
Workload-Efficient Deadline and Period
Assignment for Maintaining Temporal

Consistency under EDF
Jianjun Li, Ming Xiong, Member, IEEE, Victor C.S. Lee, Member, IEEE,

LihChyun Shu, Member, IEEE, and Guohui Li

Abstract—Deriving deadlines and periods for update transactions so as to maintain timeliness and data freshness while minimizing

imposed workload has long been recognized an important problem in real-time database research. Despite years of active research,

the state-of-the-art still has much room for improvement, particularly for periodic transactions scheduled by the Earliest Deadline First

(EDF) algorithm. In this paper, we propose a practical and efficient two-phase algorithm, GEneral EDF (GEEDF), for assigning periods

and deadlines to EDF-scheduled update transactions. Phase 1 of GEEDF aims at finding solutions for most inputs in linear time,

based on the observation that the execution times of update transactions are relatively small compared to the validity interval lengths

of real-time data objects in many real-time applications. In the remaining cases for which Phase 1 fails to derive solutions, Phase 2 is

invoked by employing an existing deadline-monotonic-based algorithm, which we show is also applicable to our problem. Meanwhile,

we have devised several techniques which significantly reduce the cost of schedulability test, and hence greatly improve time

efficiency. Our experimental results demonstrate that GEEDF outperforms existing approaches in terms of generated workloads.

Although Phase 2 has a pseudopolynomial time complexity, our experimental study shows that it runs much faster than other

solutions with comparable quality.

Index Terms—Real-time databases, temporal consistency, update transaction, periods and deadlines, earliest deadline first

Ç

1 INTRODUCTION

REAL-TIME database systems (RTDBS) have been widely
used in many applications that require timely proces-

sing of large amounts of real-time data, such as aerospace
and defense systems, industrial automation and air traffic
control systems. Typically, a real-time database is com-
posed of a set of real-time data objects, each of which
models the current status of a real-world entity in the
external environment. Different from data stored in tradi-
tional databases, a real-time data object is only valid in a
given time period, which is defined as its temporal validity
interval. To maintain temporal validity (a.k.a. temporal
consistency), each real-time data object must be refreshed
by a sensor update transaction before its temporal validity

interval expires, or else the RTDBS cannot respond to
environmental changes in a timely manner.

Given the temporal consistency requirement, one im-
portant issue in designing RTDBS is to determine the
sampling periods and deadlines for sensor update transac-
tions so that temporal consistency can be maintained while
the resulting processor workload is minimized. We call this
the period and deadline assignment problem, which is important
due to the following reasons [11], [30]: 1) it helps save sensor
energy, because an inappropriate and unnecessarily short
period of sensor update transactions may drive the sensor
batteries flat quickly; 2) given the same portion of processor
capacity, the RTDBS is able to process more sensor update
transactions; and 3) system efficiency can be improved
because more processor capacity can be left to other user
transactions that are triggered due to environmental
changes brought by sensor update transactions.

In resource-limited systems, like embedded systems, it is
important for the software to maintain data freshness while
minimizing the imposed workload. For instance, in the
control units used for controlling the engine of a vehicle,
assigning appropriate deadlines and periods to sensor
transactions is crucial for timely monitoring of the condition
of the engine operating environment, such as air pressure
and engine temperature, so that the engine can be running in
a fuel-efficient manner [7]. Another application example is
the age scheduling that can be used to sample the signal flows
through asynchronous distributed systems in a periodic
manner [28]. We refer interested readers to [20] for more
real-world examples of temporal consistency maintenance.

In the past, while there has been much work devoted to
the period and deadline assignment problem, most of them

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013 1255

. J. Li and G. Li are with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Luoyu Road #1037,
Wuhan 430074, Hubei, P.R. China.
E-mail: jianjunli@smail.hust.edu.cn, guohuili@mail.hust.edu.cn.

. M. Xiong is with Google, Inc., 76 9th Avenue, New York, NY 10011.
E-mail: mxiong@google.com.

. V.C.S. Lee is with the Department of Computer Science, City University of
Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: csvlee@cityu.edu.hk.

. L. Shu is with the Department of Accountancy, College of Management,
National Cheng Kung University, No. 1 University Road, Tainan 701,
Taiwan, ROC, and the College of Information and Engineering, Chang
Jung Christian University, Tainan, Taiwan, ROC.
E-mail: shulc@mail.ncku.edu.tw.

Manuscript received 18 Apr. 2011; revised 30 Dec. 2011; accepted 21 Feb.
2012; published online 7 Mar. 2012.
Recommended for acceptance by S. Dolev.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-04-0254.
Digital Object Identifier no. 10.1109/TC.2012.69.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

are focused on fixed priority scheduling. Some examples are
Half-Half (HH) [11], More-Less (MLDM) [30] and the
deferrable scheduling algorithm for fixed-priority transac-
tions (DS-FP) [9], [29]. One exception is the work conducted
by Xiong et al. [31] who designed a linear-time EDF
algorithm, called MLEDF , which solves the assignment
problem for update transactions with deadlines no greater
than their corresponding periods. MLEDF is efficient in
time, but is built on a sufficient (not necessary) feasibility
condition, which means it may not produce optimal
solutions that minimize imposed CPU workload for some
inputs. The same authors further proposed OSEDF [31], a
branch-and-bound-based search algorithm, with the goal of
obtaining optimal solutions. By assuming a discrete-time
system, OSEDF can handle transactions with arbitrary
deadlines in relation to their periods. The main problem
with OSEDF is that it does not scale well with increasing
problem size. To address this problem, they further
proposed HSEDF [31], a heuristic search-based algorithm,
which is always capable of finding a solution if one exists.
Compared to OSEDF , HSEDF ’s efficiency is achieved at the
expense of increased processor workload.

In this study, we take a fresh look at the problem of
determining deadlines and periods for firm periodic real-
time update transactions scheduled under EDF. Our aim is
to continue to push the envelope and further advance the
state of the art. We propose a general two-phase algorithm,
called GEneral EDF (or GEEDF for short), which outputs
periods and deadlines for update transactions that result in
significantly lower workload than that by existing ap-
proaches. The first phase of GEEDF has a linear time
complexity and hence can be utilized to derive a solution
very efficiently. The second phase is invoked only when
phase one fails. Though having a pseudopolynomial time
complexity, the second phase can also run in a time-efficient
manner due to our novel techniques which significantly
reduce the overhead when checking schedulability. In a
nutshell, the proposed algorithm is practical and efficient
for many real-time applications. Specifically, GEEDF is
important in cases where a polynomial-time test produces
transaction sets with relatively high workload, or an exact
test runs unacceptably slow, though optimal in workload
reduction. Our study shows that such cases are not
uncommon. Comparing with previous work, our contribu-
tions can be summarized as follows:

1. We propose a novel approach based on EDF,
namely GEEDF , which outperforms all existing
periodic approaches based on deadline monotonic
(DM) and EDF scheduling in terms of schedulability
and CPU workload.

2. We introduce several techniques which significantly
reduce the overhead when checking schedulability.
As a result, GEEDF can run in a time-efficient manner,
although it has a pseudopolynomial time complexity.

3. We have conducted extensive simulation experi-
ments to compare the performance of GEEDF with
existing periodic schemes. The experiment results
demonstrate that GEEDF is an efficient solution that
can significantly reduce resulting CPU workload
compared to existing approaches.

Organization: The remainder of this paper is organized as
follows: Section 2 reviews the definition of temporal
validity and presents some assumptions, as well as the
period and deadline assignment problem to be addressed.
Section 3 presents the details of the two phases of GEEDF .
Section 4 presents the performance studies. Section 5
briefly discusses related work. Finally, Section 6 concludes
the paper.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first review the definition of temporal
validity for data freshness, and then present some
notations as well as important assumptions made through-
out the paper. Finally, we precisely introduce the problem
to be addressed.

2.1 Temporal Validity for Data Freshness

In a real-time database, a data object is a logic image of a
real-world entity. As the state of a real-world entity changes
continuously, to monitor the entity’s state faithfully, real-
time data objects must be refreshed by update transactions,
which are generated periodically by intelligent sensors,
before they become invalid. The actual length of the
temporal validity interval of a real-time data object is
application dependent [20], [22], [23]. We assume that a
sensor always samples the value of a real-time data object at
the beginning of its update period.

Definition 1. A real-time data object (xi) at time t is temporally
valid if, for its jth update finished last before t, the sampling
time (ri;j) plus the validity interval (Vi) of the data object is
not less than t, i.e., ri;j þ Vi � t.

A value for real-time data object xi sampled at any time t
will be valid from t up to ðtþ ViÞ. To satisfy the validity
constraint, for each xi, the corresponding update transac-
tion should execute at least twice during Vi. Traditional
methods for maintaining temporal validity, such as HH and
More Less, have been proposed based on fixed-priority
scheduling algorithms. Readers are referred to [11], [22],
[30] for more details about these approaches.

