
74

Crenel-Interval-Based Dynamic Power Management for Periodic
Real-Time Systems

GUOHUI LI, YI ZHANG, and JIANJUN LI, Huazhong University of Science and Technology

In order to save the energy consumption of real-time embedded systems, the integration of Dynamic Voltage
and Frequency Scaling (DVFS) and Device Power Management (DPM) techniques has been well studied. In
this article, we propose a new energy management scheme for periodic real-time tasks with implicit deadlines.
We mainly focus on the DPM part by presenting a novel approach to the real-time DPM problem. Specifically,
we first identify intervals for each device, which we refer to as Crenel Intervals, by partitioning the Earliest
Deadline First (EDF) schedule of the tasks that need to access the device into successive intervals. The
principle for identifying Crenel Intervals is that for each task, there is only one deadline located in each
Crenel Interval. Next, targeting at a single device model and a multiple device model, respectively, we
propose the CI-EDF and CI-EDFm algorithms to schedule task instances in each Crenel Interval, so as to
form long and continuous slacks in each Crenel Interval but without jeopardizing any task deadlines. Then,
the slack in the Crenel Intervals can be utilized to perform not only DPM, but also DVFS. The experimental
results show that our approaches can achieve considerably more energy savings than existing techniques
with comparable quality.

Categories and Subject Descriptors: C.2.2 [Embedded Real-Time Systems]: Energy Management

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Embedded real-time systems, dynamic power management, Crenel
Interval, periodic tasks

ACM Reference Format:
Guohui Li, Yi Zhang, and Jianjun Li. 2015. Crenel-Interval-based dynamic power management for periodic
real-time systems. ACM Trans. Embed. Comput. Syst. 14, 4, Article 74 (September 2015), 32 pages.
DOI: http://dx.doi.org/10.1145/2744197

1. INTRODUCTION

With the ever increasing use of mobile phones and the Internet, mobile and embedded
applications become more and more popular nowadays. Since these devices are usually
battery equipped, how to reduce the energy consumption, and thus prolong the battery
life has become an important issue when designing such applications, especially when
the devices work in a harsh environment where power recharging is very difficult or
even impossible. Two promising techniques, Dynamic Voltage and Frequency Scaling
(DVFS) [Weiser et al. 1996] and Device Power Management (DPM) [Lu et al. 2002],
have been widely studied and a lot of research efforts have been reported. DVFS is a
commonly used power-management technique, which allows the voltage and the clock

This work was substantially supported by the State Key Program of National Natural Science of China
under Grant No. 61332001, National Natural Science Foundation of China under Grants No. 61173049 and
No. 61300045, and China Postdoctoral Science Foundation under Grant No. 2013M531696.
Authors’ addresses: G. Li, Y. Zhang, and J. Li (corresponding author), School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China; emails: guohuili@
hust.edu.cn, zhangyihust@gmail.com, jianjunli@hust.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1539-9087/2015/09-ART74 $15.00
DOI: http://dx.doi.org/10.1145/2744197

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

http://dx.doi.org/10.1145/2744197
http://dx.doi.org/10.1145/2744197

74:2 G. Li et al.

frequency to be decreased, to trade time for energy [Aydin et al. 2004; Pillai and Shin
2001; Qadi et al. 2003; Saewong and Rajkumar 2003; Le Sueur and Heiser 2010].
Another commonly used technique, called DPM, is feasible due to the provision of
the Advanced Configuration and Power Interface (ACPI). With DPM, off-chip devices
can be put into low-power (sleep) states when their idle time is longer than a given
threshold [Cheng and Goddard 2006a; Swaminathan and Chakrabarty 2005], which
is usually defined as break-even time [Devadas and Aydin 2012], and represents the
minimum inactivity time required to compensate for the cost of entering and exiting
the idle state.

In this article, we study how to minimize the system-level energy consumption for
periodic real-time tasks with implicit deadlines. Our primary objective in this work is
to design a novel and efficient online DPM scheme, in which the DPM effectiveness can
be maximized. It has been widely recognized that in order to achieve the system-level
energy minimization, DVFS and DPM should be considered in a subtle way. In fact,
in the past few years, the integration of DVFS and DPM has been well studied and a
lot of research effort has also been reported. Some examples are SYS-EDF [Cheng and
Goddard 2005], DFR-RMS [Devadas and Aydin 2008b], and DFR-EDF [Devadas and
Aydin 2010]. Nevertheless, the DPM components in almost all these approaches are
implemented based on the stochastic and predictive techniques. The representative
DPM-only scheme EEDS [Cheng and Goddard 2006b] is also a predication-based one.
The principle behind these DPM schemes is to defer task execution as much as pos-
sible but without jeopardizing the schedulability of the task set to form big slacks for
performing device state transition. Though effective, these DPM schemes did not fully
explore the relationship between the maximum possible idle interval for a device and
the tasks that need to access that device, and thus still have much room for improve-
ment in terms of energy savings. To our best knowledge, there is no work relying on the
relationship mentioned previously to design DPM schemes in the literature up to now.
In this work, we make the first attempt to design new DPM schemes by characterizing
such kind of relationship, and relying on it to guide the schedule of the task instances
at runtime.

Contributions of this research. In this article, we develop new DPM schemes by iden-
tifying the maximum possible idle interval for devices. Since we focus on minimizing
the system-level energy consumption, we assume a general energy model where the
CPU and device power consumptions, as well as the device break-even time and tran-
sition overheads are considered. A critical building block for our DPM schemes is the
introduction of Crenel Interval (CI), in which we merge all the small slacks to form a big
one by scheduling the workloads residing in the CI to the two sides of it. We call such
an Interval CI since it has a Crenel-like shape. Since a device’s slack time is decided
by the tasks that need to access it, in this article, we first show how to identify Crenel
Interval for each device, to ensure that for each task needed to access that device, there
is only one deadline in each Crenel Interval. In this way, CI indicates the maximum
duration that the device can be in idle state.

Then, targeting at a single device model where all the tasks access the same and
only device, we propose a scheduling algorithm, namely, CI-EDF, to schedule the task
instances in each Crenel Interval to guarantee the schedulability of the task set. CI-
EDF has a time complexity of O(n2) (n is the number of the tasks in the system), and
thus is quite efficient as an online scheme. Since a long and continuous slack is reserved
in each CI, CI-EDF exhibits good performance in energy savings.

Next, targeting at a more general multiple device model where a task may access
multiple devices and a device may also be accessed by multiple tasks, we propose an-
other scheduling algorithm, namely, CI-EDFm, which has a time complexity of O(nm) (m
is the number of the devices in the system). In CI-EDFm, we compute Device Crenel

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:3

Intervals (DCIs) for each device, based on the properties of the tasks that need to access
the device. Considering that a task instance may need to access multiple devices and
thus be located in multiple DCIs, we design a weighting-factor-based strategy to help
determine whether the task instance should be delayed or not, with the objective of
minimizing the energy consumption.

Since our objective is to minimize the system-level energy consumption, we show
that DVFS techniques can also be integrated easily with our DPM schemes to further
reduce the energy consumption. Moreover, considering that the task actual execution
time is usually less than its Worst-Case Execution Time (WCET), we further briefly
introduce a dynamic slack reclamation scheme for more energy savings.

Finally, we evaluate our schemes versus some existing algorithms with comparable
quality over a wide spectrum of system/application parameters. The experimental eval-
uation with realistic processor and device specifications indicates that our schemes can
result in significant energy saving compared to the state of the art. The experimental
evaluation of various system profiles also shows that our schemes maintain a robust
performance.

Organization. We organize the remainder of this article as follows. Section 2 reviews
related work. Section 3 describes our processor, task and power models, along with some
assumptions we make. Section 4 introduces the concept of Crenel Interval and describes
how to identify Crenel Intervals. Section 5 details the CI-EDF and CI-EDFm algorithms,
and briefly introduces the integration of DVFS with the proposed DPM schemes, as
well as the dynamic slack reclaiming policy. Section 6 presents and discusses our
experimental results, and finally, Section 7 draws a conclusion.

2. RELATED WORK

DVFS plays an important role in saving processor energy consumption, which has be-
come a critical problem in embedded and mobile systems with real-time constraint in
recent years. With DVFS, the processor can execute at different voltage and frequency
levels. Since the CPU power consumption increases in a convex fashion with the fre-
quency, DVFS helps to significantly reduce the CPU dynamic energy consumption. The
problem of minimizing the energy consumption while satisfying the timing constraints
has been extensively studied in recent past for various task/system models. Specifically,
researchers have tackled the energy reduction problem for both periodic and aperiodic
real-time tasks [Aydin et al. 2001; Quan and Hu 2003; Saewong and Rajkumar 2003;
Yao et al. 1995], as well as tasks with critical sections [Jejurikar and Gupta 2006;
Zhang and Chanson 2004] or fully nonpreemptive tasks [Jejurikar and Gupta 2005b;
Li et al. 2013], scheduling using a hybrid of the slowdown and shutdown strategies [Lee
et al. 2003; Quan et al. 2004] energy reduction based on slack reclamation [Quan and
Hu 2003; Jejurikar and Gupta 2005a; Pillai and Shin 2001], energy-aware schedul-
ing with reliability requirements [Zhang and Chakrabarty 2004; Zhu and Aydin 2009;
Zhu et al. 2004], multiprocessor energy-efficient scheduling [AlEnawy and Aydin 2005;
Chen et al. 2008], temperature-aware scheduling [Fisher et al. 2009; Chen et al. 2009],
and energy-aware scheduling at a broader system level [Aydin et al. 2006; Zhuo and
Chakrabarti 2005].

DPM is another commonly used energy management technique, aiming at reduc-
ing device energy consumption. With DPM, reserving long sleep interval is the key
factor for effective power management of devices. In Swaminathan et al. [2001] and
Swaminathan and Chakrabarty [2003], Swaminathan and Chakrabarty presented a
heuristic-based DPM algorithm called Low Energy Device Scheduler (LEDES). But
LEDES is under the constraints that the start times of the tasks are fixed and cannot
be changed at runtime. In Swaminathan and Chakrabarty [2005], Swaminathan and
Chakrabarty proposed an offline algorithm, called Maximum Device Overlaps (MDO),

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:4 G. Li et al.

to generate near-optimal solutions in polynomial time. MDO involves relatively high
time complexity and cannot be adapted to the case where job release and execution
times may vary considerably. In Cheng and Goddard [2006a, 2006b], Cheng and God-
dard presented an Energy Efficient Device Scheduling (EEDS) framework, which is
based on exploiting task and device slacks to create long idle intervals, in preemptive
and nonpreemptive environments. In Devadas and Aydin [2008b], Devadas and Aydin
proposed the notation of Device Forbidden Regions (DFRs) by explicitly and period-
ically enforcing intervals of DFRs for each device at runtime, without causing any
deadline missing. By explicitly and periodically enforcing such DFRs for each device
at runtime, DFR-RMS can achieve significant energy savings. In Awan and Petters
[2012], Awan and Petters first explored online intratask device scheduling for hard
real-time systems, by proposing a Static Slack Container (SSC) algorithm based on the
model where each device is associated with exactly one task. SSC can get significant
energy savings, and at the same time, has a very low time complexity O(n), which is
lower than existing RT-DPM algorithms.

Some works have also tried to integrate the DPM and DVFS to save system-level
energy consumption. For the frame-based task systems, Devadas and Aydin explored
in Devadas and Aydin [2008a, 2012] the interplay of DVFS and DPM, and proposed a
provably optimal algorithm to determine the optimal CPU frequency as well as device
state transition decisions to minimize the system-level energy. In Kong et al. [2010],
Kong et al. developed optimization algorithms based on 0-1 integer nonlinear program-
ming for different system configurations. In Gerards and Kuper [2013], Gerards and
Kuper presented a schedule method for a frame-based system that globally minimizes
the energy consumption for DPM and the combination of DPM and DVFS where the
interplay between DPM and DVFS is taken into account. All the previously mentioned
works are targeted at frame-based systems, and are not suitable for general periodic
task sets. The two typical works for periodic task systems are SYS-EDF and DFR-
EDF. Based on the general periodic task model, Cheng and Goddard [2005] proposed
a practical system-level energy management heuristic method called SYS-EDF. The
DVFS component of SYS-EDF is based on the concept of energy efficient scaling, while
the DPM component utilizes the next device usage time predications. In Devadas and
Aydin [2010], Devadas and Aydin extended their DFR approach to Earliets Deadline
First (EDF) scheduling (DFR-EDF). Before adding a new forbidden region, DFR-EDF
considers the expected change in system energy consumption to obtain the maximum
system energy savings. DFR-EDF establishes the relationship between DPM and DVFS
and can get remarkable energy savings.

