2/0.36, and the free run-time in the
F-List that can be used by τ2,1 is 1.2. Consequently, we
have η2,1 = (2/(2/0.36 + 1.2) = 0.296, and τ2,1 will start its
execution with this speed. At t = 8, τ1,2 arrives and is blocked
by τ2,1. Due to the SFI policy, τ2,1 can continue its execution
with speed 0.296.
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Fig. 5. Normalized energy consumption with varying processor utilization, ηee = 0.29(Pind = 0.05). (a) SFr = 0.05. (b) SFr = 0.15.

VI. PERFORMANCE EVALUATION

To evaluate the effectiveness of our techniques, we have
conducted extensive experiments based on randomly generated
test data. We first describe the system model in Section VI-A
and z present the experimental results in Section VI-B.

A. Experimental Setup

We have developed an event-driven simulator written in C++,
which imitates the processing of periodic tasks. As described in
detail in Section III, the tasks run on a uniprocessor system that
is capable of DVS.

We perform our simulation based on the power model by
Zhu et al. [37], in which the power consumption consists of
the frequency-dependent active power (Pdep) and frequency-
independent active power (Pind). That is, Pd = Pind + Pdep.
Since PI is a constant, we will not consider this part in our
experiments. By [37], there exists a minimum threshold slow-
down ηee =

m
√

Pind/Cef (m− 1) (expressed as critical fre-
quency) below which lower frequency will increase the energy
consumption for execution. The effective switching capacitance
Cef and the dynamic power exponent m are system dependent
constants. As in [37], we assume Cef = 1 and m = 3, and
we consider Pind to be either 0.05 or 0.1, which means ηee
is either 0.29 or 0.37. In our simulation experiments below,
the normalized maximum and minimum processor speed are
assumed to be 1 and ηee, respectively. Speed levels between
these two bounds are discrete and spaced by 0.05.

To facilitate comparison, we have adopted the parameters
given in [13], [34] to generate task sets. In particular, each task
period belongs to one of the following three ranges: long period
(2000 ∼ 5000), medium period (500 ∼ 2000), and short period
(90 ∼ 250). The WCET for the three period ranges is (10 ∼
500), (10 ∼ 100), and (10 ∼ 20), respectively. The tasks in
each task set generated are uniformly distributed in the three
period/WCET categories, while the ratio between task deadline
and period is uniformly distributed in [0.8, 1]. Within each
category, a taskaŕs period and WCET are randomly selected
from the corresponding ranges. For each task set to qualify
for our experiments, the static slowdown factors computed by
every algorithm must be no larger than 1.

We have conducted three sets of simulations based on differ-
ent system parameters, i.e., processor utilization, task granular-
ity and slack factor. For each particular level in each simulation
set, we randomly generate 1000 qualified task sets and take the

average, each task set consists of 5 ∼ 15 tasks. All tasks in a
task set are released at time 0. We then perform experiments
for every evaluated approach for 100 000 time units and record
the energy consumed by the approach (including both Pdep

and Pind). For each point plotted in the figure, the simulations
continued until a confidence interval of 95% with half-width of
less than 5% about the mean was achieved.

B. Experiment Results

1) Processor Utilization: In the first set of simulations, we
vary the processor utilization U from 10% to 65% to see how
different approaches fare in the energy consumption metric.
The tasks in each task set generated are uniformly distributed
in the three period/WCET categories, while the ratio between
task deadline and period is uniformly distributed in [0.8, 1].
Within each category, a task’s period and WCET are randomly
selected from the corresponding ranges. All tasks are assumed
to execute at their WCETs. We compare the performance of
the following algorithms: DS, USFI[13] algorithms adapted
to nonpreemptive task sets by treating each individual task
as one single critical section, ISA with FI (ISA-FI) and
ISA with SFI (ISA-SFI). To facilitate comparison, the en-
ergy consumed by DS is used as the baseline, and the en-
ergy consumed by each other solution is normalized against
the baseline. We define the improved slowdown factor ratio,
denoted SFr, as ηUSFI/ηISA − 1, where ηUSFI and ηISA

represent the maximum slowdown factor computed by USFI
and ISA, respectively. For most of the task sets generated, SFr

lies in the range [0.0, 0.2]. We thus classify the task sets into
two groups, with one having SFr = 0.05± 0.02 as shown in
Figs. 5(a) and 6(a), and the other having SFr = 0.15± 0.02 as
shown in Figs. 5(b) and 6(b). We present observations from our
experiments below:

1) When the system utilization is below 15%, the slow-
down factors computed by every algorithm we investi-
gate are all less than the threshold frequency ηee, hence
they are set to be the threshold frequency, as shown in
Figs. 5 and 6.

2) As plotted in Figs. 5 and 6, ISA-FI consistently out-
performs USFI in that it computes a smaller slowdown
factor for each task. Recall that the slowdown factors
computed by both USFI and ISA-FI are in a nonin-
creasing order, since the highest priority task in a task
set in these two approaches has the largest slowdown
factor and executes and invokes speed promotion most
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Fig. 6. Normalized energy consumption with varying processor utilization, ηee = 0.37 (Pind = 0.1). (a) SFr = 0.05. (b) SFr = 0.15.

Fig. 7. Normalized energy consumption with different task granularity, ηee = 0.29 (Pind = 0.05). (a). Looser task set. (b). Stringent task set.

frequently, it is natural to conjecture that energy savings
would be more significant as the difference between the
maximum slowdown factors computed by USFI and
ISA-FI gets larger. This trend is indeed reflected in
Figs. 5 and 6. Both figures show that the performance gap
between USFI and ISA-FI is wider at a larger value
of SFr. On average, USFI consumes 8% to 15% more
energy than ISA-FI. The energy reduction achieved by
ISA-FI, relative to USFI, mainly comes from its lower
slowdown factors, since both ISA-FI and USFI use the
same speed-control policy.

3) ISA-SFI performs better than all other approaches in
nearly all cases. Like ISA-FI, as the processor utiliza-
tion becomes larger, the energy reduction achieved by
ISA-SFI becomes more. When the processor utilization
reaches 60%, ISA-SFI consumes, on average, 32% and
27% less energy than USFI when ηee = 0.29 and 0.37,
respectively. This is because at high processor utilization,
tasks tend to experience more blocking, and the benefit
of SFI becomes obvious. Unlike ISA-FI, the change of
SFr does not affect the magnitude of energy reduction
by ISA-SFI, as shown in both Figs. 5 and 6. This
phenomenon also explains ISA-SFI’s primary energy
savings come from the SFI policy, rather than its smaller
slowdown factors.

4) The effect of increasing the proportion of frequency-
independent power in our energy consumption formula
is clearly seen from Figs. 5 and 6. When the frequency-
independent power increases in the formula, our approach
becomes less energy efficient. However, we can still
achieve 5% to 10% more energy savings, compared to
USFI, when ηee changes from 0.29 to 0.37.

2) Task Granularity: In the second set of experiment, we
generate two types of task set, namely stringent task set and
looser task set, to examine how different approaches fare in
the energy consumption under different task granularity. In the
stringent task set, one task is generated from the long period,
and one is selected from the medium period, while the others
are randomly generated from the short period. Conversely, in
the looser task set, one task is selected from the short period,
and one is from the medium period, while the others are ran-
domly from the long period. In this simulation, all tasks are also
assumed to execute up to their WCETs and ηee is fixed to be
0.29. The system utilization is varied from 10% to 60%. It can
be observed from Fig. 7(a) that for looser task set, ISA-SFI
consistently outperforms the other three schemes on energy
consumption performance, except when the utilization is below
15%, all the four schemes have the same energy consumption,
due to that the slowdown factors computed by every algorithm
are all less than the threshold frequency ηee and they are set to
be ηee. Moreover, it can be seen that the gap between ISA-SFI
and the other three approaches is increasing with the growth of
the utilization. This is because at high utilization, tasks tend
to experience more blocking, and the benefit of SFI becomes
obvious. For the stringent task set, ISA-SFI also consistently
outperforms the other three schemes, as shown in Fig. 7(b).
However, the difference between ISA-SFI and ISA-FI is
not that large as in the coarse-gained task set. The reason is
that for stringent task set, the slowdown factors computed are
more close to each other than that for the looser task set. In fact,
in our experiment we observe that most of the task slowdown
factors computed are the same for the stringent task set, hence
the energy savings from the SFI policy is not that significant
as for the looser task set.
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Fig. 8. Normalized energy consumption with varying task execution time, ηee = 0.29 (Pind = 0.05). (a). Utilization = 0.3. (b). Utilization = 0.5.