2.2 Notations and Assumptions

In this paper, we use T ¼ f�igni¼1 andX ¼ fxigni¼1 to denote a
set of periodic sensor update transactions and a set of real-
time or temporal data, respectively. All temporal data are
assumed to be kept in main memory. Each data xið1 � i � nÞ
is associated with a validity interval length Vi. Transaction �i
is responsible for updating the corresponding data xi
periodically. Since each sensor update transaction updates
different data, no concurrency control is considered. Each
update transaction �i is periodic and is characterized by the
following 3-tuple: fCi;Di; Tig, where Ci is the execution
time, Di is the relative deadline and Ti is the period. Here,
we consider arbitrary deadlines where Di can be less than,
equal to, or larger than Ti. The utilization of �i is Ui ¼ Ci

Ti
,

while the density factor (DF) of �i is �i ¼ Ci
Vi . Let U and �

denote the total processor utilization and the total DF of T ,
respectively, i.e., U ¼

Pn
i¼1

Ci
Ti

and � ¼
Pn

i¼1
Ci
Vi. We assume

that the system is synchronous, i.e., the first instances of all
sensor update transactions are generated at the same time

1256 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

(e.g., time 0), and the jitter between sampling time and
release time of a transaction instance is 0. Lastly, the
scheduling algorithms studied in this work are considered
preemptive. Table 1 presents the formal definitions of the
symbols used in this work.

2.3 Problem Statement

Given a set of update transactions, the optimal solution to
the deadline and period assignment problem must mini-
mize the processor workload while maintaining temporal
consistency under EDF. Consequently, the period and
deadline assignment problem for real-time update transac-
tions scheduled under EDF can be described as follows:

Deadline and period assignment problem (DPAP):

Given a set of transactions T ¼ f�igni¼1 with Ci and Vi specified
for each �i, determine Ti and Di for �i so that the processor
workload UðT Þ is minimized subject to the following constraints:

. Validity constraint: The sum of the period and relative
deadline of transaction �i is not larger than the validity
interval length Vi, i.e., Ti þDi � Vi.

. Schedulability constraint: The transaction set T must
be schedulable under EDF with derived deadlines fDigni¼1

and periods fTigni¼1.

With EDF scheduling, Baruah et al. proposed an exact,
albeit complex, schedulability test [2], which is later
improved in [4], [32].

Theorem 1 [4], [32]. Given a periodic task set T ¼ f�igni¼1, T is
schedulable by EDF if and only if U � 1 and 8t 2 S,1

hðt; nÞ1 ¼
Xn
j¼1

t�Dj

Tj

� �
þ 1

� �
Cj � t; ð1Þ

where S ¼ fdkjdk ¼ kTi þDi ^ dk � minðLna; Lnb Þ
1; k 2 INg,

Lna ¼ max D1; . . . ; Dn;

Pn
i¼1 Ti �Dið ÞUi

1� U

� �
ð2Þ

and Lnb denotes the synchronous busy period (the length of the
first processor busy period of the synchronous arrival pattern
described in Definition 2 below).

Definition 2 [27]. A synchronous busy period is a processor
busy period in which all tasks are released simultaneously at

the beginning of the processor busy period and ended by the

first processor idle period (the length of such a period can be 0).

By using the notations given in Theorem 1 and the

theorem itself, the Deadline and Period Assignment Problem

can be rephrased as follows:
DPAP. Given a set of transactions T ¼ f�igni¼1 with Ci and

Vi specified for each �i, determine Ti and Di for each �i in T such

that UðT Þ ¼
Pn

i¼1
Ci
Ti

is minimized subject to

. Validity constraint: Ti þDi � Vi.

. Schedulability constraint: 8t 2 S; hðt; nÞ � t.

3 GENERAL ALGORITHM FOR THE ASSIGNMENT

PROBLEM

In this section, we first present our general algorithm GEEDF
by describing Phases 1 (denoted byGE1

EDF) and 2 (denoted by

GE2
EDF) in Sections 3.1 and 3.2, respectively, and then discuss

the relationship between Phases 1 and 2 in Section 3.3.

3.1 Phase 1: Finding a Solution in Linear Time

One might be tempted to solve DPAP directly. Solving this

constrained optimization problem, however, can be extre-

mely expensive, since verifying the constraint in (1) for all

t values requires high computation complexity. In this

phase, instead of tackling the assignment problem directly,

we approach it circuitously, based on a theorem discussed

shortly. We first present a useful lemma, which states a

necessary condition for any task set to be schedulable under

EDF [5].

Lemma 1. Given a synchronous task set T , let the tasks in T be

sorted in nondecreasing order of deadlines (Di) and suppose

that the minimum task deadline, Dmin, is unique. Regardless

of the choices of periods, any task set that is schedulable under

EDF must satisfy the following property:

Xj
i¼1

Ci � Dj; 8j ¼ 1; . . . ; n: ð3Þ

To minimize the processor workload, Ti should be

maximized, which in turn means Di should be minimized,

due to the validity constraint (Ti þDi � Vi). Based on

Lemma 1, it is clear that we should set Di ¼
Pi

j¼1 Cj and

Ti ¼ Vi �Di, which are assumed throughout Section 3.1.

But notice that setting deadlines and periods this way does

not necessarily guarantee schedulability. The following

theorem characterizes a condition under which schedul-

ability is guaranteed, which lays the foundation for GE1
EDF ’s

assignment of deadlines and periods.

Theorem 2. Given an update transaction set T ¼ f�igni¼1 with

deadlines derived by Di ¼
Pi

j¼1 Cj and periods by Ti ¼
Vi �Di, if the maximum deadline, i.e., Dmax ¼

Pn
j¼1 Cj, is

not larger than any period in T , then T is guaranteed to be

schedulable under EDF.

Proof. Since Dmax � Tkð1 � k � nÞ, we know for each

transaction �ið1 � i � nÞ, there is Di � Tkð1 � k � nÞ;
hence, it is obvious that

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1257

TABLE 1
Symbols and Definitions

1. Note that we use hðt; nÞ, rather than hðtÞ as in [4], for the processor
workload since the notation is used both here and later in Section 3.2.2
where we must consider different subsets of T . For the same reason, we use
Lna and Lnb here, as opposed to La and Lb in [4].

Ci þ
Xi�1

j¼1

Di=Tj
� 	

Cj ¼
Xi
j¼1

Cj ¼ Di;

which means T is schedulable under DM. Since any task
(or transaction) set that is schedulable under DM is also
schedulable under EDF [4], the theorem follows. tu
It has been observed that in many real-time applications,

the execution times of update transactions are relatively
small compared with the validity interval lengths of real-
time data objects [20], [30]. Based on this observation and
our deadline and period assignment approach, the premise
of Theorem 2 is likely to hold in many real applications.
This is also demonstrated in our experimental study.

While Theorem 2 provides a useful sufficient condition
for determining schedulability, it does not specify in what
order transactions should be assigned deadlines and
periods. It has been observed that different assignment
orders can lead to different processor workloads. The
shortest validity first (SVF) order, which assigns priorities
to transactions in the inverse order of validity length with
ties resolved in favor of transactions with less slack (Vi � Ci
being the slack of �i), has been shown to be a good heuristic
in many applications [3], [30], particularly when validity
interval lengths are much larger than transaction computa-
tion times. This is also the story for our case. In fact, by
using similar partition and merge operations as in [30], it
can be shown that the solution with SVF is within
2
P

i2T ðCiViÞ
2

of that of an optimal solution, under similar
restrictions. Considering that the validity interval lengths
are much larger than corresponding transaction execution
times, for example, avionics applications [11] with sensor
transaction computation times in the range of milliseconds
and validity interval lengths in the range of hundreds of
milliseconds and seconds, this bound is actually very small
and can be ignored. Since the derivation of the bound with
SVF is quite similar to [30], we do not detail it in this work.
Nevertheless, due to its near optimality, we will also use
SVF in the following discussion unless otherwise specified,
and leave the search for the general optimal assignment
order as direction for future research.

Based on Theorem 2, we use the following approach to
derive a solution to the assignment problem: For each
transaction �i, we first set Di ¼

Pi
j¼1 Cj and Ti ¼ Vi �Di.

Then, we check 1) Di � Vi2 ,2 2) Dmax � Ti, and 3) U � 1. If all
these three conditions are satisfied, then Di and Ti are
determined, and we proceed to transaction �iþ1. Otherwise,
the process is terminated, meaning that GE1

EDF fails to derive
a solution. When each of the n transactions has been assigned
a pair of deadline and period, GE1

EDF succeeds in obtaining a
solution. Algorithm 1 shows GE1

EDF in pseudocode.

Algorithm 1. Phase 1 of GEEDF
1: Input: A set of update transactions T ¼ f�igni¼1 sorted

in non-decreasing order of Vi, with ties resolved in
favor of transactions with less slack (Vi � Ci);

2: Output: Deadlines fDigni¼1 and periods fTigni¼1;

3: U ¼ 0; Dmax ¼
Pn

i¼1 Ci;

4: for i ¼ 1; i � n; iþþ do

5: Di ¼
Pi

j¼1 Cj; Ti ¼ Vi �Di; U ¼ U þ Ci
Ti

;

6: // Check the conditions in Theorem 2;

7: if ðDi � Vi2 ^Dmax � Ti ^ U � 1Þ then

8: continue;

9: else

10: abort;

11: end if

12: end for

Given a set of update transactions sorted in nondecreas-
ing order of their validity interval lengths, GE1

EDF has a time
complexity of OðnÞ and hence can be used to determine
transaction deadlines and periods very efficiently. More-
over, whenever GE1

EDF can derive a solution, the workload
of this solution is always less than those achievable by all
other schemes.

Theorem 3. Given an update transaction set T , if GE1
EDF can

derive a solution, then the workload of this solution is
minimum over SVF ordering.