3. MODELS AND ASSUMPTIONS

3.1. Processor and Task Model

We consider a DVS-capable uniprocessor where the operating frequency can be scaled
within the discrete range [fmin, fmax]. It is now common knowledge that changing
from one frequency level to another takes a fixed amount of time (ranges from tens
of microseconds to tens of milliseconds), referred to as the transition (or switch) over-
head [Mochocki et al. 2007]. In this work, we use �t to denote the time overhead of each
frequency transition. The frequency that minimizes the processor energy consumption
per cycle is called the critical speed when considering both dynamic and static energy
consumption [Jejurikar et al. 2004]. Since executing below the critical speed consumes
more time and energy, fmin is set to be equal to the critical speed. For convenience, we
normalize the frequency value with respect to fmax, that is, fmax = 1.

The system workload consists of a set of independent periodic tasks T = {τ1, . . . , τn}.
Each task τi is denoted by a tuple (Ci, Di, Ti), where Ci denotes the WCET of τi at

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:5

the maximum processor frequency fmax, and Di and Ti denote the relative deadline
and period of τi, respectively. The WCET of τi under frequency fmax is denoted by
Ci = xi + yi, where xi indicates the frequency-dependent on-chip workload, which
scales linearly with frequency, and yi represents the frequency-independent off-chip
workload, which does not scale with frequency. Thus, at frequency f , the WCET of τi
is Ci(f) = xi

f + yi. For each τi, we assume Di = Ti. The jth instance of τi is denoted by
τi, j , and τi, j ’s deadline is denoted by di, j . T is sorted in ascending order of period, that
is, if i < j, then Ti ≤ Tj . The first instances of all tasks are assumed to release at time
0. At any time, task instances eligible to execute are scheduled by the preemptive EDF
scheduling policy, and the priority of instance τi, j is denoted by Pr(τi, j).

3.2. Device Model

We assume there are totally m devices {D1,D2, . . . ,Dm} in the system and each device
has at least two states: an active state and a sleep (low-power) state. The devices cannot
be turned off completely, but can transition from active to sleep. All devices needed by
the real-time tasks must be in active state until no task is in execution. This assumption
is reasonable given that the device state transitions typically involve nontrivial costs
and it is fairly difficult to predict when a running application will re-request a specific
device during execution [Cheng and Goddard 2006a; Swaminathan and Chakrabarty
2005; Devadas and Aydin 2012]. For a device, we use device slack to denote the time
interval during which no task uses this device.

Similar to Devadas and Aydin [2012], we use Pi
a and Pi

s to denote the power consump-
tion of Di in active and sleep states, respectively. The energy overhead and time cost
during the device state transition cannot be ignored; we use Ei

sw to denote the energy
overhead of transitioning Di from active to sleep and back from sleep to active. Simi-
larly, T i

sw indicates the total transition time consumed between active and sleep states.
Due to the constraints imposed by device transition delays, Di cannot be transitioned
between active and sleep states over an interval length smaller than T i

sw. Moreover, in
order to guarantee that the device transition is energy efficient (as compared to keep-
ing Di continuously in active state), the minimum length of idle interval over which
transitioning a device should be no less than Ei

sw−Pi
s ·T i

sw
Pi

a−Pi
s

. Thus, the break-even time Bi of

Di can be computed by Bi = max(T i
sw,

Ei
sw−Pi

s ·T i
sw

Pi
a−Pi

s
) [Cheng and Goddard 2005, 2006a].

3.3. Energy Model

We mainly consider two parts of the total system energy consumption. The first part
is the on-chip cost, which is mainly consumed by CPU, and the other part is the off-
chip cost, which does not scale with the CPU frequency and is mainly consumed by
memory and I/O devices. Thus, the total energy consumption Etot can be divided into
CPU energy and device energy, that is,

Etot = Ecpu +
m∑

i=1

Ei
device. (1)

In a CMOS circuit processor, there are two major sources of power consumption
[Jejurikar et al. 2004]: (1) Dynamic power consumption Pac, which mainly results
from the charging and discharging of gates on the circuits. Pac is generally modeled
as a convex function with respect to the frequency: Pac(f) = Cef f 3, where Cef is the
effective switching capacitance. (2) Static power consumption Pdc, which mainly results
from leakage current and does not scale with frequency. In addition to the dynamic
and static power consumption, there is an inherent power cost in keeping the processor
on, which is denoted by Pon. Considering the preceding three components, the total

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:6 G. Li et al.

processor power consumption Pcpu is given by

Pcpu(f) = Pac(f) + Pdc + Pon. (2)

The processor energy consumption Ecpu can be computed by Ecpu = Pcpu(f) · C
f .

The device energy Ei
device of Di consists of three parts. The first part is the energy

consumed by device state transition, that is, the energy required to transmit a device
from active to sleep state and then backwards. The second part is the energy consumed
by a device in the sleep state. The third part is energy consumption by a device in the
active state, and this part scales with the execution time C.

4. IDENTIFYING CRENEL INTERVALS

Periodic task scheduling may generate some small slacks, which are not long enough
to make an energy-efficient state transition for devices. Even in certain cases, some of
these slacks can be used to transition devices into low-power state; the time durations
the devices stay in sleep state are usually very short, which makes the energy savings
not significant.

In this article, we introduce a novel approach to the online real-time DPM problem.
Considering that creating long device sleep intervals is the key for effective power
management, we explicitly create long intervals for the devices at runtime. These
intervals, called Crenel Intervals (CIs), each consist of three parts in order. In the first
and third parts, all the applications are in execution and hence, all the devices are in
the active state. In the second (middle) part, no task instance is in execution. Therefore,
if the length of this part is longer than the break-even times, the corresponding devices
can be put into sleep state to save energy. In our method, we first identify all the Crenel
Intervals. Next, for each CI, we schedule the workloads residing in the CI to both sides
of it to satisfy their time constraints, so as to form a long and continuous slack in
the middle. In this section, we first introduce how to identify all the Crenel Intervals;
scheduling of the task instances in each single Crenel Interval is left to Section 5.

4.1. Motivation Example

We first give an example to illustrate the motivation of our method.

Example 1. Consider the following three periodic tasks specified with their
worst-case execution times, relative deadlines, and periods: τ1 = (10, 40, 40), τ2 =
(10, 60, 60), τ3 = (10, 80, 80) (all in ms). Device D1 is used by all three tasks, and the
device specification comes from Cheng and Goddard [2006a]: Fujitsu 2300AT Hard disk
with break-even time B1 = 40ms.

Figure 1(a) depicts the EDF schedule of the task set during the first hyperperiod
(240). It can be seen that from time instant t = 0 to 240, there are seven slacks, that
is, S1 = S2 = S3 = S6 = 10, S4 = S5 = 20, and S7 = 30. Note that in this example,
no device state transition operation can be performed with DFR-EDF [Devadas and
Aydin 2010]. This is because in DFR-EDF, each forbidden region is characterized by a
length (or duration, denoted by �) that must be no shorter than the device break-even
time and no longer than the maximum laxity of a task set. Clearly, in this example, the
maximum laxity is 30, and the corresponding break-even time is 40, so we cannot find
a proper � to satisfy the condition.

Figure 1(b) shows the schedule with our Crenel-Interval-based scheduling method
for the same task set. In this schedule, the time interval (0, 240) is divided into three
CIs, which are (0, 80), (80, 160), and (160, 240), respectively. There are three slacks,
S10 = 30, S11 = 40, and S12 = 40, each of which resides in one CI. These three slacks
are derived by merging the small slacks in each Crenel Interval. For example, S10 is
obtained by merging S1, S2, and S3 in Figure 1(a). It is clear to see that the latter two

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:7

Fig. 1. Motivating example for CI-based DPM.

slacks (S11 and S12) can be used to put the device into sleep state since they are no
smaller than B1. As can be seen from Figure 1(b), for the given task set, our Crenel-
Interval-based scheduling method can help create long slacks but without jeopardizing
the schedulability of the task set (the task set is schedulable by our method in the first
hyperperiod).

4.2. Identifying Crenel Intervals

In the previous example, the three intervals (0, 80), (80, 160), and (160, 240) are called
Crenel Intervals, and the two end points of each Crenel Interval are called Crenel
Points. For presentation convenience, we use CI j to denote the j-th Crenel Interval,
and use tj−1 and tj to denote the start and end Crenel Points of CI j , respectively. For
example, t0 = 0 and t1 = 80 are the two Crenel Points of CI1. From here on, we use CI j
and (tj−1, tj) interchangeably when there is no ambiguity.

While the potential benefits of Crenel Interval for enhancing the effectiveness of
DPM are clear, it is imperative to make sure how to stipulate the Crenel Intervals and
how to schedule the task instances in each Crenel Interval so that they would not miss
deadlines. We start by partitioning the whole schedule into successive Crenel Intervals.
Since each Crenel Interval is determined by two Crenel Points, it is clear that deriving
the Crenel Intervals is essentially the same as computing the following Crenel Points
(start with t0 = 0) along the time line.

Now given a Crenel Point tj−1, we show how to find the next Crenel Point tj , so
that (tj−1, tj) can form a Crenel Interval. As argued before, it is wise to have a large
slack time so that the devices can be turned into sleep state, or remain in sleep state
for a longer time to save more energy. Intuitively, in a given time period, the smaller
the number of slacks, the bigger the size of the slacks. Motivated by this fact, when

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:8 G. Li et al.

Fig. 2. Example of identifying Crenel Point.

stipulating the Crenel Interval, we try to ensure that there is only one slack in it.
To achieve this goal, we need to ensure that for any task τi (1 ≤ i ≤ n), there are at
most two execution instances during a given Crenel Interval. If this premise holds, we
can schedule the two instances (if they exist) wisely in such a way that one instance
is executed at the beginning, and the other one is executed at the end of the Crenel
Interval. Then, in the middle of the Crenel Interval, a continuous slack interval can be
reserved. So now the problem is based on tj−1, how to set tj judiciously to make sure that
in interval (tj−1, tj), each task τi (1 ≤ i ≤ n) has at most two instances. Observation 1
gives us a hint on how to derive such a tj .

OBSERVATION 1. For any task τi (1 ≤ i ≤ n), if there is at most one deadline of τi
in interval (tj−1, tj), that is, there is at most one instance τi,k with deadline (k + 1)Ti
satisfying tj−1 < (k + 1)Ti < tj , then τi has at most two execution instances in CI j .

The preceding observation can be explained by contradiction. Suppose that during
the Crenel Interval (tj−1, tj), τi needs to meet two deadlines, say (k+ 1)Ti and (k+ 2)Ti,
where tj−1 < (k + 1)Ti < (k + 2)Ti < tj . Then in interval (tj−1, tj), three task instances,
τi,k, τi,k+1, and τi,k+2, may need to be executed, and this contradicts with the requirement
that in a Crenel Interval, there are at most two execution instances for each task τi.

Based on Observation 1, we give an example to illustrate how to calculate the next
Crenel Point based on the current one. Figure 2 depicts the EDF schedule of a task set
with two tasks τ1 and τ2, where C1 = C2 = 1, T1 = 4, and T2 = 5. Suppose the first
Critical Point is tj−1 = 8, and now we need to derive the next Critical Point tj . For τ1,
L1 = 16 is the largest value so that there is at most one deadline in interval (tj−1, L1).
We call L1 = 16 a candidate Crenel Point. For τ2, L2 = 15 is the largest value so that
there is at most one task instance deadline in interval (tj−1, L2) and L2 = 15 is also
called a candidate Crenel Point. From these two candidate Crenel Points, we choose
the minimum one, that is, L = min{L1, L2} = L2, as the next Crenel Point tj . Obviously,
L can guarantee that for both τ1 and τ2, there are at most two instances in (tj−1, L).