3) Slack Factor: In this set of simulations, we examine the
additional energy gains derived through the dynamic slack
reclamation policy. For simplicity, we only compare the perfor-
mance of the following algorithms: ISA-FI, ISA-SFI, and
ISA-DR. We define a notation namely slack factor (sf) to
specify the difference between the actual case execution time
(ACET) and the task’s WCET. Specifically, the ACET of the
tasks are uniformly distributed between (1− sf)× WCET and
the task’s WCET. ηee is fixed to be 0.29. To facilitate compari-
son, the energy consumed by ISA-FI is used as the baseline,
and the energy consumed by each other solution is normalized
against the baseline. Fig. 8 shows the simulation results for
slack factor varies from 0.1 to 0.9 in steps of 0.1. It can be
seen that ISA-DR can achieve considerable energy savings
(up to 20%–30% on average) compared to ISA-FI, due to
its ability to reclaim unused run time for early completions.
Also, ISA-SFI gains considerable energy savings when the
tasks exhibit varying execution times, due to the SFI policy
which enables to execute at a low speed when blocking occurs.
Comparing the energy savings at U = 0.3 and U = 0.5, we
see that ISA-DR achieves better energy performance at higher
utilization level. This is because with higher utilization, the
slowdown factors calculated are larger than those with lower
utilization. This can result in more free run time when tasks
exhibit variable execution times, which in turn can be reclaimed
to reduce the execution speed of later tasks and thus leads to
more energy savings.

In summary, ISA-FI achieves 12%–20% energy gains over
USFI. SFI is a very effective policy, and when applied in ISA,
achieves 20%–30% performance improvement over USFI and
ISA-FI. Moreover, SFI performs better with coarse-grained
task set, where most tasks are selected from the range of long
period. When tasks do not always execute at their WCETs,
ISA-DR is able to save additional energy (up to 20%–30%
on average), compared with the ISA algorithm owing to its
dynamic slack reclaiming mechanism.

VII. ADDITIONAL APPLICATION OF OUR APPROACHES

The primary use of our algorithms is certainly to compute
optimal speeds for nonpreemptive tasks running on variable-
speed uniprocessors. In this section, we demonstrate an addi-
tional application of our approach by applying the technique
to dynamic modulation scaling (DMS) [26] and show its use-

TABLE II
SIMULATION SETTINGS (TAKEN FROM [26])

fulness in saving communication energy. DMS and DVS are
rooted in similar scaling techniques; both exploit the presence
of a convex energy-delay curve. While DVS trades processor
speeds for reduced energy consumption, modulation level is
one of the radio control knobs that can be scaled to minimize
the run-time energy of communication subsystems at the cost of
increased message transmission time. We give a brief overview
of DMS below; detailed descriptions can be found in [26].

In digital wireless communication systems, bits are coded
into channel symbols to transmit information. DMS tunes the
modulation level b, often expressed in number of bits per
channel symbol, to trade off energy consumption against trans-
mission delay. The descriptions of the various symbols used
in the sequel are given in Table II. The transmission delay in
seconds per bit is Tbit = 1/(b ·Rs).

Assuming 2b-QAM [30] as the modulation scaling scheme,
the energy associated with the transmission of 1 bit is given by

Ebit =
[
CS · (2b − 1) + CE

]
· 1
b
. (10)

Note that the energy consumption computed in (10) is a
convex function of the modulation level b. Schurgers et al. [26]
pointed out one major difference between DMS and DVS: A
change in modulation level requires handshaking between the
sender and the receiver. The sender cannot decide on a new
modulation setting midway through the packet transmission.
This implies that packet scheduling must be nonpreemptive,
which makes our results relevant.