Proof. Suppose there exists another feasible solution A
under SVF ordering but with workload lower than that
of GE1

EDF , then there must exist at least one transaction in
A whose deadline is less than the one by GE1

EDF . Since
the solution derived by GE1

EDF is the one with minimum
deadlines (Dj ¼

Pj
i¼1 Cj) that can satisfy the property in

Lemma 1, it is clear that A cannot satisfy the necessary
condition in Lemma 1, and this contradicts the assump-
tion that A is feasible. tu

It should be noted that although GE1
EDF can be utilized to

derive solutions for a large number of cases efficiently, as
demonstrated in our experimental study in Section 4, it still
fails in certain cases, particularly when the number of
transactions is large. This is because when determining Di

and Ti for �i, Phase 1 declares failure if there is Dmax > Ti.
When the scale of the transaction set is large, with the
growth of the number of update transactions, the sum of the
execution time, i.e., Dmax, tends to exceed the derived
period Ti, which means Phase 1 might fail in this case.

Nevertheless, we would like to stress that Phase 1 is not
designed to handle all the cases. Rather, it services as a fast
solution when the size of the given transaction set is not that
large. Next, we introduce the second phase of GEEDF , which
addresses the remaining cases for which GE1

EDF fails to
derive a solution.

3.2 Phase 2: Deriving a Solution Based on the Exact
Schedulability Test in Theorem 1

As explained previously, we also use the SVF assignment
order in this phase. We first utilize MLDM to derive a
preliminary solution, due to its time efficiency. Next, an
enhanced solution with a lower processor workload is
derived under EDF.

To minimize the update workload and guarantee
temporal validity, MLDM [30], a DM-based scheme, was
proposed to schedule periodic update transactions. MLDM
derives a deadline for �ið1 � i � nÞ by finding the minimum
solution of the recursive equation

Pi
j¼1dDi=TjeCj ¼ Di, and

then assigns a period to �i by Ti ¼ Vi �Di, in SVF order. It

1258 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

2. Notice here we require Di � Vi2 since if Di >
Vi
2 , then Di > Ti, which

contradicts Di � Dmax � Ti.

should be noted that although MLDM has a pseudopoly-
nomial time complexity, it is still time efficient in that it only
takes OðVmax2 � n2Þ time to derive a solution, where Vmax is the
maximum validity interval length and n is the number of
transactions. While MLDM only addresses deadline con-
strained transaction set where deadlines are no larger than
their corresponding periods, another DM-based approach,
EMLDM , allows arbitrary deadlines which can be larger
than, equal to, or less than the corresponding periods. Due
to space limitations, readers are referred to [3], [31] for more
details about EMLDM .

Different from MLDM and EMLDM , in this work, we
address how to guarantee temporal consistency under EDF.
It is well known that EDF is optimal in the sense of
feasibility on uniprocessor systems; we thus have the
following result.

Theorem 4. Given an update transaction set T ¼ f�igni¼1, if
MLDM can derive a solution to the period and deadline
assignment problem, then this solution is also feasible under
EDF.

Proof. The claim follows directly from the optimality of
EDF [4], i.e., any transaction set that is schedulable under
DM is also schedulable under EDF. tu

Theorem 4 provides us an alternative to deriving
solutions to the assignment problem, since for a given
transaction set, if we can obtain a solution byMLDM , then it
means we have obtained a solution under EDF. In other
words, we can employ MLDM to obtain an initial solution
which can then be further improved, i.e., the workload of
this initial solution can be further decreased, provided the
schedulability of the transaction set is still guaranteed. We
illustrate this with an example below.

Example 1. Given an update transaction set with execution
times and validity interval lengths as follows:

�1 ¼ ð3; 16Þ; �2 ¼ ð4; 16Þ; �3 ¼ ð5; 46Þ:

Solutions derived under EDF (by OSEDF [31]; OSEDF
[31]; is a branch-and-bound-based search algorithm which
can guarantee an optimal solution, as mentioned in
Section 1) and DM (by MLDM) are shown in Table 2.

It can be seen that for the transaction set stated above, the
solution derived under DM has a workload U ¼ 0:893,
which is 3.3 percent larger than the workload achievable
under EDF. The periods and deadlines of the transaction set
derived under EDF and DM differ only in the third
transaction. Based on the results, we can extend the period
of the third transaction derived under DM, thus decreasing
its deadline, and still guarantee schedulability under EDF,

thereby reducing the processor workload. Now, the general
question is for a given transaction set, if one can derive a
solution under DM, is it always possible to find a solution
under EDF with a workload no larger than the one
achievable under DM? Fortunately, the answer is in the
affirmative. We show below that when scheduling transac-
tions sets with temporal consistency requirement, the best
case of EDF-based solutions performs at least as good as the
best case of DM-based solutions in terms of the generated
processor workload. In our experimental evaluation in
Section 4, our EDF-based solution is found to outperform
DM-based ones in most of the cases.

Lemma 2. Given an update transaction set T , if MLDM can
derive a feasible solution, then the workload of this solution is
the minimum achievable by any DM-based method.

Proof. We prove it by contradiction. Suppose that there exists
a feasible solution A under DM scheduling, but with
workload lower than that of MLDM . Then, there must
exist at least one transaction, say �k, in A with workload
lower than the one derived by MLDM . Since the period
and deadline are bounded by the validity interval length,
we know that DAk , the deadline of �k in A should be less
than Dk, the one derived byMLDM , i.e., DAk < Dk. Recall
that MLDM derives deadlines by finding the minimum
solution of the recursive equation Di ¼

Pi
j¼1dDi=TjeCj.

Moreover, the assignment order is fixed, it is obvious that
DAk should be no less thanDk, i.e.,DAk � Dk. Otherwise,A
is not feasible under DM. Hence, we come to a contra-
diction and the lemma follows. tu

Theorem 5. Given an update transaction set T , the minimum
workload derived under EDF is not larger than the minimum
one under DM.

Proof. Justified by the fact from Lemma 2 (MLDM can result
in the minimum workload solution under DM schedul-
ing) and Theorem 4 (an MLDM solution is also feasible
under EDF). tu

Based on Theorem 5, if one can derive a solution by
MLDM , then it is possible to enhance the solution to further
decrease the workload under EDF.

Another point we want to emphasize is that, based on
Lemma 2 and Theorem 4, we know that every transaction
set, for which a DM-based method is able to find a
solution, also has a solution by an EDF-based method.
However, the converse is not true. For example, suppose
we reduce the validity interval length of �3 in Example 1
from 46 to be 38. MLDM fails to derive a solution, even if
we allow arbitrary transaction deadlines and use EMLDM
to find a solution. But one can still obtain a solution under
EDF (for example, by a search-based algorithm like
OSEDF), with D3 ¼ 19 and U ¼ 0:938. This illustrates the
superiority of EDF-based methods on solving the deadline
and period assignment problem.

In summary, we know that when scheduling real-time
update transactions, EDF outperforms DM not only on the
range of transaction set, but also on the resulted processor
workload. Nevertheless, in this work, we will utilizeMLDM
to derive a preliminary solution (or part of the solution) at
first, due to its time efficiency.

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1259

TABLE 2
Parameters and Results for Example 1

A discussion regarding the failure condition ofMLDM : Since
the maximum utilization that a transaction set can be
schedulable is 100 percent and the DF � should be less than
the corresponding utilization (

P Ci
Vi <

P Ci
Ti

because Ti < Vi),
one may wonder whether there exists any upper DF bound
beyond which the transaction set is definitely unschedul-
able by MLDM? If we can find such an upper bound, then
obviously, we have also identified the failure condition of
MLDM . However, to our surprise, we found there does not
exist such an upper bound, because even when �
approaches to 1, MLDM can still derive a feasible solution
sometimes. For example, given a transaction set with n ¼ 18
and �ið1 � i � 18Þ be 0.106, 0.073, 0.0718, 0.0709, 0.0669,
0.0628, 0.0608, 0.0537, 0.0505, 0.0452, 0.0419, 0.0374, 0.0308,
0.0301, 0.0301, 0.0129, 0.00854, and 0.0012, respectively, let
K be a large integer (e.g., 1,000), we can construct the
transaction set as follows:

. T1 ¼ 1; C1 ¼ �1

1��1
;D1 ¼ C1;V1 ¼ D1 þ T1; U1 ¼ C1=T1;

. T2 ¼ K, V2 ¼ T2=ð1� �2=ð1� U1ÞÞ, C2 ¼ V2�2; U2 ¼
C2=T2, D2 ¼ C2=ð1� U1Þ;

..

.

. Ti ¼ Ki, Vi ¼ Ti=ð1� �i=ð1�
Pi�1

j¼1 UjÞÞ; Ci ¼ Vi�i;
Ui ¼ Ci=Ti;Di ¼ Ci=ð1�

Pi�1
j¼1 UjÞ.

It is not difficult to verify the schedulability of the
constructed transaction set by performing response time
analysis.3 As the transaction set is a harmonic one, the
schedulability upper bound is 100 percent. Following a
similar analysis as in the above example, we can construct
anMLDM schedulable transaction set with a DF approach-
ing 1 as n increases by using Matlab. Hence, the failure
condition of MLDM cannot be derived by merely judging
the DF. In fact, we need to use MLDM itself to check
whether a transaction set isMLDM schedulable or not, and
this is exactly the method we have used in this work.

Depending on whether a solution can be obtained by
MLDM or not, Phase 2 can further be divided into two
subcases, as detailed in the following.