We now formally show how to derive the next Crenel Point for the general case.
Without loss of generality, suppose tj−1 is a given Crenel Point, the next Crenel Point
tj can be calculated as follows. For a task τi, we use αi to denote the quantity relations
between tj−1 and Ti, that is, αi = tj−1

Ti
. If αi is an integer, then the next candidate Crenel

Point, ti
j , is αiTi + 2Ti. If αi is not an integer, then the next candidate Crenel Point, ti

j ,
is �αi� Ti + Ti. In summary, we have

ti
j =

{
αiTi + 2Ti αi is an integer
�αi� Ti + Ti otherwise. (3)

Since when αi is not an integer, there is �αi� = �αi� + 1, the preceding two different
cases can be described in a uniform form, that is, ti

j can be calculated as follows:

ti
j = �αi� Ti + 2Ti =

⌊
tj−1

Ti

⌋
Ti + 2Ti. (4)

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:9

Fig. 3. Classification of task instances in a Crenel Interval.

We now prove the Crenel Point ti
j computed by the preceding equation can guarantee

that there is only one deadline for τi in (tj−1, ti
j).

LEMMA 1. For a task τi , given a Crenel Point tj−1, if ti
j is calculated by Equation (4),

then there is only one deadline in (tj−1, ti
j).

PROOF. If αi is an integer, then αiTi is a deadline, and αiTi + 2Ti is the second
deadline after αiTi, so in interval (tj−1, αiTi + 2Ti), there is only one deadline, which is
αiTi + Ti. If αi is not an integer, then �αi� Ti is the first deadline from time point tj−1,
so in interval (tj−1, �αi� Ti + Ti), there is only one deadline �αi� Ti.

Based on Lemma 1 and Observation 1, we can conclude that for τi, there are at most
two instances of execution during the Crenel Interval (tj−1, ti

j). To guarantee there are
at most two instances for each task in the Crenel Interval, we choose the minimum one
from all the candidate Crenel Points as the next Crenel Point, that is,

tj = min
{
ti

j

}n
i=1 = min

{⌊
tj−1

Ti

⌋
Ti + 2Ti

}n

i=1
. (5)

It is not difficult to see that the Crenel Point can be computed in O(n) time. Hence, we
can identify the Crenel Intervals in an online fashion.

5. SCHEDULING TASK INSTANCE IN EACH CRENEL INTERVAL

In the previous section, we have showed how to identify the Crenel Intervals. In this
section, we present our method on scheduling the task instances in each Crenel Inter-
val, so that all task deadlines can be met while DPM and DVFS can be performed to
save energy. We first introduce the classification of the task instances in each Crenel
Interval in Section 5.1, and then detail the CI-EDF and CI-EDFm scheduling algo-
rithms in Sections 5.2 and 5.3, respectively. Integration of DVFS with the proposed
DPM schemes and dynamic slack reclaiming are shown in Sections 5.4 and 5.5, re-
spectively. Finally, we compare the complexities of the proposed CI-EDF and CI-EDFm

algorithms with some existing approaches in Section 5.6.

5.1. Classification of Task Instances

For a task instance τi,k whose lifespan overlaps with a Crenel Interval CI j , the rela-
tionship between τi,k and CI j can be classified into three cases, as depicted in Figure 3
and detailed in the following.

—Case 1: kTi ≤ tj−1 < (k + 1) Ti ≤ tj .
In this case, τi,k should finish its execution in CI j . Note that if kTi < tj−1, then some
workloads of τi,k may have been executed in previous Crenel Intervals and the left
workloads of τi,k should be finished before its deadline (k + 1)Ti, which is located in
CI j . We call τi,k a mandatory instance in CI j . Since all the mandatory task instances
are released at or before tj−1, the workloads of these task instances can be executed
continuously at the beginning of CI j .

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:10 G. Li et al.

—Case 2: kTi ≤ tj−1 < tj < (k + 1) Ti.
In this case, the deadline of τi,k, that is, (k + 1)Ti, is after the Crenel Point tj . Part
of the workloads of τi,k can be optionally executed in CI j and we call τi,k an optional
instance in CI j . An optional task instance τi,k may not finish its execution in CI j , and
the quantity of its workloads assigned to be executed in CI j are determined by the
priorities of other optional task instances, as well as their workloads scheduled to
be executed in CI j . Since the deadlines of all the optional task instances are after tj ,
these task instances can be executed continuously at the end of CI j .

—Case 3: tj−1 < kTi < tj ≤ (k + 1) Ti.
In this case, the release time of τi,k is in CI j . If tj < (k + 1) T , it is obvious that τi,k is
an optional task instance in CI j . Otherwise, if tj = (k + 1) T , then τi,k should finish
its workloads in CI j . It seems that in this situation τi,k should be considered as a
mandatory instance and scheduled to execute at the beginning of CI j . But, if we do
like this, there is a risk that when it is the turn for τi,k to execute, τi,k has not been
released. Then, there may exist two slacks in CI j . Hence, in this case, all the task
instances are considered as optional.

Based on the preceding classification, we have the following observation.

OBSERVATION 2. In one Crenel Interval, for each task τi , there is no more than one
mandatory instance, and no more than one optional instance.

We now given an example to illustrate how to classify the task instances in a Crenel
Interval.

Example 2. Consider three periodic tasks τ = {τ1, τ2, τ3} with the following parame-
ters: C1 = 1, C2 = 3, C3 = 4, T1 = 4, T2 = 11, and T3 = 20. t0 = 0 is the first Crenel
Point, and t1 = 8, t2 = 16, and t3 = 24 are the Crenel Points derived by Equation (5).
According to our classification, τm

1 is the mandatory instance (Case 1), while τ o
1 (Case 3),

τ o
2 (Case 3), and τ o

3 (Case 2) are the optional instances in CI2, as shown in Figure 4.
Note that although τ o

1 must finish its execution in CI2, it is classified as an optional
instance, since by Observation 2, there is at most one mandatory instance for each task
in each Crenel Interval.

5.2. Scheduling Tasks in Each Crenel Interval

We first consider a simple case where there is only one device in the system, and all the
tasks need to access this device. Before giving the detail of our scheduling algorithm,
we introduce some notations (summarized in Table I). Since there is no more than
one mandatory instance and no more than one optional instance for each task in each
Crenel Interval, in the following discussion, we use τm

i and τ o
i to denote the mandatory

and optional instances of τi, respectively, and use Wm
i and Wo

i to denote the respective
workloads of τm

i and τ o
i , which are actually assigned to execute in the current Crenel

Interval. Further, we use RW j
i to denote the remaining workloads from previous CIs,

which are to be executed (or partly) in CI j . We now consider τm
i and τ o

i in CI j = (tj−1, tj).

—For τm
i , since the mandatory instance is required to finish its execution in each Crenel

Interval, it is clear that if τm
i is released before tj−1, then Wm

i = RW j
i . Otherwise, if

τm
i is released at tj−1, then Wm

i = Ci.
—For τ o

i , since some workloads of τ o
i may be delayed to execute in the following Crenel

Intervals, we cannot determine Wo
i at this moment. We use MW j

i to denote the
maximum workloads that can be executed in CI j . If τ o

i is released before tj−1, then
MW j

i = RW j
i . Otherwise, if τ o

i is released in the current Crenel Interval, we have
MW j

i = Ci.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:11

Fig. 4. Schedule produced by (a) EDF and (b) CI-based approaches.

Table I. Symbols and Definitions

Symbol Definition

τm
i The mandatory instance of τi in a Crenel Interval

τ o
i The optional instance of τi in a Crenel Interval

RW j
i Remaining workloads from previous CIs to be executed in CI j

MW j
i Maximum workloads of τ o

i that can be executed in CI j

Wm
i Workloads of τm

i need to be executed in a Crenel Interval
Wo

i Workloads of τ o
i need to be executed in a Crenel Interval

Oj The set of optional instances in CI j

Ps
j (τi,k) Overlapping start point

Pe
j (τi,k) Overlapping end point

Lj (τi,k) Overlapping time length

Since we mainly focus on optional instances, for presentation convenience, we use Oj
to denote the set of optional instances in CI j . Now our major concern is how to calculate
Wo

i for τ o
i ; we start by giving the following definition.

Definition 1. For a task instance τi,k whose execution overlaps with the Crenel
Interval CI j , its overlapping start point Ps

j (τi,k), overlapping end point Pe
j (τi,k), and

overlapping length Lj(τ o
i,k) can be defined as follows:

Ps
j (τi,k) = max(tj−1, kTi),

Pe
j (τi,k) = min(tj, (k + 1)Ti),

Lj(τi,k) = Pe
j (τi,k) − Ps

j (τi,k).
(6)

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:12 G. Li et al.

Fig. 5. Execution of optional instances.

Note that according to our classification of task instances introduced in Section 5.1,
the overlapping start point of the mandatory instance τm

i is tj−1, and the overlapping
end point of the optional instance τ o

i is tj .
In our method, we use the EDF rule to identify priorities for all the task in-

stances. From our classification of task instances, we know that in a Crenel Inter-
val, the deadlines of the mandatory instances are always earlier than that of the
optional instances. Hence, in each Crenel Interval, no mandatory instances will be
preempted by optional instances, which means the execution of the mandatory in-
stances are continuous and the optional instances only become eligible to execute after
tj−1 + ∑n

i=1 Wm
i .

Now it is clear that the schedules of the mandatory and optional instances are
independent in each Crenel Interval. Moreover, when computing Wo

i for τ o
i in a Crenel

Interval, we only need to consider the optional task instances whose priorities are
higher than that of τ o

i . For the optional task instance τ o
l whose priority is lower than

that of τ o
i , we can regard Wo

l = 0. Since τ o
i only becomes eligible to execute after

tj−1 + ∑n
i=1 Wm

i , we have Ps
j (τ o

i,k) = max(tj−1 + ∑n
i=1 Wm

i , kTi). As mentioned previously,
Pe

j (τ o
i,k) = tj . Then, Lj(τ o

i,k) can be computed by

Lj
(
τ o

i,k

) = tj − Ps
j

(
τ o

i,k

)
= min

(
tj − tj−1 −

n∑
i=1

Wm
i , tj −

⌊
tj−1

Ti

⌋
Ti

)
.

(7)

Note that in CI j , the optional instances’ overlapping start points are disordered with
respect to their subscript. For presentation convenience, we use a new set {Ps

j (τ o
si

)}n
i=1 to

denote the overlapping start points, so that they are in an ordered fashion with respect
to the new sub-subscript, that is, if a < b, then Ps

j (τ o
sa

) < Ps
j (τ o

sb
).

Now we consider how to compute Wo
si

for τ o
si

. Since we use EDF to identify pri-
orities for the optional task instances, when accounting for the maximum interfer-
ences from tasks with higher priorities than τ o

si
, we need to consider the following two

cases.

—The higher priority task instances whose overlapping start points are before Ps
j (τ o

si
).

These task instances may have some workloads to be executed after Ps
j (τ o

si
). For

simplicity, we use �i to represent these workloads. In Figure 5, τ o
si−1

(with priority
higher than τ o

si
) is released at Ps

j (τ o
si−1

), while τ o
si

is released at Ps
j (τ o

si
), which is after

Ps
j (τ o

si−1
). So τ o

si
cannot start its execution until τ o

si−1
finishes. In this figure, �i is part

of Wo
si−1

that is executed after Ps
j (τ o

si
).

—The higher priority task instances whose overlapping start points are after Ps
j (τ o

si
),

just as τsn shown in Figure 5. Obviously, these task instances’ overlapping time
lengths are included in Lj(τ o

si
) and they always consume the time budget before tj .

Hence, the sum workloads of this part is
∑i

k=n Wo
sk

in CI j .

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:13

Then, by summing up the maximum interferences, we can get the maximum time
budget which can be used by τ o

si
as follows:

Wo
si

= min

⎧⎨
⎩

MW j
si ,

tj − Ps
j

(
τ o

si

) − �i −
i∑

k=n
Wo

sk
.

(8)

At first glance, it seems that we cannot compute Wo
si

, since �i is unknown at this
moment. But actually, by the definition of �i, we can use �i−1 to represent �i. As
shown in Figure 5, in interval (Ps

j (τ o
si−1

), Ps
j (τ o

si
)), there are two parts of workloads that

need to be executed: (1) �i−1; (2) the assigned workloads Wo
si−1

for optional instance
τ o

si−1
. Then, �i can be described as follows.