Our idea is to use ISA with FI (ISA-FI) and ISA with SFI
(ISA-SFI) to compute modulation levels for energy-efficient
transmission of real-time data streams in DMS, just as they are
used to compute static task speeds in DVS. Thus, both ISA-FI
and ISA-SFI would compute one individual modulation level
for each stream. One thing to note is that modulation level b in
DMS has discrete values. We can use the closest integer that
is larger than each value computed by our algorithms to be the
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TABLE III
NUMBER OF STREAMS WITH GIVEN PERIOD

Fig. 9. Relative energy for real-time packet scheduling.

modulation level. In our experiments, the modulation level lies
in the range [bmin, bmax], as shown in Table II.

To evaluate the performance of our techniques, we adapt the
various scheduling scenarios given in [26] to suit RM-based
nonpreemptive scheduling algorithms by reducing the number
of streams in each scenario to decrease the system workloads,
but keeping the task periods and message sizes intact.2 Each
row in Table III represents a scenario with a particular utiliza-
tion that has certain number of packet streams with a given
period. For example, the third scenario has three streams with
a period of 20 ms, three with a period of 25 ms, two with a
period of 40 ms, and three with a period of 50 ms. The deadline
of each stream is equal to its corresponding period. We assume
all packets are of maximum size. According to Schurgers et al.
[26], the worst-case transmission time for each stream packet is
1 ms. The total utilization U for the third scenario in Table III
is thus 3/20 + 3/25 + 2/40 + 3/50 = 0.38.

Schurgers et al. [26] sketched a real-time packet schedul-
ing algorithm based on the nonpreemptive EDF algorithm of
Jeffay et al. [10]. Since the algorithm computes one single
static scaling factor, called αstatic, assuming all packets are of
maximum size, it amounts to using the H speed calculated by
the EDF version of the DS algorithm [34]. The algorithm can
certainly be made RM-based, which we did in our experiments
in order to compare with our algorithms. We call this algorithm
DS-RM as it uses the RM version of the DS algorithm to
compute a single speed (H speed) for a set of data streams.

Fig. 9 plots the energy consumption of USFI and our al-
gorithms, normalized against DS-RM at different utilization
rates. It can be seen from the figure that USFI and ISA-FI
outperform DS-RM at all utilization rates. The reason is that
both USFI and ISA-FI compute one modulation level for
each stream in a scenario, and these modulation levels are lower

2The original scenarios given in [26] are meant to be scheduled by an EDF-
based nonpreemptive algorithm [10], and all the scenarios have rather high
utilization rates.

than those computed by DS-RM. ISA-FI outperforms USFI
on energy savings due to that it can compute lower modula-
tion levels than USFI. Note that the energy consumption of
ISA-FI does not change much with different utilization rates.
This is because given the scenarios in Table III, most of the
calculated modulation levels happen to be very close. Among
the four algorithms we investigate, ISA-SFI gives the best
performance. This is mainly due to the SFI policy.

VIII. CONCLUSION

Energy management is one of the key issues in the design
of modern real-time mobile and embedded systems. In this
paper, we consider energy-efficient real-time scheduling where
task preemption is impossible or prohibitively expensive and
propose a novel ISA. Our experimental results show that the
proposed scheme achieves considerable energy gains compared
to existing representative algorithms. The SFI policy, which
avoids unnecessary speed promotion when task blocking oc-
curs, is found to be very effective in reducing energy con-
sumption while incurring small overhead. Considering that the
task’s actual execution time is usually less than its WCET,
a dynamic slack reclamation scheme is proposed to reclaim
unused runtime and dispatch it to later jobs to further decrease
their execution speed, which in turn can result in more energy
savings.

For future work, we plan to extend our method to a wider
system scope by taking the energy consumption of other system
components into consideration. As multiprocessor systems are
increasingly used in real-time environments, we also plan to
extend our current solutions to multiprocessor systems in the
future.
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