3.2.1 Case 1: MLDM Succeeds in Deriving a Solution

According to Theorem 4, we can obtain a feasible solution
to the assignment problem. But according to Theorem 5, we
know that the workload derived by MLDM may be higher
than the minimum one under EDF. Hence, as a second step,
we need to enhance the solution to further decrease the
workload without jeopardizing the schedulability.

To decrease workload and comply with the validity
constraint, the only choice is to decrease one transaction’s
deadline, which inversely increasing its corresponding
period. Since the assignment order is fixed, now our major
concern is how to find the minimum deadline for �i, so that the
EDF schedulability of the transaction set can be preserved.

Given a transaction �i, a simple but inefficient method to
find the minimum deadline for �i would be starting by
setting Di ¼ Ci, and then increasing Di by one tick at each
iteration, until the transaction set is found to be schedulable.
This simple algorithm (denoted by one-tick increment

scheme hereafter) is inefficient because it requires a large
number of steps to terminate. In this work, we introduce a
method to increment Di by a suitable amount, which can
significantly improve the efficiency. We will detail how to
compute the increment amount later. At first, since the high
complexity of utilizing an exact schedulability test comes
from that one needs to check all the scheduling points, we
introduce the following theorem to eliminate the unneces-
sary scheduling points when verifying schedulability at
each iteration step. The initial value of Di is set to be
Di�1 þ Ci, since according to Lemma 1, this is the minimum
possible value that can guarantee schedulability.

Theorem 6. For an EDF-schedulable update transaction set
T ¼ f�igni¼1, when decreasing �i’s deadline Di to be D0i and
increasing Ti to be T 0i ¼ Vi �D0i, one only needs to check the
scheduling points in S ¼ fdi;kjdi;k ¼ kTj þDj ^D0i � di;k �
Di [di;k ¼ D0i; k 2 IN; 1 � j � n ^ j 6¼ ig to verify the sche-
dulability of the new transaction set.

Proof. Given T ¼ f�1; . . . ; �i; . . . ; �ng which is schedulable
under EDF, assume that we decrease Di to be D0i and at
the same time increase Ti to be T 0i ¼ Vi �D0i. Now, the
new transaction set is T 0 ¼ f�1; . . . ; � 0i ; . . . ; �ng and the
new set of scheduling points is

S0 ¼ fdi;kjdi;k ¼ kTj þDj ^ di;k � minðL0a; L0bÞ [di;k
¼ kT 0i þD0i ^ di;k � minðL0a; L0bÞ; k 2 IN; 1

� j � n ^ j 6¼ ig;

where L0a and L0b denote La andLb computed based on the
new transaction set, respectively. According to Theo-
rem 1, we should check all the scheduling points in S0 to
verify the schedulability of T 0. However, as we will see,
one only needs to check a small part scheduling points in
S0. To facilitate distinction, we use h0ðt; nÞ to denote
hðt; nÞ, but with Di and Ti replaced by D0i and T 0i ,
respectively.

Since T is schedulable under EDF, we know that for
any time instance t (including all the scheduling points
di;k), there is hðt; nÞ � t. Given that Tj þDj ¼ Vjð1 �
j � nÞ, for all di;k 2 S0, we have

h0ðdi;k; nÞ ¼
Xn

j¼1;j6¼i

di;k þ Tj �Dj

Tj

� �
Cj þ

di;k þ T 0i �D0i
T 0i

� �
Ci

¼
Xn

j¼1;j6¼i
2þ di;k � Vj

Tj

� �� �
Cj þ 2þ di;k � Vi

T 0i

� �� �
Ci:

ð4Þ

Since T 0i � Ti, if di;k � Vi, we can derive that bdi;k�ViT 0i
c �

bdi;k�ViTi
c, which further means h0ðdi;k; nÞ � hðdi;k; nÞ � di;k.

If Di < di;k < Vi, then bdi;k�ViT 0i
c ¼ bdi;k�ViTi

c ¼ �1, and we
have h0ðdi;k; nÞ ¼ hðdi;k; nÞ � di;k. Hence, h0ðdi;kÞ � di;k
always holds when di;k > Di, which means we only
need to check the scheduling points no larger than Di.
Moreover, notice that if di;k < D0i, then

di;k þ T 0i �D0i
T 0i

� �
Ci ¼ 0;

we hence know that h0ðdi;k; nÞ ¼ hðdi;k; nÞ � di;k, which
means we only need to verify di;k no less thanD0i. For those
scheduling points generated by decreasing Di to be D0i,

1260 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

3. Note the above example may require some reduction of the value Ci
(say �i) such that Di ¼

Pi�1
j¼1 Di=Tj
� 	

Cj þ Ci ��i (to guarantee that the
transaction set is DM schedulable). However, by choosing a sufficiently
large K, �i can be considered as a minor and negligible part.

i.e., di;k ¼ kT 0i þD0i, it is not difficult to see that only when
k ¼ 0, di;k ¼ D0i satisfies D0i � di;k � Di. On the whole, we
only need to check the points in S ¼ fdi;kjdi;k ¼ kTj þDj ^
D0i � di;k � Di [di;k ¼ D0i; k 2 IN; 1 � j � n ^ j 6¼ ig to
verify the schedulability of T 0. tu
By Theorem 6, we only need to check the scheduling

points in S to verify schedulability, in contrast to the
scheduling points in S defined in Theorem 1. It can be seen
that S, which is bounded by the range ½D0i; Di�, is a small
subset of S. Hence, the scheduling points can be signifi-
cantly reduced. Now, we discuss how to compute the
deadline increments by the following theorem.

Theorem 7. Given an EDF-schedulable update transaction set
T ¼ f�igni¼1, when decreasing �i’s deadline Di to be D0i (and
increasing Ti to be T 0i ¼ Vi �D0i) and checking the schedul-
ability of the new transaction set, once there exists a
scheduling point di;k with h0ðdi;k; nÞ4 > di;k, then one can
start the next iteration by setting D0i ¼ h0ðdi;k; nÞ.

Proof. Suppose at di;k, h
0ðdi;k; nÞ > di;k, i.e.,

Xn
j¼1;j 6¼i

di;k þ Tj �Dj

Tj

� �
Cj þ

di;k þ T 0i �D0i
T 0i

� �
Ci > di;k: ð5Þ

For transaction �jð1 � j � n; j 6¼ iÞ, its period and dead-
line would not change at di;k, which also means the
interference from �j would not change. Hence, to satisfy
h0ðdi;k; nÞ � di;k, D0i has to be increased to reduce the
interference caused by �i. To make sure at t ¼ di;k, there
is h0ðdi;k; nÞ � di;k, we should start the next iteration by
increasing D0i to be larger than di;k (notice here Theorem 6
guarantees that D0i � di;k � Di). Moreover, to ensure
h0ðtÞ � t for t 2 ðdi;k; h0ðdi;k; nÞ�, D0i also should be no less
than h0ðdi;k; nÞ. Otherwise, suppose D0i is increased to be
D00i which is less than h0ðdi;k; nÞ, and let h00ðt; nÞ denote
hðt; nÞ with Di and Ti replaced by D00i and T 00i ,
respectively, then there is

h00ðD00i ; nÞ ¼
Xn

j¼1;j6¼i

D00i þ Tj �Dj

Tj

� �
Cj þ

D00i þ T 00i �D00i
T 00i

� �
Ci

¼
Xn

j¼1;j6¼i

D00i þ Tj �Dj

Tj

� �
Cj þ

D00i þ T 0i �D0i
T 0i

� �
Ci

¼ h0ðD00i ; nÞ:
ð6Þ

Since di;k < D00i < h0ðdi;k; nÞ, it is not difficult to derive
that h0ðD00i ; nÞ ¼ h0ðdi;k; nÞ > D00i . By (6), it means h00ðD00i ;
nÞ > D00i . Clearly, the transaction set remains unschedul-
able if D0i is increased to be less than h0ðdi;k; nÞ. In
summary, to guarantee all the scheduling points t 2 ½di;k;
h0ðdi;k; nÞ� satisfy h0ðt; nÞ � t, we should start the next
iteration by increasing D0i to be h0ðdi;k; nÞ. tu
Theorems 6 and 7 allow us to derive the minimum

deadline for �i efficiently due to the following two
reasons. First, there is no need to check all the scheduling
points at each iteration. Second, there is no need to test
every possible deadline, which significantly reduces the
number of iteration steps.

3.2.2 Case 2: MLDM Fails to Derive a Solution

In this case, since MLDM cannot derive a solution directly,
we first utilize MLDM to derive a schedulable subset of T ,
denoted as T k�1ðk � 2Þ. The same as in Case 1, the processor
workload of the solution to T k�1 may be higher than the
minimum one which can be reached under EDF. Hence,
we follow a similar method as in Case 1 to decrease the
workload of T k�1. After that, we add �k into T k�1 and check
whether T k is schedulable to determine deadline and period
for �k. Notice that in this process, the deadlines and periods
in T k�1 remain unchanged. The initial deadline of �k is set to
be Dk�1 þ Ck, since according to Lemma 1, this is the
minimum possible value that can guarantee schedulability.

When checking the schedulability of T k, we introduce
the following theorem to eliminate the unnecessary
scheduling points at each iteration, and hence improve
the efficiency.

Theorem 8. When adding a new transaction �i into an EDF-
schedulable transaction set T i�1, one only needs to check the
scheduling points in S ¼ fdi;kjdi;k ¼ kTj þDj ^Di � di;k �
minðLia; LibÞ; k 2 IN; 1 � j < ig to verify the schedulability
of T i.