�i = max
(
0, Wo

si−1
+ �i−1 − (

Ps
j

(
τ o

si

) − Ps
j

(
τ o

si−1

)))
. (9)

Consequently, Wo
si

can be represented as

Wo
si

= min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MW j
si ,

tj − Ps
j

(
τ o

si

) −
i∑

k=n
Wo

sk
,

tj − Ps
j

(
τ o

si−1

) −
i−1∑
k=n

Wo
sk

− �i−1.

(10)

If we repeat the replacement until �1, then Wo
si

can be represented as follows.

Wo
si

= min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MW j
si ,

tj − Ps
j

(
τ o

si

) −
i∑

k=n
Wo

sk
,

tj − Ps
j

(
τ o

si−1

) −
i−1∑
k=n

Wo
sk
,

...

tj − Ps
j

(
τ o

s1

) −
1∑

k=n
Wo

sk
− �1.

(11)

When i = 1, since τ o
s1

is the first released optional task instance and no other optional
instances will interrupt its execution, we have �1 = 0. By �1 = 0 and Lj(τ o

si
) =

tj − Ps
j (τ o

si
), Formula (11) can be represented as follows for simplicity.

Wo
si

= min

⎛
⎝MW j

si
,

{
Lj

(
τ o

sq

) −
q∑

k=n

Wo
sk

}1

q=i

⎞
⎠ . (12)

By now, we have finished introducing our method on computing the actual workloads
to be executed in a Crenel Interval for an optional instance. To help understand, we
give an example to show how to compute Wo

si
in the following.

Illustrative Example. As shown in Figure 4(b), CI2 is a Crenel Interval, in which τ o
s1

, τ o
s2

,
and τ o

s3
are three optional instances. Note here for this example, Ps

j (τ o
s3

) = 12, Ps
j (τ o

s2
) =

11, Ps
j (τ o

s1
) = 9, Lj(τ o

s3
) = 4, Lj(τ o

s2
) = 5, and Lj(τ o

s1
) = 7, where s1 = 3, s2 = 2, and s3 = 1.

The priority order of these optional instances is p(τ o
s3

) > p(τ o
s1

) > p(τ o
s2

). We calculate
Wo

i (1 ≤ i ≤ 3) according to their priorities, from high to low. Table II presents the details

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:14 G. Li et al.

Table II. Calculating Wo
i

Task instance Value of Wo
i

τ o
1 Wo

1 = min(1, 4, 5, 7) = 1, Wo
2 = 0, Wo

3 = 0

τ o
3 Wo

1 = 1, Wo
2 = 0, Wo

3 = min(1, 6) = 1

τ o
2 Wo

1 = 1, Wo
2 = min(3, 5, 4) = 3, Wo

3 = 1

of calculating each Wo
i . We first compute Wo

1 . Since at first there is Wo
1 = Wo

2 = Wo
3 = 0,

by expression (12), we can get that Wo
1 = Wo

s3
= min(MW2

1 , Lj(τ o
s3

), Lj(τ o
s2

), Lj(τ o
s1

)).
Since MW2

1 = 1, we have Wo
1 = min(1, 4, 5, 7) = 1. Next, we proceed to calculate

Wo
3 ; note here Wo

1 = 1, Wo
2 = 0, and MW2

3 = 1. Then by expression (12), we have
Wo

3 = Wo
s1

= min(MW2
3 , Lj(τ o

3) − ∑1
k=n Wo

k) = min(1, 7 − 1) = 1. Finally, Wo
2 can be

computed in a similar way.

Crenel-Interval-Based Scheduling with EDF (CI-EDF). Now we introduce our
scheduling algorithm CI-EDF. With CI-EDF, all the mandatory and optional instances
are scheduled by the EDF scheme. Specifically, in a Crenel Interval (tj−1, tj), all the
mandatory instances are executed immediately at tj−1. However, for optional instances,
they only become eligible to execute at time instance γ = tj − ∑n

k=1 Wo
k . By scheduling

the task instances in such a way, there is a slack in the middle of each CI. Depending on
whether the length of the slack is larger than the break-even time, the corresponding
devices can be put into low-power state to save energy.

Algorithm 1 gives the pseudocode of computing γ in CI j , with RW j
i (1 ≤ i ≤ n) as

the input. First, in lines 2–13, we classify the task instances according to the method
described in Section 5.1, to determine their workloads need to be executed (for manda-
tory instances), or the maximum workloads can be executed (for optional instances).
Note here we consider Case 1 and Case 3 together in lines 3–9, since in both cases,
there is one and only one deadline in CI j . Case 2 is addressed in lines 10 and 11. Next,
we compute the overlapping length for each optional instance (lines 14–16). Finally, we
calculate the workloads need to be executed for all the optional instances (lines 17–24).
Afterward, γ can be obtained (line 25).

Now we need to prove the correctness of CI-EDF on guaranteeing all task deadlines;
we first introduce two lemmas.

LEMMA 2. By the CI-EDF scheme, there is no idle time in interval (γ, tj).

PROOF. We prove it by contradiction. Suppose in interval (γ, tj), there is an idle
interval (t, t + ε). It is clear no optional instances will release during this idle interval.
Now we divide the optional instances into two groups, A and B. The instances in
group A are released before t, and the instances in group B are released at or after
t + ε. For each optional instance τ o

a in group A, we use Ao
a to denote the maximum

available execution time of τ o
a . Since all the task instances in group A have finished

their workloads, we have Ao
a = MW j

a ≥ Wo
a . For each instance τ o

b in group B, we use Ao
b

to denote the maximum available execution time of τ o
b . It is clear there is Ao

b = Wo
b . In

summary, we have
∑n

i=1 Ao
i ≥ ∑n

i=1 Wo
i = tj − γ , which means there are at least tj − γ

optional workload requirements in (tj−1, tj).
On the other hand, as the interval (t, t + ε) is idle, we know there are no workload

requirements at time t, which implies that there are at most t − γ optional workload
requirements before t. Moreover, in interval (t + ε, tj), there are at most tj −t−ε optional
instance workload requirements that can be executed. So in (tj−1, tj), there are at most
tj − γ − ε optional workloads that need to be executed. But as mentioned previously,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:15

ALGORITHM 1: Calculate γ

input: RW j
i (1 ≤ i ≤ n);

output: γ .
1: Initialize MW j

i , Wm
i , and Wo

i (1 ≤ i ≤ n) to be 0;
2: for (i = 1; i ≤ n; i + +) do
3: if

⌊ tj−1
Ti

⌋
Ti + Ti ≤ tj then

4: MW j
i = Ci ;

5: if
⌊ tj−1

Ti

⌋
Ti == tj−1 then

6: Wm
i = Ci ;

7: else
8: Wm

i = RW j
i ;

9: end if
10: else
11: MW j

i = RW j
i ;

12: end if
13: end for
14: for (i = 1; i ≤ n; i + +) do
15: Lj

(
τ o

i

) = min
(
tj − ⌊ tj−1

Ti

⌋
Ti, tj − tj−1 − ∑n

i=1 Wm
i

)
;

16: end for
17: Map τ o

k (1 ≤ k ≤ n) in Oj to τ o
si

(1 ≤ i ≤ n) so that {Ps
j (τ o

si
)}n

i=1 is nondecreasing with respect
to i;

18: while (τ o
si

has the earliest deadline in Oj) do
19: for (q = i; q ≥ 1; q − −) do

20: Wo
si

= min
(

MW j
si
, Lj

(
τ o

sq

) −
q∑

k=n
Wo

sk

)
;

21: end for
22: RW j+1

si
= MW j

si
− Wo

si
;

23: Remove τ o
si

from Oj ;
24: end while
25: Return γ = tj − ∑n

i=1 Wo
si

;

there are at least tj − γ optional workload requirements in (tj−1, tj). We thus come to a
contradiction and the lemma follows.

By the previous lemma, we know all the tj − γ = ∑n
k=1 Wo

k optional workloads can be
finished before tj .

LEMMA 3. For each Crenel Interval CI j , RW j
i under CI-EDF scheduling, denoted by

(RW j
i)CI, is the same as RW j

i under EDF scheduling, that is, (RW j
i)EDF.

PROOF. We only need to consider optional instances, since for mandatory instances,
they need to finish their execution requirements in CI j−1, no matter under EDF or CI-
EDF, which indicates that the mandatory instances would not impact the calculation
of RW j

i .
Now we use mathematical induction to prove the claim for optional instances. When

j = 1, that is, in the first Crenel Interval, since there are no CIs before CI1, it is
obvious that (RW1

i)EDF = (RW1
i)CI = 0. Without loss of generality, suppose when j = k,

(RWk
i)EDF = (RWk

i)CI also holds; now we need to prove (RWk+1
i)EDF = (RWk+1

i)CI . From
Lemma 2, we know in each CI, the workloads of the optional instance τ o

i under both
EDF and CI-EDF, denoted by (Wo

i)EDF and (Wo
i)CI , respectively, are the same, that

is, (Wo
i)EDF = (Wo

i)CI . Moreover, note that in CIk, only the optional instances can be

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:16 G. Li et al.

delayed to execute in CIk+1, and performed as RWk+1
i . So now regarding τ o

i , we have
two cases to be considered: (1) If τ o

i is released before tk−1, then RWk+1
i = MWk

i − Wo
i ,

under both EDF and CI-EDF. In this case, no instances of τi will be released, hence
MWk

i = RWk
i . (2) If τ o

i is released in CIk, then we have RWk+1
i = Ci − Wo

i , under both
EDF and CI-EDF scheduling. By (RWk

i)EDF = (RWk
i)CI and (Wo

i)EDF = (Wo
i)CI , we can

get that (RWk+1
i)EDF = (RWk+1

i)CI . The lemma is proved.

Now we are ready to show the correctness of CI-EDF on guaranteeing all task
deadlines.

THEOREM 1. With the workloads computed by Equation (12), the task set is schedulable
under CI-EDF, provided that

∑ Ci
Ti

≤ 1.

PROOF. Since we consider an implicit deadline task set, it is clear if
∑ Ci

Ti
≤ 1, then

the task set is EDF schedulable. Without loss of generality, we consider an arbitrary
Crenel Interval CI j . For τm

i , since Wm
i = RW j

i or Wm
i = Ci, from Lemma 3, we know

the workloads of τm
i are the same under both EDF and CI-EDF scheduling. Since the

task set is EDF schedulable and all the mandatory instances are also scheduled by the
EDF scheme, we know τm

i in CI j can meet its deadline under CI-EDF. For the optional
instance τ o

i , we only need to consider the case where τ o
i ’s deadline is equal to tj . In this

case, there is Wo
i = MW j

i under both EDF and CI-EDF scheduling. From Lemma 2,
we know τ o

i can finish Wo
i workloads before tj , which means no optional instances

will miss their deadlines. Since the task set is schedulable in each Crenel Interval,
we can conclude that the task set is schedulable under CI-EDF and the theorem thus
follows.

Generalization to Frame-Based Task Set. Now with CI-EDF, we consider a special
case where all the tasks in T have a common period length T , that is, we consider a
frame-based task set. In this case, given tj−1, the Crenel Point tj can be computed by
tj = � tj−1

T �T + 2T . Since t0 = 0, it is clear that tj = 2 jT , which means each Crenel
Interval has a length of 2T , the double of a frame length. Then, our method CI-EDF
works as follows: for an instance τi,k (k ≥ 0), if k is even, then the workload of τi,k, which
is released at kT , can execute immediately; otherwise, if k is odd, then the workload
of τi,k, which is released at kT , is only eligible to execute at (k + 1)T − ∑n

i=1 Ci. It is
interesting to see that for the frame-based task set, our method can produce the same
schedule as the one proposed in Gerards and Kuper [2013], which has been proved to
be globally optimal on minimizing the energy consumption when the workloads of the
same tasks in successive frames are identical.

5.3. Scheduling Tasks in Each Crenel Interval with Multiple Devices

In this section, we consider a more general case where there are multiple devices in the
system, and propose the Crenel-Interval-based scheduling algorithm. To distinguish,
we use CI-EDFm to denote this algorithm. In a multiple device model, a task τi may
access multiple devices, and correspondingly a device Dk may be accessed by multiple
tasks. We use AD(τi) to denote the set of devices accessed by task τi, and use T (Dk) to
denote the set of tasks that access device Dk.

The same as CI-EDF, in CI-EDFm, we also rely on Crenel Intervals to guide the
scheduling of task instances. Considering that a task instance τi, j of τi may access
multiple devices during its execution, we calculate separate Crenel Intervals for each
device Dk ∈ AD(τi), denoted by DCIk. Note, here we only need to use the tasks in

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:17

T (Dk) to compute DCIk, and the calculation method is the same as the one presented
in Section 4.2.

Apparently, τi, j may locate in multiple DCIs, and thus can be classified as mandatory
instance in one DCI, but optional in another. In other words, there are multiple choices
from different DCIs for τi, j on when to execute. But since τi, j can only execute at one
time instant, it is imperative to design a strategy to help make the choice so that the
maximum energy savings can be obtained. To achieve this goal, we use a weighting
factor based method to provide the guidance. Specifically, the weighting factor for DCIk

is defined as follows:

WFk(τi, j) =
{

− 1
Bk

(
Pk

a − Pk
s

)
, τi, j is mandatory instance in DCIk

1
Bk

(
Pk

a − Pk
s

)
, τi, j is optional instance in DCIk,

(13)

where Bk is the break-even time of Dk, and Pk
a (Pk

s) denotes the power consumption
of Dk in active (sleep) state. The reason behind using this weighting factor is twofold:
(1) Given a fixed-length slack, a device with smaller break-even time has a higher
possibility to be transitioned to low-power state; and (2) given a fixed-length slack,
a device with large (pk

a − pk
s) can save more energy when transitioned to sleep state.

Moreover, if τi, j is an optional instance in DCIk, then we set the weighting factor to
be positive. On the contrary, if τi, j is a mandatory instance in DCIk, then we set the
weighting factor to be negative. After computing the weighting factors for all the DCIs,
we sum them up to get the final weighting factor of τi, j ,

WF(τi, j) =
∑

Dk∈AD(τi)
WFk(τi, j). (14)

If WF(τi, j) > 0, it means delaying τi, j can obtain more energy savings. Otherwise, if
WF(τi, j) < 0, it indicates that executing τi, j without delay can save more energy. Note
here if WF(τi, j) = 0, we let τi, j execute without delay to break the tie.

Based on the previous discussion, we can classify τi, j into the following four cases:

—Case (1): τi, j is a mandatory instance in DCIk and is suggested to execute without
delay.

—Case (2): τi, j is a mandatory instance in DCIk but is suggested to delay its execution.
—Case (3): τi, j is an optional instance in DCIk but is suggested to execute without delay.
—Case (4): τi, j is an optional instance in DCIk and is suggested to delay its execution.

For presentation convenience, in the following discussion, we call the instance that
belongs to the preceding four cases C1, C2, C3, and C4 instance, respectively. In CI-
EDF, the device slacks always locate in the middle of a Crenel Interval, which indicates
that there is only one type of device slack. Different from CI-EDF, in CI-EDFm, the
device slacks used to transition Dk into sleep state can be classified into two types:
One is the slack between two C1 instances, or two separated execution parts of one C1
instance. The other is the slack between the last C1 instance and the first C2 (or C3,
C4) instance. As an illustration, we give an example next.

Example 3. In Figure 6, J1, J2, J3, J4 are four task instances with priority order of
Pr(J1) > Pr(J2) > Pr(J3) > Pr(J4). J2, J3, and J4 are all released at t0 and need to
access Dk, while J1 is released at t1 and does not use Dk. J2 and J3 are two C1 instances
that can be executed without delay. At t0, J2 starts its execution and then is preempted
by J1 at t1. After J1 finishes its execution at t2, J2 resumes, followed by J3. J4 is a C2
instance and needs to be delayed to execute at t5. In this example, S1 (which is actually
the WCET of J1) between the two separated execution parts of J2 is the first type of
slack, while S2 between J3 and J4 is the second type of slack.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:18 G. Li et al.

Fig. 6. Two types of device slack.

Clearly, all the C1 and C3 instances will not be delayed and thus are available to
execute when they are released. Now we show how to compute the execution time
instant ki, j for each C1 (or C3) instance τi, j . Note here ki, j may store multiple time
instants, since if τi, j is a C1 instance, it may be preempted by other instances and
resume execution later, just as J2 shown in Figure 6, for which there is k2 = {t0, t2}. We
first define another data structure TI to record the time interval that has not been used.
TI is a two-tuple in the form of (a, b), where a and b represent the start and end points
of the interval, respectively. TI-List consists of all the TIs. Initially, there is only one TI
in TI-List, which is equal to the interval of DCIk. Next, we calculate the actual execution
time instant for the C1 and C3 instances one by one according to their priorities. When
computing ki, j for τi, j , we need to utilize the release time and the WCET of τi, j , as well
as the TI-List. Finally, we update the TI-List to remove the corresponding execution time
intervals that have been used. To help understand the computation process of ki, j , we
reuse the job set in Example 3 to give an illustration.

Example 4. As shown in Figure 6, t0 and t6 are the start and end Crenel Points
of DCIk, respectively. Hence, the initial element in TI-List is (t0, t6). Since J1 has the
highest priority and will be released at t1, and moreover, there is only one element
(t0, t6) in TI-List, we have k1 = t1. Since the WCET of J1 is in the length of (t2 − t1), we
update TI-List to be with two elements: (t0, t1) and (t2, t6). Then we proceed to J2. Since
J2 is released at t0 and its WCET is in the length of (t3 − t0) − (t2 − t1), combining with
the information in TI-List, we can get that k2 = {t0, t2}. Afterward, we update TI-List to
be with one element: (t3, t6). Following a similar way, we can obtain that k3 = t3.

After computing the execution time instants of all the C1 and C3 instances, we can
derive the first type of device slack easily. Then, by comparing the length between
the slack and the break-even time of the device, we can determine whether a DPM
operation should be conducted or not.

Now the remaining challenge is how to compute the second type of device slack. As
mentioned previously, the second type of device slack is the one between the last C1
instance and the first C2 (or C3, C4) instance. Since the last C1 instance (as well as the
first C3 instance) can be determined by its execution time instant and WCET, now our
major concern is how to compute the time instant when the first C2 (or C4) instance is
available to execute. In other words, we need to decide how long the C2 (or C4) instance
can be delayed but without jeopardizing the schedulability of the task set. Without loss
of generality, we suppose the first such C2 (or C4) instance is τi, j , and use λi, j to denote
the time instant when τi, j is available to execute.

Similar to the EEDS scheme proposed in Cheng and Goddard [2006b], we use a
runtime-based method to compute λi, j for τi, j . The concept of runtime comes from known
techniques [Jejurikar and Gupta 2005a], denoting the time budget allocated to each
task instance. Since the system utilization is usually smaller than 1, if we assign Ci/U
(U is the utilization of the task set) runtime to τi, j , the system will not be overloaded

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:19

and the task set remains schedulable. To facilitate computation, we maintain a runtime
list, RT-List, in the system. When a task instance is released, the associated runtime
is inserted into RT-List. The runtimes have the same priorities with their associated
task instances, and are sorted according to their priorities. The head of the RT-List is
the runtime with the highest priority. The runtime is always consumed, not only when
there are workloads being executed, but also when the processor is idle. The runtime
consumption is always from the head of the RT-List. If the residual runtime of the head
node is zero, it will be removed from RT-List, and the next node acts as the head node.
To compute λi, j , we use the following notations, which are similar to the ones used
in Cheng and Goddard [2006b].

—Ri, j : the runtime associated with τi, j .
—Pr(Ri, j): the priority of the runtime Ri, j , which is the same as the priority of τi, j .
—Ci, j (t): the residual execution time of τi, j at time t.
—ARi, j (t): the available runtime for τi, j , can be calculated by Ri, j +

∑
Pr(Ra,b)>Pr(Ri, j) Ra,b.

With the preceding notations, the time instant λi, j for τi, j can be calculated by

λi, j = t + ARi, j (t) − Ci, j (t) . (15)

After computing λi, j , we can derive the second type of device slack easily and check
whether it is long enough for a DPM operation.

From Figure 6, we can observe that the two types of device slacks are both located
before the time instant when the first C2 (or C3, C4) instance is available to execute.
So, if we revise the end Crenel Point of DCIk to this time instant, the possible transition
of Device Dk would not be affected. Moreover, after the revision, it is easy to schedule
in the new DCIk, since there are only C1 instances in it. As an illustration, let us go
back to Example 3. As can be seen, J3 is the first and only C2 instance in DCIk, so t5 is
the time instant when the first C2 instance is available to execute. After revising the
end Crenel Point of DCIk to be t5, the new DCIk is (t0, t5). Then, we only need to consider
the C1 instances in the new DCIk, and choose t5 as the start Crenel Point to compute
the next DCI. All the C2, C3, and C4 instances in DCIk can be scheduled to execute
in the next DCI.

Algorithm 2 gives the pseudocode of CI-EDFm. The same as CI-EDF, in CI-EDFm,
we also need the information of the task instances that are released before or in the
current DCI to help scheduling. In particular, the start Crenel Point of a DCI is a very
important scheduling point. We define a data structure INS to record the information
of each task instance that will be released in DCI. INS includes a lot of information
regarding an instance, including the number for identifying the instance; the available
execution time, which is initialized to be the release time of the instance; the worst-case
execution time of the instance; the priority of the instance; and the weighting factor
of the instance calculated by Equation (14). INS-List consists of all the INSs, which are
sorted in decreasing order of their priorities. To avoid inserting the same INS in the
next DCI, we maintain a global variant Stamp to keep the end Crenel Point of the
current DCI. Then, in the next DCI, only instances that are released after Stamp can
be inserted into INS-List. Starting by initializing the start Crenel Point of all the DCIs
to be 0, Algorithm 2 schedules the task instances at two kinds of time instants, as
detailed next.

(1) When t is the start Crenel Point of DCIk, we first calculate the end Crenel Point
for DCIk by the method presented in Section 4.2. Then we initialize TI-List with
the interval of DCIk. Next, for each instance that will be released in DCIk, we
create a corresponding INS and insert it into INS-List. Meanwhile, we insert the
corresponding runtimes of the instances into RT-List and change Stamp to the end

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:20 G. Li et al.

ALGORITHM 2: CI-EDFm

1: Preprocessing:
2: Initialize the start Crenel Point of all the DCIs to be 0;
3: When t is the start Crenel Point of DCIk:
4: Calculate the end Crenel Points of DCIk;
5: Initialize TI-List with one element, which is the interval of DCIk;
6: Insert INSs into INS-List, insert the corresponding runtimes into RT-List and change Stamp

to the end point of DCIk;
7: for τi, j in INS-List which needs to calculate WF(τi, j) do
8: Calculate WF(τi, j);
9: if WF(τi, j) > 0 then
10: Calculate λi, j by Equation (15);
11: else
12: Calculate ki, j by using TI-List;
13: end if
14: Update TI-List;
15: end for
16: Select the first available instance with the highest priority from INS-List to execute;
17: When an instance completes or is preempted at time t:
18: Find the next available task instance from INS-List for execution;
19: for each active device Dk do
20: Find the next task instance τi, j which uses Dk in INS-List;
21: f lag = 0, temp = 0;
22: if (W F(τi, j) ≤ 0) then
23: if (τi, j is an optional instance in DCIk) then
24: temp = ki, j , f lag = 1;
25: end if
26: if ((ki, j − t) > Bk) then
27: Transition Dk into sleep state;
28: end if
29: else
30: temp = λi, j , f lag = 1;
31: if (λi, j − t) > Bk) then
32: Transition Dk into sleep state;
33: end if
34: end if
35: if (f lag == 1) then
36: Revise the end Crenel Point of DCIk to be temp;
37: end if
38: end for

point of DCIk. When creating INS for τi, j , we need to calculate WF(τi, j) for it. But it
is worth noting that there is no need to calculate WF for all the instances in DCIk.
Specifically, if τa,b is released before t and needs to access another device Dq that is
already in sleep state till time t′ > t, then we do not need to calculate WF(τa,b). This
is because τa,b is deemed to be delayed. The value of WF(τi, j) indicates whether τi, j
should be delayed or not. If WF(τi, j) > 0, it means τi, j should be delayed, then we
calculate its available execution time instant λi, j by Equation (15). Otherwise, if
WF(τi, j) ≤ 0, it means τi, j should be executed without delay, then we compute its
available execution time instant ki, j by utilizing the information in TI-List. Finally,
we update TI-List.