Proof. Since T i�1 is schedulable under EDF, we have,

hðdi;k; i� 1Þ ¼
Xi�1

m¼1

di;k �Dm

Tm

� �
þ 1

� �
Cm � di;k: ð7Þ

Now, consider the two cases of �j:

1. j ¼ i. It is apparent that di;k ¼ kTi þDi � Di.
2. 1 � j < i. If di;k ¼ kTj þDj < Di, then

hðdi;k; iÞ ¼
Xi
m¼1

di;k �Dm

Tm

� �
þ 1

� �
Cm

¼
Xi�1

m¼1

di;k þ Tm �Dm

Tm

� �
Cm þ

di;k þ Ti �Di

Ti

� �
Ci

¼
Xi�1

m¼1

di;k þ Tm �Dm

Tm

� �
Cm ¼ hðdi;k; i� 1Þ � di;k;

ð8Þ

which means we only need to test those schedul-
ing points no less than Di.

In summary, one only needs to check the scheduling
points in

S ¼ fdi;kjdi;k ¼ kTj þDjð1 � j � iÞ ^Di � di;k
� minðLia; LibÞ; k 2 IN; 1 � j < ig

to verify the schedulability of the new transaction set T i.tu
Similar to Case 1, when determining the increment

amount of Di, we have the following theorem, which helps
to decrease iteration steps and hence improves efficiency.

Theorem 9. When adding a new update transaction �i into an
EDF-schedulable transaction set T i�1 and checking the
schedulability, ifhðdi;k; iÞ > di;k, one can start the next iteration
by setting Di ¼ hðdi;k; iÞ.

Proof. Similar to reasoning in Theorem 7. tu

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1261

4. Note here h0ðdi;k; nÞ denotes hðdi;k; nÞ, which is defined in Theorem 1,
but with Di and Ti replaced by D0i and T 0i , respectively.

If T k is schedulable for deadlines and periods found for

�k, we repeat the same process for �kþ1. Finally, if all the

remaining transactions �iðk < i � nÞ can pass the schedul-

ability test with a pair of deadline and period, it means we

have obtained a feasible solution to the assignment

problem. Otherwise, GE2
EDF declares failure, which means

it is unable to derive a solution for the given transaction set.
Based on the two cases described above, we present the

detail of GE2
EDF in Algorithm 2. At first, we invoke MLDM

to see whether one solution can be found. If the answer is

positive, we proceed to Case 1 to improve the solution

derived by MLDM , as shown in lines 5-20. In this case, we

first skip those transactions with Di ¼
Pi

j¼1 Cj (lines 6,7),

since according to Lemma 1, the deadline of these

transactions cannot be decreased. Then, for each transaction

�i, we set the initial value of D0i to be Di�1 þ Ci and check

the scheduling points in S according to Theorem 6. If for all

the scheduling points in S, h0ðdi;k; nÞ � di;k holds, we thus

obtain the minimum deadline for �i and proceed to next

transaction �iþ1. Otherwise, we increase the deadline

according to Theorem 7 (lines 16, 17) and come to next

iteration. If D0i is finally found to be equal to Di, it means

that the deadline of �i remains unchanged, and obviously,

the transaction set remains to be schedulable.

Algorithm 2. Phase 2 of GEEDF
1: Input: The same as in GE1

EDF ;

2: Output: Deadlines fDigni¼1 and periods fTigni¼1;

3: Invoke MLDM ;

4: if One solution can be derived then

5: for ði ¼ 1; i � n; iþþÞ do

6: if Di ¼
Pi

j¼1 Cj then

7: continue;

8: end if

9: for ðD0i ¼ Di�1 þ Ci;D0i � Di; Þ do

10: T 0i ¼ Vi �D0i;
11: S ¼ fdi;kjdi;k ¼ kTj þDj ^D0i � di;k

� Di [di;k ¼ D0i; k 2 IN; 1 � j � n ^ j 6¼ ig;
12: if 8di;k 2 S; h0ðdi;k; nÞ � di;k then

13: Di ¼ D0i; Ti ¼ Vi �Di;

14: break;

15: else

16: Find the first h0ðdi;k; nÞ > di;k;

17: D0i ¼ h0ðdi;k; nÞ;
18: end if

19: end for

20: end for

21: else

22: Find T k�1 which is schedulable by MLDM ;

23: Repeat the steps in 5-20 (replace n with k� 1) to

adjust transaction deadlines and periods in T k�1;

24: for ði ¼ k; i � n; iþþÞ do

25: for ðDi ¼ Di�1 þ Ci;Di � Vi � Ci; Þ do

26: Ti ¼ Vi �Di;
27: S ¼ fdi;kjdi;k ¼ kTj þDj ^Di � di;k �

minðLia; LibÞ, k 2 IN; 1 � j < ig;
28: if 8di;k 2 S; hðdi;k; iÞ � di;k then

29: break;

30: else

31: Find the first hðdi;k; iÞ > di;k;
32: Di ¼ hðdi;k; iÞ;
33: end if

34: end for

35: end for

36: end if

On the contrary, if no solution can be found by MLDM
directly, we proceed to the second case of Phase 2, as shown

in lines 22-35. In this case, we first employMLDM to derive

a schedulable subset T k�1. Then, following a similar

method as in Case 1, we decrease the workload of T k�1.

After that, we add one transaction (�k) into T k�1 at each

step, and check whether the new transaction set, T k, is

schedulable to determine a pair of deadline and period for

�k. Note that here Vk � Ck is used to bound Dk due to the

requirement that Ck � minðDk; TkÞ. If for all the scheduling

points in S, hðdi;k; iÞ � di;k holds, we thus obtain the

minimum deadline of �k, and proceed to next transaction

�kþ1. Otherwise, Theorem 9 is invoked to determine the

increment amount of Dk and start the next iteration.
In the following, we present two examples to illustrate

the computation process of GE2
EDF . We first show an

example where MLDM succeeds in deriving a solution.

Example 2. Given a set of transactions with execution times

and validity interval lengths as follows:

�1 ¼ ð3; 15Þ; �2 ¼ ð4; 16Þ; �3 ¼ ð5; 48Þ:

Since MLDM can obtain a solution for this transaction

set, as shown in Table 3, we enter Case 1 to further

improve the solution (by decreasing the derived dead-

lines and hence reducing workload). Given that D1 ¼ C1

and D2 ¼ C1 þ C2, it is apparent that �1 and �2’s deadline

cannot be further decreased, and we thus proceed to �3.

We set D03 ¼ D2 þ C3 ¼ 12 to start the iteration (line 9).

By Theorem 6, we have S ¼ f12; 15; 16g. It can then be

examined that when di;k ¼ 16, there is h0ðdi;k; nÞ ¼
h0ð16; 3Þ ¼ 19 > 16. Since this is the first h0ðdi;k; nÞ > di;k,

we set D03 ¼ h0ð16; 3Þ ¼ 19 to start the next iteration.

Finally, the transaction set is found to be schedulable

with D3 ¼ 19 and T3 ¼ 29, and all the periods and

deadlines are thus determined.

It can be seen that for the given transaction set, GE2
EDF

can result in a 2.7 percent workload reduction compared to

MLDM . Notice that in this example, HSEDF produces the

same result as GE2
EDF . Next, we present another example

where MLDM fails to derive a solution.

Example 3. Given a set of transactions with execution times

and validity interval lengths as follows:

1262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

TABLE 3
Parameters and Results for Example 2

�1 ¼ ð2; 16Þ; �2 ¼ ð7; 30Þ; �3 ¼ ð6; 33Þ:

SinceMLDM fails to derive a solution for this transaction
set, we proceed to Case 2 and derive a schedulable subset
f�1; �2g with D1 ¼ 2, T1 ¼ 14, D2 ¼ 9, and T2 ¼ 21. Given
D1 ¼ C1 and D2 ¼ C1 þ C2, it is obvious that D1 and D2

cannot be decreased any more. We then set the initial
value of �3’s deadline to be D3 ¼ D2 þ C3 ¼ 15 and check
whether the transaction set is schedulabe with D3 ¼ 15
and T3 ¼ 18. It can be derived that when t ¼ T1 þ
D1 ¼ 16, there is hðt; nÞ ¼ hð16; 3Þ ¼ 17 > 16. Therefore,
we start the next iteration by setting D3 ¼ 17. Finally, the
transaction set is found to be schedulable with D3 ¼ 17
and T3 ¼ 16. The final solutions by HSEDF and GE2

EDF

are stated in Table 4. Notice here HSEDF does not follow
the SVF assignment order.

It can be seen that for the given transaction set, GE2
EDF

obtains a solution with workload 0.851, which is significantly
lower than 0.921, the one derived byHSEDF . The reason is as
a heuristic search-based algorithm, HSEDF ’s efficiency is
achieved at the expense of increased processor workload.
GE2

EDF has a pseudopolynomial time complexity. How-
ever, it runs much faster than the one which uses an exact
schedulability test in the average case. The main reason is
that MLDM can cover a large scope of transaction sets,
which implies the number of transactions that need to be
added into the subset is small. Moreover, we have
introduced four theorems (Theorems 6, 7, 8, and 9), which
significantly reduce the scheduling points and decrease the
number of iteration steps when verifying schedulability. All
these factors make Phase 2 run in a time-efficient manner,
as demonstrated in our experiments.

3.3 Relationship between Phases 1 and 2

It is important to note that Phase 2 covers a bigger range of
transaction set than Phase 1, as stated below.