(2) When t is the completion or preemption time of a task instance, first, we need
to choose an instance that has the highest priority among the ready instances
(line 20). Then we need to decide whether an active device can be transitioned into

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:21

Fig. 7. CI-EDF in multiple device model.

sleep state or not. As discussed previously, there are two types of slacks. For each
active device Dk, we find the first instance τi, j that will use it. If τi, j is a C1 (or
C3) instance (lines 22–28), we compare (ki, j − t) with Bk to determine whether a
DPM operation can be performed. If τi, j is a C2 (or C4) instance (lines 29–34), we
compare (λi, j − t) with Bk to determine whether a DPM operation can be performed.
Finally, we revise the end Crenel Point of DCIk to be the time instant when the first
C2 (or C3, C4) instance is available to execute (lines 35–37).

To help understand, we use a concrete example to show how CI-EDFm works.

Example 5. Consider the following two periodic tasks specified with their WCET,
relative deadlines, and periods: τ1 = (1, 10, 10), τ2 = (1, 15, 15) (all in ms). There are
two devices D1 and D2, both with break-even time to be 15. D1 is accessed by τ1 and τ2,
while D2 is accessed by τ2. Figure 7(a) depicts the scheduling with runtime, where the
white box denotes the remaining time that the time budget calculated according to the
concept of runtime subtracts the WCET of the task instance, and the gray box denotes
the WCET of the task instance. Figure 7(b) depicts the scheduling with CI-EDFm. On
top of these two subfigures are the DCIs of the devices.

At time t = 0, we initialize the start Crenel Point of DCI11 and DCI12 to be 0. By
Equation (5), we can calculate the end Crenel Points of DCI11 and DCI12 to be 20 and 30,
respectively. Note here we only need to use the tasks that access Dk to calculate the
end Crenel Point of DCIk. At first, TI-List is initialized to be (0, 30). Next, the INSs for
the instances that are released in interval (0, 30) are created and inserted into INS-
List. These instances include τ1,1, τ1,2, τ1,3, τ2,1, and τ2,2. Meanwhile, the corresponding
runtimes are inserted into RT-List and Stamp is set to be 30.

It is easy to compute that WF(τ1,1) < 0 and WF(τ2,1) < 0. Hence, τ1,1 is a C1 instance
in DCI11, while τ2,1 is a C1 instance in both DCI11 and DCI12. Similarly, it can be derived
that τ1,2 is a C4 instance in DCI11, while τ2,2 is a C4 instance in both DCI12 and DCI22. For
τ1,1 and τ2,1, we need to compute k1,1 and k2,1. Since τ1,1 has the highest priority, it is
obvious that k1,1 = 0. Then by C1 = 1, we can update the element in TI-List to be (1, 30).
Following a similar way, we can get that k2,1 = 1. For τ1,2 and τ2,2, by Equation (15), we
can compute that λ1,2 = (3 × 6 − 1) = 17 and λ2,2 = (4 × 6 − 1) = 23, respectively.

After computing the necessary information of the task instances in DCIk, we choose
τ1,1, the instance that has the highest priority in INS-List to execute at t = 0. The first
instance needs to access D2 is τ2,1, which will execute at t = 1. Then, we know (0, 1) is
the first type of device slack of D2. This slack is not long enough for transitioning D2. At
time t = 1, τ1,1 finishes its execution and τ2,1 is selected to execute. The next instance
needs to access D1 is τ1,2, which is delayed to execute λ1,2 = 17. Hence, (1, 17) is the
second type of device slack (longer than B1 = 15), which can be used to transition D1
into sleep state. For DCI11 , since τ1,2 is the first C4 instance that needs to access D1, we

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:22 G. Li et al.

revise the end Crenel Point of DCI11 to be 17. At time t = 2, τ1,2 finishes its execution
and there are no available instances in INS-List. The first instance that needs to access
D2 is τ2,2, then (2, 23) is the second type of device slack (longer than B2 = 15), which
can be used to transition D2 into sleep state. For DCI21, τ2,2 is the first C4 instance that
needs to access D2; we thus can revise the end Crenel Point of DCI12 to be 23.

At time t = 17, since it is the start Crenel Point of DCI21, we need to calculate DCI21’s
end Crenel Point (which is 30) by Equation (5). Then we initialize the TI-List to be
(17, 30). Since Stamp = 30, we do need to create and insert any INS into INS-List.
At t = 17, INS-List maintains the information of three instances, which are τ1,2, τ1,3,
and τ2,2. We can calculate the weighting factors of τ1,2 and τ1,3 to be WF(τ1,2) < 0 and
WF(τ1,3) > 0, hence τ1,2 and τ1,3 are the mandatory and optional instances in DCI21,
respectively. But note here we do not need to calculate WF(τ2,2), since τ2,2 has been
delayed to λ2,2 = 23 in the previous DCI (D2 is in sleep state and will not be active until
23). For τ1,3 that needs to be delayed, we can compute that λ1,3 = (5×6−1) = 29. Since
τ1,2 has the highest priority and the element in TI-List is (17, 30), we have k1,2 = 17,
which indicates that τ1,2 will start its execution at t = 17. When τ1,2 completes at t = 18,
there are no available instances in INS-List. We notice that the first instance that needs
to access D1 is τ2,2, which is delayed to execute at t = 23. Hence, (18, 23) is the second
type of device slack for D1. This slack is not long enough for transitioning D1 into sleep
state. Finally, we revise the end point of DCI21 to be 23 to start the schedule of the next
DCI in a similar way.

Now we show the correctness of CI-EDFm on guaranteeing all task deadlines.

THEOREM 2. The task set is schedulable under CI-EDFm, provided that
∑ Ci

Ti
≤ 1.

PROOF. Notice that in our CI-EDFm algorithm, only the C2 and C4 instances are
delayed to execute. Since we use the same runtime-based method as EEDS [Cheng
and Goddard 2006b] to predict how long these instances can be delayed, given that∑ Ci

Ti
≤ 1, the theorem follows directly from the result of Theorem 3.1 in Cheng and

Goddard [2006b].

5.4. Integrating DVFS with DPM

In the previous two subsections, we provided the details of two DPM algorithms CI-
EDF and CI-EDFm. Now, we briefly describe how to integrate DVFS with our DPM
schemes to reduce the system-level energy consumption. The same as in Devadas and
Aydin [2010], we also adopt the system energy-efficient frequency, which is originally
from Cheng and Goddard [2005]. In Devadas and Aydin [2010], the energy-efficient
frequency threshold, denoted by EEF, is derived based on the power characteristics
of the processor, active devices, and devices in sleep state, at task instance dispatch
times. The processor frequency is never reduced below this threshold. In this article, we
use EEF(AD(τi, j)) to denote the energy-efficient frequency of τi, j ; recall here AD(τi, j)
is the set of devices τi, j needs to access. Specifically, energy-efficient frequency is de-
rived by energy efficiency scale. Energy efficiency scale, which is used to compare the
overall system energy efficiency to complete one unit workload with different processor
frequency, is modeled by

ES(f,AD(τi, j)) = 1
f

(
Pcpu(f) +

∑
Dk∈AD(τi, j)

(
Pk

a − Pk
s

))
. (16)

Then, EEF(AD(τi, j)) is the processor frequency f that can minimize the energy effi-
ciency scale ES(f,AD(τi, j)).

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:23

In CI-EDF, since all the tasks use the same device, we can get a unique EEF.
Considering that the system utilization U is another threshold frequency, we can get
the final system energy-efficient frequency to be f = max(fmin,U, EEF) (recall that
fmin is the critical speed), for all the task instances. Then, the integrated scheme
works as follows: all the task instances are scheduled by CI-EDF and execute with
frequency f .

In CI-EDFm, the available runtime ARi, j (t) for τi, j is the time budget that can be used
by τi, j to execute but without jeopardizing the schedulability, then we can get another
threshold frequency to be Ci, j (t)

ARi, j (t)
. Consequently, the final energy-efficient frequency for

τi, j can be computed by f = max(fmin,
Ci, j (t)
ARi, j (t)

, EEF(AD(τi, j))). Then, the integrated
schemes work as follows: all the task instances are scheduled by CI-EDFm, and at each
scheduling point t (t is the start Crenel Point of DCIk, or the time instant when a task
instance completes or is preempted), the processor frequency is updated to be f . Note
that changing from one frequency level to another usually takes a fixed amount of time
(denoted by �t, ranges from tens of microseconds to tens of milliseconds), referred to as
the transition (or switch) overhead [Mochocki et al. 2007]. When frequency transition
overhead is large enough that they cannot be ignored, we need to recompute the final
energy-efficient frequency by considering such overhead.

5.5. Dynamic Slack Reclaiming

In practice, the actual execution time of many task instances are usually smaller than
their WCETs. In this case, dynamic slack arises due to early task completions. Since
dynamic slack can help increase the length of device idle intervals, it is important
to reclaim dynamic slack at runtime. In fact, reclaiming unused computation time to
reduce the CPU speed or prolong the idle interval while preserving feasibility has been
widely studied in numerous research papers in the past. Now we briefly discuss how
to reclaim dynamic slacks in our Crenel-Interval-based approaches.

In CI-EDF, when a mandatory task instance completes early in a Crenel Interval,
other mandatory instances with lower priorities are available to execute. Hence, this
kind of dynamic slack can be merged into the slack interval, which is located in the
middle of the CI. For the optional instances, since they may leave some workloads
to execute in the following Crenel Intervals, if we use this kind of dynamic slack to
execute more workloads, then less workloads are left to execute in the following Crenel
Intervals, which in turn can prolong the length of the slack intervals in the following
Crenel Intervals. It is also possible that all optional instances complete before the
end Crenel Point of Crenel Interval. In such case, we revise the end Crenel Point of
Crenel Interval to the completion instant of last optional instance. In CI-EDFm, it is
comparatively easy to do the reclaiming, since there are only mandatory instances in
a Crenel Interval. We can use a similar method as in CI-EDF to reclaim the slacks.

5.6. Complexity Analysis

In this section, we compare the time complexity of some existing algorithms, including
SYS-EDF, EEDS, DFR-EDF, and SSC [Awan and Petters 2012], with that of CI-EDF
and CI-EDFm proposed in this work.

Complexity of CI-EDF and CI-EDFm. Since we adopt an EDF-similar schedule, it
is clear that the time complexity of CI-EDF is determined by the computation of γ .
In Algorithm 1, since

∑q
k=n Wo

sk
can be reused from last iteration, the complexity of

calculating an optional task τ o
i ’s workloads Wo

i (lines 19–21) is O(n). Moreover, since
there are at most n optional instances, calculating

∑
Wo

si
takes at most O(n2) time. All

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:24 G. Li et al.

the other operations take at most O(n) time. Overall, CI-EDF’s time complexity, which
is the same as computing γ , is O(n2).

From Algorithm 2, we can find that the time complexity of CI-EDFm is mainly de-
termined by the calculation of WF(τi, j), ki, j and λi, j . Since a DCI cannot exceed 2 · Ti
(Ti is an arbitrary task’s period), the elements in INS-List would not exceed 2 · n,
where n is the task number of the task set. Due to the same reason, there are at
most 2 · n elements in TI-List. Hence, the complexities of calculating both ki, j and λi, j
are at most O(n). Since there are totally m devices in the system, the complexity of
calculating WF(τi, j) is at most O(mn). In summary, the time complexity of CI-EDFm

is O(mn).
Note that during the execution of CI-EDF, slack reclaiming can be performed by

simply revising the end Crenel Point of a Crenel Interval to the completion instant of
last optional instance. So, the dynamic slack reclaiming scheme in CI-EDF has O(1)
time complexity. In CI-EDFm, since there are only mandatory instances, dynamic slack
reclaiming can be conducted automatically.

Complexity of Other Algorithms. Let m be the total number of devices, n be the total
number of tasks in the system, and k be the number of operating frequencies that
the processor can provide. For SYS-EDF, the system-wide optimal processor frequency
fopt is computed off-line, and the complexity of computing fopt is O(k2m) [Cheng and
Goddard 2005]. Moreover, SYS-EDF needs to calculate the next device request time for
each device at runtime, which further needs to traverse through all the tasks, hence
it has a time complexity of O(mn). For EEDS, in order to get the device slack, it needs
to calculate the job slack of every task instance that uses this device, so it also has a
time complexity of O(mn). For DFR-EDF, it needs to compute a set of forbidden regions
off-line to make the task set schedulable under EDF, and this operation takes a time
complexity of O(n2) [Devadas and Aydin 2010]. Moreover, in the online part of DFR-
EDF, determining the time interval that a given device Di can be put into sleep state
at time t takes O(nlogn) time. Then for m devices, DFR-EDF has a time complexity of
O(mnlogn). SSC proposed in Awan and Petters [2012] is a very time-efficient scheme.
It has a time complexity of O(n), because when calculating the next wake up time of
a device, it only needs to traverse the tasks with higher priorities. The off-line part
of SSC needs to calculate the device budget Db for a given task set. To calculate Db,
it is sufficient to check the activation time of some jobs and the absolute deadlines
of some jobs in the hyperperiod H = LCM{T1, T2, . . . Tn} [Baruah et al. 1990; Rahni
et al. 2008]. Since the number of activation time and absolute deadlines is up-bounded
by

∑n
i=1

H
Ti

, the off-line part of SSC has a time complexity of O(
∑n

i=1
H
Ti

). It is worth
mentioning that SSC is based on the model that each device is associated with exactly
one task, while SYS-EDF, EEDS, DFR-EDF, and CI-EDFm all assume that a task can
use multiple devices.

6. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance of the proposed CI-EDF
and CI-EDFm algorithms. We first describe the experimental setup in Section 6.1, and
then discuss the experimental results of the single device model and the multiple device
model in Sections 6.2 and 6.3, respectively.

6.1. Experimental Setup

We constructed a discrete-event simulator in C programming language to perform the
evaluation. This approach is consistent with evaluation approaches adopted by sev-
eral other researches for energy-aware scheduling [Devadas and Aydin 2008b; Cheng
and Goddard 2006b, 2005]. The processor power is modeled according to Intel Xscale

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:25

Table III. Device Specifications

Device Pa Ps Psw tsw Break-even time

Realtek Ethernet Chip 0.19 (W) 0.085 (W) 0.125 (W) 10 (ms) 20 (ms)
MaxStream wireless module 0.75 (W) 0.005 (W) 0.1 (W) 40 (ms) 80 (ms)
IBM Microdrive 1.3 (W) 0.1 (W) 0.5 (W) 12 (ms) 24 (ms)
SST Flash SST39LF020 0.125 (W) 0.001 (W) 0.05 (W) 1 (ms) 2 (ms)
SimpleTech Flash Card 0.225 (W) 0.02 (W) 0.1 (W) 2 (ms) 4 (ms)
Fujitsu 2300AT Hard disk 2.3 (W) 1.0 (W) 1.5 (W) 20 (ms) 40 (ms)

architecture specifications [Xu et al. 2004], and device specifications are adopted
from Cheng and Goddard [2006a] and shown in Table III. In all experiments, we use
randomly generated task sets to evaluate the performance of all algorithms. Specifi-
cally, the utilization range [0, 1] is uniformly divided into 10 subintervals. For every
subinterval, we generate 100 task sets; the task number in each task set is chosen
randomly from the range of [5, 20], to simulate their execution and record the sys-
tem energy consumption. The task periods are chosen randomly from the range of
[50ms, 1300ms].

In addition to our Crenel-Interval-based algorithms CI-EDF and CI-EDFm, we im-
plemented three state-of-the-art EDF-based system energy management algorithms
as competitors:

(1) SYS-EDF [Cheng and Goddard 2005] is a system-level energy management scheme
with both DVFS and DPM components. SYS-EDF performs DVFS by using the
concept of energy-efficient scaling and has a relatively simple prediction-based
DPM component that is applied at runtime.

(2) EEDS [Cheng and Goddard 2006b] is a DPM-only scheme for dynamic priority sys-
tems and EDF scheduling. There is no DVS component in EEDS and it is designed
for systems where the device power dominates over that of the CPU.

(3) DFR-EDF [Devadas and Aydin 2010] is also a system-level energy management
scheme. DFR-EDF is based on the extension of the DFR approach [Devadas and
Aydin 2008b] to EDF scheduling.

We evaluated the performance of these five algorithms by the normalized energy
consumptions (denoted by ESnor), which is the amount of energy consumed under
certain algorithms (DPM+DVFS or DPM-only) with respect to the case where no power-
saving techniques are applied, that is, all the devices remain in the active state over the
entire simulation. The normalized energy consumption is computed by the following
equation:

ESnor = Etot with DPM-only (or DPM+DVFS)
Etot without DPM or DVFS

. (17)

We examine the energy gains derived through DPM+DVFS or DPM-only policies
under different break-even times. Specifically, when considering DPM+DVFS, we com-
pare CI-EDF (or CI-EDFm) with SYS-EDF and DFR-EDF, since EEDS does not include
the DVFS component. When only considering DPM, we compare CI-EDF (or CI-EDFm)
with EEDS and DFR-EDF, since the DPM component in SYS-EDF is a relatively simple
prediction-based one.

Scheduling Overhead. We did not measure scheduling overhead in a real system since
all algorithms were evaluated with simulations. Instead, we used relative scheduling
overhead to evaluate the scheduling overhead of CI-EDF and CI-EDFm. Specifically,
we compared the scheduling overhead of CI-EDF and CI-EDFm with respect to EDF in
our simulations. Note that some other works [Cheng and Goddard 2005, 2006b] also

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:26 G. Li et al.

use this method to measure scheduling overhead. The relative scheduling overhead,
denoted by χ , is computed by

χ = schedule overhead with CI-EDF or CI-EDFm

schedule overhead with EDF
− 1. (18)

We use the time spent by the scheduler in a hyperperiod to measure the overhead
of an algorithm. As well known, in a hyperperiod, the scheduler needs to be invoked
many times. The scheduler of EDF has only one type of trigger event—choosing a task
instance to execute when a task instance releases or completes. The scheduler of our
CI-based methods also have only one type of trigger event, which is triggered at the
start time point of each CI. For a task set we evaluated, at the beginning and end of
a trigger event, we record two time instants, so as to calculate the time spent in this
event. The accumulation of all these times in a hyperperiod is the scheduling overhead
of the task set. We then use Equation (18) to calculate the relative scheduling overhead
of this task set. For the 1,000 task sets randomly generated, we use the same method
to get the relative scheduling overheads of them, and then take the average. In our
experiments, the mean values of the relative scheduling overheads of CI-EDF and CI-
EDFm are 8.37% and 4.79%, respectively. Considering that the scheduling overhead of
EDF is very low [Cheng and Goddard 2006b], these two overheads are affordable.

6.2. Experiment Results in Single Device Model

In the first set of experiments, we consider the case where there is only one device
in the system and all the tasks need to access this device. Considering that when
the break-even time is short, the device tends to be transitioned frequently and the
differences between various algorithms are not significant, in our simulation, we choose
two devices: Fujitsu 2300AT Hard disk and MaxStream wireless module, which have
relatively long break-even times to be 40 and 80ms, respectively.

Figure 8(a) shows the relative performance of the evaluated schemes through
DPM+DVFS with the device break-even time B = 40ms. As can be seen, the normalized
energy consumption of all the tested algorithms are decreasing with the growth of the
utilization. This is because both DVFS and DPM rely on slacks to perform frequency
scaling or device state transition to save energy. With the growth of the system utiliza-
tion, the number of the slacks is decreasing, hence the energy savings derived by the
three schemes are also decreasing. Among the three schemes, CI-EDF provides clear
gains over the other two throughout the entire spectrum, especially when the utiliza-
tion is less than 60%. This is because, when the utilization is relatively small, after
all the schemes get their optimal processor frequency, there are still many slacks that
can be used for DPM. In this case, the system energy savings are mainly dependent on
DPM. Since CI-EDF can merge small slacks to form big ones, it can greatly enhance the
DPM effectiveness, and thus get promising energy savings. On the contrary, the DPM
policy of SYS-EDF is a relatively simple look-ahead-based prediction scheme, so it has
a relatively poor performance. DFR-EDF aims at explicitly and periodically creating
device forbidden regions to put the devices into sleep state. Although it can achieve a
better performance than SYS-EDF, on one hand, the number of the slacks may increase
due to the preemption of the forbidden region. Clearly, more slacks means more device
state transitions (if possible). Since the transition itself also consumes time and energy,
this will inevitably reduce the system energy savings, especially when the utilization
is relatively small; on the other hand, the static feasibility test of DFR is a utilization-
based one. When the utilization is high, the test tends to fail. These two factors limit
the performance gains of DFR-EDF. Note that in Figure 8(a), when the utilization
exceeds 60%, the three curves are not smooth anymore; this is because the processor
frequencies we used are discrete. Also note that at some high utilization levels, two

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:27

Fig. 8. Impact of system utilization in single device model.

or three schemes get the same energy savings. This is because at these utilizations,
the two or three schemes choose the same frequency and thus have the same energy
savings by DVFS, and moreover, these slacks are not long enough for performing DPM.

When only the DPM policy is applied, the superiority of CI-EDF compared to DFR-
EDF and EEDS is more significant, as shown in Figure 8(b). Without DVFS, the system
executes all workloads with the maximum processor frequency, hence the energy con-
sumption of the processor is proportional to the utilization. With the increase of the
system utilization, there are less slacks that can be used to transition the devices
into sleep states, so the energy consumption of the devices is also proportional to the
system utilization. When U < 0.48, DFR-EDF performs better than EEDS, but with
the increase of the utilization, EEDS can outperform DFR-EDF. This is because DFR-
EDF relies on a utilization-based feasibility test to enforce DFRs to perform DPM. As
the system utilization increases, less task sets can pass the feasibility test, and the
performance of DFR-EDF degrades significantly.

Figures 8(c) and 8(d) show the relative performance of the the four schemes with
B = 80ms. Compared with Figures 8(a) and 8(b), it can be seen that all the four schemes
exhibit performance degradation when the device break-even time becomes larger, but
CI-EDF can still outperform the other three schemes significantly. For CI-EDF, after
merging small slacks to get big ones, since the break-even time becomes larger, less
slacks can be used to perform DPM. Therefore, the energy consumption increases. For
DFR-EDF, when the device break-even time becomes larger, the length of the forbidden
region is also enlarged. In order to guarantee the schedulability of task set, the period
of the forbidden region will be extended, which in turn means less forbidden regions can
be used to perform DPM. For SYS-EDF, it neither creates long slacks, nor decreases
the number of the slacks. When the device break-even time becomes larger, it has
less slacks to transition devices into low-power state. For EEDS, it also relies on the
system utilization to compute the runtime budget for each instance, and then delays

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:28 G. Li et al.

Fig. 9. Simulation results with DPM-only in multiple device model.

the execution of the instance to create long slack. When the device break-even time
becomes larger, less slacks can be used to perform device state transition.

6.3. Experiment Results in Multiple Device Model

In this set of experiments, we consider a more general case where there are multiple
devices in the system. Each task may access multiple devices, and each device may
also be accessed by multiple tasks. Specifically, we consider the experimental settings
where each task uses 0–3 devices, which are randomly selected from a list that includes
IBM Microdrive, SST Flash, Realtek Ethernet Chip, and SimpleTech Flash Card. Note
here the device specifications are adopted from Cheng and Goddard [2006a].

We first present and discuss the results where only the DPM policy is applied.
Figure 9(a) shows the relative performance as a function of system utilization with
worst-case workloads. In this figure, we can see that CI-EDFm provides clear gains
over the other two schemes throughout the entire spectrum. This is mainly because
CI-EDFm is based on Device Crenel Intervals to help schedule the task set. In this way,
it can merge small slacks to form big ones, which help to transition devices into low-
power state. DFR-EDF performs better than EEDS when U ≤ 0.9. But when U > 0.9,
EEDS is able to outperform DFR-EDF. This is because DFR-EDF relies on DFRs to
perform the DPM operation. Before inserting into the system, the DFRs need to pass
a utilization-based schedulability test. With increasing system utilization, less DFRs
can pass the schedulability test and thus the performance of DFR-EDF degrades at
high utilization values.