Theorem 10. Given any set of update transactions T , if Phase 1
can obtain a solution, then Phase 2 can also derive one, with
the same CPU workload.

Proof. If Phase 1 can derive a solution, it meansMLDM can
also derive a solution for T . According to the assignment
scheme ofMLDM , we know that the solution byMLDM
is the same as that of Phase 1. Obviously, the deadlines in
this solution cannot be further decreased, which means
the solution by Phase 2 is the same as that of MLDM ,
which in turn is the same as in Phase 1. tu

Although Phase 2 can schedule a larger number of
transaction sets than Phase 1, Phase 1 is still useful owing to
its high time efficiency. In other words, the introduction of
Phase 1 does not affect the time complexity of GEEDF .

4 PERFORMANCE EVALUATION

This section presents the performance evaluation of the
proposed algorithms: GEEDF , versus existing approaches
HH [11], MLDM [30], EMLDM [3], [31], MLEDF and
HSEDF 5 [31] via simulation experiments. Section 4.1
describes the simulation model and parameters. Section 4.2
discusses the experimental results.

4.1 Simulation Model and Assumptions

We have conducted quantitative experiments to compare
the performance of GEEDF with HH, MLEDF , MLDM ,
EMLDM , and HSEDF . Among these approaches, MLEDF
and HSEDF are EDF-based schemes, whereas MLDM and
EMLDM are DM-based ones. HH can be either EDF based
or DM based. While HH,MLDM , andMLEDF only address
transaction set with deadlines no larger than their corre-
sponding periods, EMLDM , HSEDF , and GEEDF can handle
arbitrary deadlines which are less than, equal to or larger
than their corresponding periods. The update transaction
workloads produced by these algorithms, as well as the
execution times under these algorithms, have been com-
pared. It is demonstrated that GEEDF can result in a
significantly reduced CPU workload which is lower than
all existing approaches, in a time-efficient manner.

Table 5 shows a summary of the parameters and default
settings used in our experiments. We use the same baseline
values for the parameters as [31], which are originally from
air traffic control applications [11], [20], for the following
reasons: 1) To enable easy comparison and continuity with
the several previous studies that have used similar models
and parameter values; 2) Our objective is to evaluate the
relative performance characteristics of the approaches, not
their absolute levels.

Two categories of parameters are defined: system and
update transaction. For system configurations, a single
CPU, main memory-based RTDBS is considered. The
number of real-time data objects NT ranges from 50 to 300
to generate different workloads in the system. The validity
interval length Vi of each real-time data object is assumed to
be uniformly distributed in ½4; 000; 8; 000�. For update
transactions, it is assumed that each update transaction
updates one data object, and the execution time of each
transaction is uniformly distributed in ½5; 15�. Under the
default setting, Phase 1 can cover all the cases. To show the
performance of Phase 2 of GEEDF , we vary the ranges of
validity interval length and execution time to ½2; 000; 14; 000�
and ½8; 18�, respectively, to produce those cases that can only
be scheduled by Phase 2. Moreover, to produce those cases

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1263

TABLE 4
Parameters and Results for Example 3

TABLE 5
Experimental Parameters and Settings

5. Since OSEDF does not scale well with problem size, mentioned as in
[31], we do not consider it in our experiments.

that can show significant workload-difference between
EDF-based and DM-based schemes, we also change the
ranges of validity interval length and execution time to
½4; 000; 16; 000� and ½10; 20�, respectively. It is noteworthy
that here by varying execution times and validity interval
lengths, we just want to investigate the scalability of our
approach in terms of the workload caused by the update
transactions. Besides the update transactions, the system
also runs other tasks (user or triggered transactions); hence,
it must properly control the update workload.

The proposed algorithms are all implemented in C++,
while the knapsack problem inHSEDF is solved by Matlab.
For each point plotted in the figure, the simulations continued
until a confidence interval of 95 percent with half-width of
less than 5 percent about the mean was achieved.

4.2 Experimental Results

4.2.1 Comparison of CPU Workloads

The CPU workloads of update transactions produced by
HH, MLEDF , MLDM , EMLDM , HSEDF , and GEEDF are
quantitatively compared. The DF, which provides a lower
bound of the workload, is also plotted. Three sets of
experiments with different parameter settings have been
conducted. In the first set, update transactions are gener-
ated randomly according to the parameter settings in
Table 5. The resulting processor workloads from the six
schemes are depicted in Fig. 1, in which the x-axis denotes
the number of update transactions and the y-axis denotes
the resulted CPU workloads.

It can be seen that GEEDF consistently outperforms the
three EDF-based schemes, i.e., HH,MLEDF , and HSEDF , as
shown in Fig. 1. With the growth of NT , the discrepancy
between HH, MLEDF , and HSEDF with GEEDF increases.
When NT grows up to 300, the performance improvement
of GEEDF over the other three existing EDF-based ap-
proaches increases to 37, 34, and 8 percent, respectively.
Given the small execution time and relatively large validity
interval length in the default setting, GEEDF can obtain a
solution in Phase 1 while NT varies from 50 to 300.

In the second set of experiments, we vary the range of
validity interval length of xi to ½2; 000; 14; 000�. Other
parameters remain the same as in Table 5. Fig. 2 presents
the performance of GEEDF as compared with the other five
schemes. It can be observed that, similar to Fig. 1, GEEDF
consistently outperforms the other three EDF-based algo-
rithms. When NT � 250, GEEDF fails to derive a solution in

Phase 1, but can derive a solution in Phase 2. This is because
when NT exceeds 250, the sum of all transactions’ execution
times can be larger than the minimal period and therefore
Phase 1 cannot derive a solution. But since MLDM can still
derive one, Phase 2 is also able to derive a solution when NT

varies from 250 to 300 in Fig. 2.
Fig. 3 presents the result of the third experiment set, in

which the range of validity interval remains to be
½2; 000; 14; 000� but execution time varies uniformly between
8 and 18 ms, while other parameters remain the same as in
Table 5. When NT � 150, Phase 1 is able to derive a solution.
When NT varies between 150 and 300 in Fig. 3, Phase 2 can
derive a solution after Phase 1 fails to do so. When
NT � 230, both HH and MLEDF fail to derive a solution,
because the DF � becomes larger than 0.5. Similar to
previous results, the workload derived by GEEDF is
consistently lower than all the other three EDF-based
schemes. When NT increases to 300, the improvement of
GEEDF over HSEDF is about 10 percent.

For all the three experimental settings, the results of two
DM-based More-Less schemes, i.e.,MLDM and EMLDM are
also depicted in the three figures. As observed, the
workloads of MLDM and EMLDM are almost the same as
that of GEEDF . In fact, in the first and second set of
experiments, the workloads derived by MLDM and
EMLDM are exactly the same with that of GEEDF . This is
mainly because given the range of validity interval lengths
and transactions execution times in Table 5, most transac-
tion deadlines in MLDM , EMLDM , and GEEDF are essen-
tially derived by computing the sum of execution times of
transactions with higher priorities, which means most (or
all, when the number of transactions is small) transactions
have the same workload.

1264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 1. Resulted workloads with Vi in ½4; 000; 8; 000� and Ci in ½5; 15�. Fig. 2. Resulted workloads with Vi in ½2; 000; 14; 000� and Ci in ½5; 15�.

Fig. 3. Resulted workloads with Vi in ½2; 000; 14; 000� and Ci in ½8; 18�.

In the third set of experiments, we observe that MLDM
fails to derive a solution when NT exceeds 300, while
EMLDM can still derive one until the number of transac-
tions reaches 320, but with workload higher than that of
GEEDF . Compared to MLDM , EMLDM can schedule a
larger set of transactions. But when NT exceeds 330,
EMLDM also fails to derive a solution, whereas GEEDF
and HSEDF can still derive one. As can be seen, both GEEDF
and HSEDF can lead to a solution even when NT reaches
370, which improve the schedulability of EMLDM by
12 percent. This illustrates that EDF-based More-Less
approaches can schedule a broader set of update transac-
tions than DM-based ones.

From Figs. 1, 2, and 3, we can see that the performance
levels ofMLDM , EMLDM , and GEEDF are close to each other
for most cases, except in Fig. 3, where the performance gap
between GEEDF and EMLDM becomes significant (about
5 percent) when the number of transactions increases to 320.
This is mainly because that MLDM , EMLDM , and GEEDF
tend to produce optimal (or near optimal) solutions when
the scale of the transaction set is relatively small. To further
investigate their performance when the scale of transaction
set is large, we also conduct another three set of experiments,
in which the range of validity interval and execution time are
located in f½2;000; 14;000�; ½5; 15�g, f½2;000; 14;000�; ½10; 20�g,
and f½4;000; 16;000�; ½10; 20�g, respectively. Note here that by
varying execution times and validity interval lengths, we
just want to generate those cases where the differences
between EMLDM and GEEDF are more significant. Since
EMLDM dominatesMLDM , we only compare EMLDM with
GEEDF . We also do not present the workload comparison
when the scale of the transaction set is small since in this case

the gap between GEEDF and EMLDM is so tiny that they are
hard to be distinguished.

As can be seen from Figs. 4, 5, and 6, GEEDF consistently
outperforms EMLDM on the resulted workload among all
the three experiment settings. With the growth of the
number of the transactions (NT), the gap between them is
also increasing. Moreover, when NT exceeding a certain
number (different in each setting), EMLDM eventually fails
to derive a solution, while GEEDF can still get one. These
experiment results confirmed our analysis in Section 3.2,
i.e., EDF yields better workload and feasibility performance
than DM with respect to temporal consistency scheduling.