Figure 9(b) shows the impact of varying the power characteristics of a system compo-
nent with worst-case workloads. In this experiment, the system utilization is fixed to be
U = 0.6. We multiply the active power (Pa) of all devices by a certain scaling factor and
recompute the device break-even times, while the other devices and processor specifica-
tions remain unchanged. For each scaling factor, we measure the energy consumption
of the three schemes. Apparently, the higher the scaling factor, the more dominant the
device power. Hence, as Pa scales up, the energy consumption of all schemes decreases.
Since CI-EDFm preserves the best DPM effectiveness, the performance gaps between
CI-EDFm and the other two schemes become more significant with increasing Pa scaling
factors.

Figure 9(c) shows the relative performance of the schemes under variability in the
actual workload. This variability is controlled by modifying the worst-case to best-case
execution time ratio, WCET

BCET . The actual workload of each task instance is determined
randomly in the range of [BCET, WCET] at its release time. In this experiment, the
system utilization is fixed to be U = 0.6. It can be seen that the energy consumption
of all three schemes decreases with the increase of WCET

BCET . This is because with larger

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:29

Fig. 10. Simulation results with both DVFS and DPM in multiple device model.

WCET
BCET , more dynamic slacks can be used for additional energy savings. Since CI-EDFm

can utilize the dynamic slacks to help create bigger device slacks, the performance
superiority of CI-EDFm to the other two schemes is more significant with increasing
WCET
BCET .

Now we proceed to discuss the results where both DPM and DVFS are applied, as
shown in Figure 10. Figure 10(a) shows the relative performance as a function of sys-
tem utilization with worst-case workloads. It can be seen that CI-EDFm consistently
outperforms DFR-EDF throughout the entire spectrum. This is because CI-EDFm and
DFR-EDF have similar DVFS components, but CI-EDFm has a stronger DPM com-
ponent than DFR-EDF. Also, it can be observed that DFR-EDF performs better than
SYS-EDF throughout the entire spectrum. This is because DFR-EDF has a more power-
ful DPM component than SYS-EDF. Moreover, in the DVFS component, DFR-EDF not
only uses the system energy-efficient scaling technique given in Cheng and Goddard
[2005], but has its own efficient frequency, which is calculated off-line.

Figure 10(b) shows the impact of varying the off-chip workload ratio yi
Ci

for τi, with
worst-case workloads. In this experiment, the system utilization is fixed to be U = 0.6.
As can be observed from this figure, the energy consumption of all three schemes
decreases with increasing off-chip workload ratio. This is because, with the growth of
yi
Ci

, the execution frequency of τi can be chosen from a bigger range. Thus, it is easier
to find an efficient execution frequency. CI-EDFm outperforms the other two schemes
consistently during the whole range, because all the three schemes use a similar DVFS
component, while CI-EDFm has the most powerful DPM component.

7. CONCLUSION

Energy management is one of the key issues in the design of modern real-time mobile
and embedded systems. In this article, we considered how to minimize the system-level
energy consumption for period real-time tasks. Specifically, we addressed the online-
DPM problem by introducing Crenel Interval (CI), in which we merge all the small
slacks to get a big continuous one. In this way, we can get the best DPM effectiveness.
First, targeting at the single device model, we proposed the CI-EDF algorithm, and
proved the correctness of it on scheduling all task instances to meet their deadlines.
Then by considering a more general multiple device model, we proposed the CI-EDFm

algorithm, which combines the CI-based scheme and the runtime-based delay calcu-
lation method. We also showed how to integrate DVFS with CI-EDF and CI-EDFm

to further reduce the system energy consumption. Finally, the experimental study
demonstrates the effectiveness and efficiency of the proposed methods, as compared to
existing approaches with comparable quality.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:30 G. Li et al.

For future work, we intend to investigate the online DPM problem with a more gen-
eral task model where task periods are not equal to their deadlines, by the techniques
proposed in this article.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their constructive and helpful comments.

REFERENCES

Tarek A. AlEnawy and Hakan Aydin. 2005. Energy-aware task allocation for rate monotonic scheduling. In
IEEE Real Time and Embedded Technology and Applications Symposium. 213–223.

Muhammad Ali Awan and Stefan M. Petters. 2012. Online intra-task device scheduling for hard real-time
systems. In Proceedings of the 7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12). 48–56.

Hakan Aydin, Vinay Devadas, and Dakai Zhu. 2006. System-level energy management for periodic real-
time tasks. In Proceedings of the 27th IEEE International Real-Time Systems Symposium (RTSS’06).
313–322.

Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejia-Alvarez. 2001. Dynamic and aggressive schedul-
ing techniques for power-aware real-time systems. In Proceedings of IEEE Real-Time Systems Sympo-
sium (RTSS’01). 95–105.

Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejı́a-Alvarez. 2004. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers 53, 5 (2004), 584–600.

Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. 1990. Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2, 4 (1990),
301–324.

Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. 2009. Proactive speed scheduling for real-time tasks
under thermal constraints. In IEEE Real-Time and Embedded Technology and Applications Symposium.
141–150.

Jian-Jia Chen, Chuan-Yue Yang, Hsueh-I Lu, and Tei-Wei Kuo. 2008. Approximation algorithms for multi-
processor energy-efficient scheduling of periodic real-time tasks with uncertain task execution time. In
IEEE Real-Time and Embedded Technology and Applications Symposium. 13–23.

Hui Cheng and Steve Goddard. 2005. Integrated device scheduling and processor voltage scaling for system-
wide energy conservation. In Proceedings of the Workshop on Power Aware Real-time Computing, Vol. 2.
IEEE.

Hui Cheng and Steve Goddard. 2006a. Online energy-aware I/O device scheduling for hard real-time systems.
In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and
Automation Association, 1055–1060.

Hui Cheng and Steve Goddard. 2006b. An online energy-efficient I/O device scheduling algorithm for hard
real-time systems with non-preemptible resources. In Proceedings of the 18th Euromicro Conference on
Real-Time Systems. IEEE Computer Society, 251–260.

Vinay Devadas and Hakan Aydin. 2008a. On the interplay of dynamic voltage scaling and dynamic power
management in real-time embedded applications. In Proceedings of the 8th ACM International Confer-
ence on Embedded Software. 99–108.

Vinay Devadas and Hakan Aydin. 2008b. Real-time dynamic power management through device forbidden
regions. In Proceedings of IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’08). 34–44.

Vinay Devadas and Hakan Aydin. 2010. DFR-EDF: A unified energy management framework for real-time
systems. In 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’10).
121–130.

Vinay Devadas and Hakan Aydin. 2012. On the interplay of voltage/frequency scaling and device power
management for frame-based real-time embedded applications. IEEE Transactions on Computers 61, 1
(2012), 31–44.

Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. 2009. Thermal-aware global real-
time scheduling on multicore systems. In IEEE Real-Time and Embedded Technology and Applications
Symposium. 131–140.

Marco E. T. Gerards and Jan Kuper. 2013. Optimal DPM and DVFS for frame-based real-time systems. ACM
Transactions on Architecture and Code Optimization (TACO) 9, 4 (2013), 41.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

Crenel-Interval-Based Dynamic Power Management for Periodic Real-Time Systems 74:31

Ravindra Jejurikar and Rajesh Gupta. 2005a. Dynamic slack reclamation with procrastination scheduling in
real-time embedded systems. In Proceedings of the 42nd Annual Design Automation Conference. ACM,
111–116.

Ravindra Jejurikar and Rajesh Gupta. 2005b. Energy aware non-preemptive scheduling for hard real-time
systems. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS’05). 21–30.

Ravindra Jejurikar and Rajesh Gupta. 2006. Energy-aware task scheduling with task synchronization for
embedded real-time systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 6 (2006), 1024–1037.

Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. 2004. Leakage aware dynamic voltage scaling for
real-time embedded systems. In Proceedings of the 41st Annual Design Automation Conference. ACM,
275–280.

Fanxin Kong, Yiqun Wang, Qingxu Deng, and Wang Yi. 2010. Minimizing multi-resource energy for real-
time systems with discrete operation modes. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS’10). IEEE, 113–122.

Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency scaling: The laws of diminish-
ing returns. In Proceedings of the International Conference on Power Aware Computing and Systems.
USENIX Association, 1–8.

Yann-Hang Lee, Krishna P. Reddy, and C. Mani Krishna. 2003. Scheduling techniques for reducing leakage
power in hard real-time systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems.
IEEE, 105–112.

Jianjun Li, LihChyun Shu, Jian-Jia Chen, and Guohui Li. 2013. Energy-efficient scheduling in nonpreemp-
tive systems with real-time constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems
43, 2 (2013), 332–344.

Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. 2002. Power-aware operating systems for interactive
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10, 2 (2002), 119–134.

Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan. 2007. Transition-overhead-aware voltage scheduling
for fixed-priority real-time systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 12, 2 (2007), 11.

Padmanabhan Pillai and Kang G. Shin. 2001. Real-time dynamic voltage scaling for low-power embedded
operating systems. In ACM SIGOPS Operating Systems Review, Vol. 35. 89–102.

Ala Qadi, Steve Goddard, and Shane Farritor. 2003. A dynamic voltage scaling algorithm for sporadic tasks.
In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS’03). 52–62.

Gang Quan and Xiaobo Sharon Hu. 2003. Minimal energy fixed-priority scheduling for variable voltage
processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22, 8
(2003), 1062–1071.

Gang Quan, Linwei Niu, Xiaobo Sharon Hu, and Bren Mochocki. 2004. Fixed priority scheduling for reducing
overall energy on variable voltage processors. In Proceedigs of the 25th IEEE International Real-Time
Systems Symposium. 309–318.

Ahmed Rahni, Emmanuel Grolleau, and Michael Richard. 2008. Feasibility analysis of non-concrete real-
time transactions with edf assignment priority. In 16th International Conference on Real-Time and
Network Systems (RTNS’08).

Saowanee Saewong and Ragunathan Rajkumar. 2003. Practical voltage-scaling for fixed-priority rt-systems.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’03). 106–114.

Vishnu Swaminathan and Krishnendu Chakrabarty. 2003. Energy-conscious, deterministic I/O device
scheduling in hard real-time systems. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 22, 7 (2003), 847–858.

Vishnu Swaminathan and Krishnendu Chakrabarty. 2005. Pruning-based, energy-optimal, deterministic
I/O device scheduling for hard real-time systems. ACM Transactions on Embedded Computing Systems
(TECS) 4, 1 (2005), 141–167.

Vishnu Swaminathan, Krishnendu Chakrabarty, and Sundaraja Sitharama Iyengar. 2001. Dynamic I/O
power management for hard real-time systems. In Proceedings of the 9th International Symposium on
Hardware/Software Codesign. ACM, 237–242.

Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. 1996. Scheduling for reduced CPU energy. In
Mobile Computing. Springer, 449–471.

Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. 2004. Practical pace for embedded systems. In
Proceedings of the 4th ACM International Conference on Embedded Software. 54–63.

Frances Yao, Alan Demers, and Scott Shenker. 1995. A scheduling model for reduced CPU energy. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science. IEEE, 374–382.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

74:32 G. Li et al.

Fan Zhang and Samuel T. Chanson. 2004. Blocking-aware processor voltage scheduling for real-time tasks.
ACM Transactions on Embedded Computing Systems (TECS) 3, 2 (2004), 307–335.

Ying Zhang and Krishnendu Chakrabarty. 2004. Dynamic adaptation for fault tolerance and power manage-
ment in embedded real-time systems. ACM Transactions on Embedded Computing Systems (TECS) 3,
2 (2004), 336–360.

Dakai Zhu and Hakan Aydin. 2009. Reliability-aware energy management for periodic real-time tasks. IEEE
Transactions on Computers 58, 10 (2009), 1382–1397.

Dakai Zhu, Rami Melhem, and Daniel Mossé. 2004. The effects of energy management on reliability in real-
time embedded systems. In IEEE/ACM International Conference on Computer Aided Design. 35–40.

Jianli Zhuo and Chaitali Chakrabarti. 2005. System-level energy-efficient dynamic task scheduling. In
Proceedings of the 42nd Design Automation Conference. IEEE, 628–631.

Received April 2014; revised January 2015; accepted March 2015

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 74, Publication date: September 2015.