4.2.2 Comparison of Execution Times

The execution times of the six algorithms are shown in
Table 6. It can be observed that HH andMLEDF are efficient
to derive their solutions. With the growth of transaction set
size, the execution times of these three approaches are
consistently less than 0.01 s. The reason is that HH and
MLEDF are linear-time algorithms. MLDM has a pseudo-
polynomial time complexity in that it requires to solve an
iterative equation when determining deadline for each
transaction, but it also runs quickly (as can be observed, the
computation time is consistently less than 0.01 s), due to
that it only takes OðVmax2 � n2Þ time to derive a solution.
EMLDM also has pseudopolynomial time complexity since
it requires to determine a transaction’s deadline by finding
out the longest response time which occurs during a level-i
busy period, but it also runs quickly due to that the number
of releases that need be checked is bounded by the validity
interval length. Similar to EMLDM , GEEDF has a pseudo-
polynomial time complexity, but its actual execution time is
determined by the transaction set size. When a solution can
be found in Phase 1, GEEDF can run in linear time, while it
takes slightly longer to obtain a solution by Phase 2, as

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1265

Fig. 5. EMLDM versus GEEDF with Vi in ½2; 000; 14; 000� and Ci in ½10; 20�.

Fig. 6. EMLDM versus GEEDF with Vi in ½4; 000; 16; 000� and Ci in ½10; 20�.

TABLE 6
Execution Time Comparison

Fig. 4. EMLDM versus GEEDF with Vi in ½2; 000; 14; 000� and Ci in ½5; 15�.

shown in Table 6. Nevertheless, it can finish its execution in
a few milliseconds due to the small overhead in its

schedulability test.
To illustrate the performance of Theorems 7 and 9 on

reducing the overhead of schedulability test, we also
conduct the iteration steps comparison between GEEDF
and the one-tick increment scheme, as shown in Fig. 7. In
this set of experiment, the range of validity interval length
of xi is set to ½2;000; 14;000�, while the execution time of

update transactions varies uniformly between 5 and 18 ms.
For each point plotted, we have conducted 1,000 runs and
take the average. It can be observed that GEEDF takes

significantly fewer iterations than the one-tick increment
scheme. With the growing number of transactions, the gap
between these two schemes becomes larger. This is because

when NT is small, most of the transactions can be skipped
without checking due to Di ¼

Pi
j¼1 Cj in both approaches.

But with NT increasing, a significantly large number of

iterations are required to be checked in the one-tick
increment scheme. Therefore, GEEDF is efficient when
transaction set size scales to 300.

Compared with the other five schemes, HSEDF takes

significantly longer time to obtain a solution, and the
execution time increases exponentially when the number of
transactions scales up. When NT ¼ 50, the execution time of

HSEDF is about 1 minute. When NT increases to 300, its
execution time increases to almost 5.2 hours. HSEDF takes
much longer time to obtain a solution because it involves

solving the 0-1 knapsack problem iteratively.
In summary, we revealed the following three observa-

tions from our experimental results:

1. GEEDF and HSEDF have better schedulability than
other approaches (all DM-based ones, andMLEDF),
which fail to derive a solution in some settings.

2. GEEDF consistently outperforms HSEDF in terms of
the resulted processor workload in the whole range
of parameter setting.

3. The execution time of HSEDF increases exponen-
tially when the number of temporal data objects
scales up, which makes it less practical for large
applications. In contrast, GEEDF can derive a solution
more efficiently, which makes it more attractive to
real applications, e.g., air traffic control, stock
trading, and vehicular systems, and so on.

5 RELATED WORK

There has been a lot of work on RTDBSs for maintaining
real-time data freshness [6], [8], [13], [14], [15], [16], [18],
[19], [23], [24], [26], [33]. Song and Liu [26] studied the
performance of two well-known concurrency control
algorithms, two-phase locking and optimistic, in maintain-
ing temporal consistency of shared data in a hard real-time
systems. Kuo and Mok [18] investigated real-time data
semantics and proposed a class of real-time access protocol
called similarity stack protocol. The tradeoff between data
consistency and system workload is exploited in [11],
where similarity-based principles are combined with the
HH scheme to reduce workload by skipping the execution
of task instances. Gustafsson and Hansson [8] focused on
maintaining data freshness in soft real-time embedded
systems and the target application is vehicular systems; an
on-demand scheduling algorithm (ODDFT) is proposed for
guaranteeing the freshness of base and derived data.
Gustafsson and Hansson [7] proposed an algorithm
(ODTB) for updating data items that can skip unnecessary
updates allowing for better CPU utilization. Lundberg [21]
studied the age-constraint problem which is different from
our temporal consistency problem. All the work mentioned
above assumes the deadlines and periods of update
transactions are given, hence gives no answer to the
period and deadline assignment problem for maintaining
temporal consistency.

The More-Less scheme is first proposed in [30] to solve
the period and deadline assignment problem with DM
scheduling, a fixed priority scheduling algorithm. While
More-Less is based on periodic task model, the DS-FP
proposed in [29] follows a sporadic task model. The DS-FP
reduces processor workload by adaptively adjusting the
separation of two consecutive instances of update transac-
tions while satisfying the validity constraint. Han et al. [9]
addressed how to improve the schedulability test condition
of DS-FP; a necessary and sufficient schedulability condi-
tion for DS-FP, along with a new schedulability test
algorithm, is proposed. As recognized in [9], the scheduling
overhead of DS-FP is much higher than the periodic
scheduling approaches. In this paper, we only focus on
investigating periodic scheduling approaches. Jha et al. [13]
investigated how to maintain the mutual temporal consis-
tency of real-time data objects. Han et al. [10] studied
the problem of how to maintain the temporal validity of
real-time data in the presence of mode changes in flexible
real-time systems. The authors propose to use different
scheduling policies in different modes and introduce two
algorithms to search for proper switch points. Very recently,
the period and deadline assignment problem for real-time
update transactions scheduled under EDF is addressed in
[31], in which three algorithms are proposed, as described
in Section 1.

In [15], Kang et al. addressed soft real-time data services
and present several approaches. Based on the notion of
backlog, the authors develop two efficient approaches for
fine-grained admission control, built on linear control
theory and fuzzy logic control theory, respectively, which
are shown to closely support the desired average/transient
data service delay. Zhou and Kang [33] addressed how to

1266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 7. Iteration steps comparison.

support real-time data services in data-intensive real-time
applications and proposed a fine-grained deadline assign-
ment scheme that takes the database schema and estimated
transaction sizes into account to derive feasible deadlines
for real-time data service requests. While the study in [15]
and [33] concentrated on user data services request (or
user/triggered transactions) and soft real-time data ser-
vices, we focus on how to assign period and deadline to
sensor update transactions, and moreover, we address firm
real-time data service. Therefore, our work is complemen-
tary to theirs.

As one of the important approach to dealing with
overloads in real-time systems, task period adaptations
have received considerable attention. Many previous work
can be found on the management of overloads in real-time
systems based on task period adjustments [17]. But most of
them assume that only task periods can change. In [25], task
deadlines vary with time, but the tasks do not have periods.
The only work that allows task periods and deadlines to
change together is presented in [5], but it addresses the case
where task deadlines are no larger than their corresponding
periods. Note that our work is different from all the work
mentioned above which focus on dealing with system
overload, since we derive periods and deadlines based on
temporal consistency requirements. Balbastre et al.[1] and
Hoang et al. [12] have, respectively, addressed the problem
of how to find the minimum deadline for each task under
EDF scheduling, given that task deadline and period are not
related. Our work is different from theirs in that the sum of
each transaction’s period and deadline is bounded by the
validity interval length.

6 CONCLUSIONS

Maintaining temporal consistency of real-time data is
important in RTDBS. In this work, we have addressed the
period and deadline assignment problem for update
transactions scheduled by EDF. We proposed a general
and efficient two-phase algorithm GEEDF . Our aim of GEEDF
is to produce a feasible schedule while minimizing the CPU
workload at the same time, in a time-efficient manner. The
first phase of GEEDF finds a solution in linear time, while the
second phase derives a solution by adjusting an MLDM
solution without jeopardizing schedulability. If MLDM
cannot find a solution, the second phase first employs
MLDM to determine a schedulable subset, and then adds
one transaction at each step to search for a feasible solution.
For schedulability check, we introduced four theorems
to reduce the search space, which significantly improve
the efficiency of the algorithm. We have conducted
intensive experiments with randomly generated transaction
sets to evaluate the performance of the proposed techni-
ques. Our experimental results demonstrate that GEEDF
outperforms HH,MLEDF ,MLDM , and EMLDM in terms of
CPU workload and schedulability. Further, our results also
show that GEEDF is much more time efficient than HSEDF .
On the whole, due to its effectiveness, GEEDF can be applied
in many practical real-time applications.

For future work, we intend to investigate how to order
the transaction set so that a general optimal solution can be
achieved. Also, as multiprocessor systems have become a
leading trend in embedded real-time applications, we plan
to extend our current solutions to multiprocessor platforms.

ACKNOWLEDGMENTS

This research was supported, in part, by the National
Science Foundation of China (No. 61173049), the Research
Fund for the Doctoral Program of the Ministry of Education
of China (No. 20090142110023), and a grant from the
Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CityU 115407).
The work of LihChyun Shu was partially supported by
NSC grant (No. 100-2221-E-006-159). This work was
partially done while Jianjun Li was at City University of
Hong Kong. The author Jianjun Li thanks Dr. Jian-Jia Chen
from Karlsruhe Institute of Technology, Germany, for
discussions on the failure condition ofMLDM . The authors
would also like to thank anonymous reviewers for their
comments on improving the quality of this paper.

REFERENCES

[1] P. Balbastre, I. Ripoll, and A. Crespo, “Minimum Deadline
Calculation for Periodic Real-Time Tasks in Dynamic Priority
Systems,” IEEE Trans. Computers, vol. 57, no. 1, pp. 96-109, Jan.
2008.

[2] S. Baruah, L. Rosier, and R. Howell, “Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time
Tasks on One Processor,” Real-Time Systems, vol. 2, no. 4, pp. 301-
324, 1990.

[3] A. Burns and R. Davis, “Choosing Task Periods to Minimise
System Utilisation in Time Triggered Systems,” Information
Processing Letters, vol. 58, no. 5, pp. 223-229, 1996.

[4] G. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer, 2005.

[5] T. Chantem, X. Wang, M. Lemmon, and X. Hu, “Period and
Deadline Selection for Schedulability in Real-Time Systems,” Proc.
Euromicro Conf. Real-Time Systems (ECRTS ’08), pp. 168-177, 2008.

[6] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing End-to-End
Timing Constraints by Calibrating Intermediate Processes,” Proc.
IEEE Real-Time Systems Symp., pp. 192-203, 1994.

[7] T. Gustafsson and J. Hansson, “Data Management in Real-Time
Systems: A Case of on-Demand Updates in Vehicle Control
Systems,” Proc. IEEE Real-Time and Embedded Technology and
Applications Symp., pp. 182-191, 2004.

[8] T. Gustafsson and J. Hansson, “Dynamic on-Demand Updating of
Data in Real-Time Database Systems,” Proc. ACM Symp. Applied
Computing, pp. 846-853, 2004.

[9] S. Han, D. Chen, M. Xiong, and A. Mok, “A Schedulability
Analysis of Deferrable Scheduling Using Patterns,” Proc. Euro-
micro Conf. Real-Time Systems (ECRTS), pp. 47-56, 2008.

[10] S. Han, D. Chen, M. Xiong, and A. Mok, “Online Scheduling
Switch for Maintaining Data Freshness in Flexible Real-Time
Systems,” Proc. IEEE Real-Time Systems Symp., pp. 115-124, 2009.

[11] S. Ho, T. Kuo, and A. Mok, “Similarity-Based Load Adjustment
for Real-Time Data-Intensive Applications,” Proc. IEEE Real-Time
Systems Symp., pp. 144-154, 1997.

[12] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson, “Computing
the Minimum EDF Feasible Deadline in Periodic Systems,” Proc.
Int’l Conf. Embedded and Real-Time Computing Systems and Applica-
tions, pp. 125-134, 2006.

[13] A. Jha, M. Xiong, and K. Ramamritham, “Mutual Consistency in
Real-Time Databases,” Proc. IEEE Real-Time Systems Symp.,
pp. 335-343, 2006.

[14] K. Kang, S. Son, J. Stankovic, and T. Abdelzaher, “A QoS-Sensitive
Approach for Timeliness and Freshness Guarantees in Real-Time
Databases,” Proc. Euromicro Conf. Real-Time Systems (ECRTS), 2002.

[15] K. Kang, Y. Zhou, and J. Oh, “Estimating and Enhancing Real-
Time Data Service Delays: Control Theoretic Approaches,” IEEE
Trans. Knowledge and Data Eng., vol. 23, no. 4, pp. 554-567, Apr.
2011.

[16] Y. Kim and S. Son, “Predictability and Consistency in Real-Time
Database Systems,” Advances in Real-Time Systems, pp. 509-531,
Prentice-Hall, 1993.

[17] T. Kuo and A. Mok, “Load Adjustment in Adaptive Real-Time
Systems,” Proc. IEEE Real-Time Systems Symp., pp. 160-171, 1991.

LI ET AL.: WORKLOAD-EFFICIENT DEADLINE AND PERIOD ASSIGNMENT FOR MAINTAINING TEMPORAL CONSISTENCY UNDER EDF 1267

[18] T. Kuo and A. Mok, “Real-Time Data Semantics and Similarity-
Based Concurrency Control,” IEEE Trans. Computers, vol. 49,
no. 11, pp. 1241-1254, Nov. 2000.

[19] K. Lam, M. Xiong, B. Liang, and Y. Guo, “Statistical Quality of
Service Guarantee for Temporal Consistency of Real-Time Data
Objects,” Proc. IEEE Real-Time Systems Symp., 2004.

[20] D. Locke, “Real-Time Databases: Real-World Requirements,” Real-
Time Databases Systems: Issues and Applications, pp. 83-92, Kluwer,
1997.

[21] L. Lundberg, “Utilization Based Schedulability Bounds for Age
Constraint Process Sets in Real-Time Systems,” Real-Time Systems,
vol. 23, no. 3, pp. 273-295, 2002.

[22] K. Ramamritham, “Real-Time Databases,” Distributed and Parallel
Databases, vol. 1, no. 2, pp. 199-226, 1993.

[23] K. Ramamritham, “Where Do Time Constraints Come From?
Where Do They Go?” J. Database Management, vol. 7, pp. 4-11,
1996.

[24] K. Ramamritham, S. Son, and L. Dipippo, “Real-Time Databases
and Data Services,” Real-Time Systems, vol. 28, no. 2, pp. 179-215,
2004.

[25] C. Shih and J. Liu, “State-Dependent Deadline Scheduling,” Proc.
IEEE Real-Time Systems Symp., pp. 3-14, 2002.

[26] X. Song and J. Liu, “Maintaining Temporal Consistency: Pessi-
mistic vs. Optimistic Concurrency Control,” IEEE Trans. Knowl-
edge and Data Eng., vol. 7, no. 5, pp. 786-796, Oct. 1995.

[27] M. Spuri, “Analysis of Deadline Scheduled Real-Time Systems,”
Technical Report 2772, INRIA, 1996.

[28] S. Vestal, “Real-Time Sampled Signal Flows through Asynchro-
nous Distributed Systems,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp., pp. 170-179, 2005.

[29] M. Xiong, S. Han, K. Lam, and D. Chen, “Deferrable Scheduling
for Maintaining Real-Time Data Freshness: Algorithms, Analysis,
and Results,” IEEE Trans. Computers, vol. 57, no. 7, pp. 952-964,
July 2008.

[30] M. Xiong and K. Ramamritham, “Deriving Deadlines and Periods
for Real-Time Update Transactions,” IEEE Trans. Computers,
vol. 53, no. 5, pp. 567-583, May 2004.

[31] M. Xiong, Q. Wang, and K. Ramamritham, “On Earliest Deadline
First Scheduling for Temporal Consistency Maintenance,” Real-
Time Systems, vol. 40, no. 2, pp. 208-237, 2008.

[32] F. Zhang and A. Burns, “Schedulability Analysis for Real-Time
Systems with EDF Scheduling,” IEEE Trans. Computers, vol. 58,
no. 9, pp. 1250-1258, Sept. 2009.

[33] Y. Zhou and K. Kang, “Deadline Assignment and Tardiness
Control for Real-Time Data Services,” Proc. Euromicro Conf. Real-
Time Systems (ECRTS), 2010.

Jianjun Li is currently working toward the
PhD degree at the School of Computer
Science and Technology, Huazhong University
of Science and Technology, Wuhan, China.
His research interests include real-time sys-
tems, real-time databases, and energy-aware
real-time scheduling.

Ming Xiong received the BS degree in compu-
ter science and engineering from Xian Jiaotong
University, the MS degree in computer science
from Sichuan University, China, and the PhD
degree in computer science from the University
of Massachusetts, Amherst. His research inter-
ests include real-time systems, database sys-
tems, and mobile computing. From 2000 to
2009, he was a member of the Technical Staff
with Bell Laboratories Research, Lucent Tech-

nologies, Murray Hill, New Jersey. He is currently a member of the
Technical Staff at Google, Inc. He is a member of the IEEE and ACM.

Victor C.S. Lee received the PhD degree in
computer science from the City University of
Hong Kong in 1997. He is currently an assistant
professor in the Department of Computer
Science, City University of Hong Kong. His
research interests include real-time databases,
data management in mobile and wireless com-
puting and performance evaluation. He is a
member of the ACM, IEEE and IEEE Computer
Society. He has been the chairman of the IEEE,

Hong Kong Section, Computer Chapter in 2006-2007.

LihChyun Shu received the PhD degree in
computer sciences from Purdue University,
West Lafayette, in 1994. He is a professor at
the College of Management, National Cheng
Kung University, Tainan, Taiwan, ROC. From
August 2011, he also serves as the dean at the
College of Information and Engineering, Chang
Jung Christian University, Tainan, Taiwan, ROC.
His research interests include real-time systems,
data stream and process mining, and location-

based query processing. He is a member of the IEEE and IEEE
Computer Society.

Guohui Li received the PhD degree in computer
science from the Huazhong University of
Science and Technology (HUST), China, in
1999. He was promoted to a full professor in
2004, and currently acts as the vice dean at the
School of Computer Science and Technology,
HUST. His research interests mainly include
real-time systems, mobile computing, and ad-
vanced data management. He serves as the
corresponding author of this article.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

