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a b s t r a c t

Recently, people have begun to deal with location-based queries (LBQs) under broadcast
environments. To the best of our knowledge, most of the existing broadcast-based LBQ
methods are aimed at Euclidean spaces and cannot be readily extended to road networks.
This paper takes the first step toward processing Continuous Nearest Neighbor queries in

key properties of Network Voronoi Diagram (NVD). We first present an efficient method to
partition the NVD structure of the underlying road networks into a set of grid cells and
number the grid cells obtained, based on which we further propose an NVD-based
Distributed air Index (NVD-DI) to support CN3B query processing. Finally, we propose an
efficient algorithm on the client side to process CN3B queries. Extensive simulation
experiments have been conducted to demonstrate the efficiency of our approach. The
results show that our proposed method is about 4 and 7.6 times more efficient than a less-
sophisticatedD-tree air index basedmethod, in access latency and tuning time, respectively.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of wireless technology and
ever growing popularity of smart mobile devices, location-
based services (LBSs) have become popular over the past
few years. Being one of the enabling technologies for LBS,
location-based queries (LBQs) have been a hot research
topic. An important class of LBQs is the continuous nearest
neighbor (CNN) query, which continuously finds the
objects nearest to a query client while the client keeps
moving from one place to another. For example, “continu-
ously finding the nearest gas station along the path on
which a car moves”. LBQs return results based on certain
All rights reserved.
location information. Generally speaking, there are two
approaches to accessing location information via wireless
technology: on-demand access and periodic broadcast [1].
On-demand access employs a basic client–server model,
where a mobile client (MC) submits a query to the server,
which is responsible for processing a query and returning
the result to the client via the dedicated point-to-point
channel. This method is suitable for light-loaded systems
where contention for transmission channels and server
resources is not severe. However, this on-demand access
method has three critical drawbacks: (1) the server pro-
cessing ability and the uplink bandwidth will be the
bottleneck of the system, which jeopardizes the scalability
of the system; (2) the server has to process a large number
of query requests simultaneously, which will affect the
timeliness of the query results; and (3) it fails to exploit
the similarity of content desired by all users.
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On the contrary, periodic broadcast requires the server
to actively push data to the clients via a broadcast channel.
Without sending any request to the server, each client
simply listens to the broadcast channel to retrieve data
based on its own query and processes the data retrieved to
get the query result autonomously. Periodic broadcast
communication provides more efficient data delivery as
the broadcast data can be simultaneously accessed by an
arbitrary number of MCs, and hence is especially suitable
for heavy-loaded systems. For example, “a large number of
people from the four corners of the world attend a large-
scale event (e.g., Olympic games, art festivals, or World
Cups). After the event, people would like to query the
nearest hotel (or restaurant) when they are leaving the
activity spot. Considering that there are so many people
from all over the world and they are not acquainted with
and have not stored the map of this city, it would be
necessary for them to request the answer through the
wireless data broadcast approach”. In fact, wireless data
broadcast is a matured technology and the relevant
services have been available as commercial products for
several years, such as StarBand and MSN Direct Service.
MSN Direct Service is based on the smart personal objects
technology (SPOT) and the DirectBand Network. By this
service, mobile clients can continuously receive timely
information such as stock quotes, airline schedules, news
stories, weather, and traffic information.

Recently, researchers have begun to zero in on proces-
sing LBQs using periodic broadcast. However, to our
knowledge, most of the existing broadcast-based LBQ
methods are limited to Euclidean space, and few of them
can be used in network space. But in real life situations,
MCs always move within a certain network, such as a road
network or a railway network. In a road network, the
distance between objects is determined by the connectiv-
ity of the network, rather than the objects' coordinates in
Euclidean space. Thus, existing LBQ methods used in
Euclidean space cannot give accurate query results, and
it is therefore essential to examine broadcast-based LBQ
methods suitable for use in real road networks.

In this paper, we concentrate on processing Continuous
Nearest Neighbor queries in road Networks under data
Broadcast environments (abbreviated as CN3B in the
following). In the periodic broadcast method, the structure
of a road network and the objects in it are broadcast
periodically via a broadcast channel, and MCs are respon-
sible for query processing. Since a road network is in a
two-dimensional space whereas data sent in a broadcast
channel is a linear sequence, a major challenge for CN3B
query processing is how to partition the underlying net-
work and organize the partitioned network together with
its objects into a set of sequential packets to be broadcast
sequentially. Moreover, since MCs are usually energy-
constrained, while an air index makes it possible for MCs
to listen selectively to the desired data instances in the
wireless broadcast channel and hence reduce energy
consumption [11], how to design efficient air index is
another important problem that must be addressed for
CN3B query processing. Moreover, the added air index will
enlarge the total amount of bits in a broadcast cycle, which
in turn will increase the access latency. Thus, a good air
index should consider the trade-off between access
latency and selective tuning ability, and greatly cuts down
the energy consumption with limited access latency pro-
longation. In this paper, by fully utilizing the properties of
Network Voronoi Diagram (NVD), we propose a novel NVD
constructing and partitioning scheme, based on which we
further propose an efficient distributed index to support
CN3B query processing. To fulfill the entire CN3B query
processing, we also present an efficient algorithm on the
client side. The main contributions of this paper can be
summarized as follows:
�
 We propose an efficient method to construct and
partition the NVD structure of the underlying road net-
works to derive an NVD quad tree, and then transfer the
tree into a linear sequence of data packets, with each data
packet corresponding to one grid cell, which has a unique
ID associated with it, in the road network. In particular,
the grid cells obtained by our method are generally
balanced in size and preserve good locality behavior.
�
 Based on the partition result derived above, we propose
an NVD-based distributed index (namely NVD-DI) to
support CN3B query processing. NVD-DI exhibits the
following properties: (i) it allows a CNN search to start
its execution at arbitrary time instant; (ii) each search
can be finished within one broadcast cycle; and (iii) it
can significantly reduce the energy consumption at the
expense of limited access time prolongation.
�
 Combining with the broadcasting scheme on the server
side, we design an efficient algorithm on the client side to
process CN3B queries. We evaluate the performance of
the proposed CN3B query processing method via exten-
sive experiments on both a real road network and a
synthetic 2-dimensional grid network, and the experi-
mental results show that our method outperforms the
D-tree [26] air index based method significantly.

The remainder of this paper is structured as follows.
Section 2 reviews related work. In Section 3, we first
present a straightforward D-Tree based scheme for CN3B
query processing, and then propose our novel NVD-DI
based method. Section 4 reports the performance evalua-
tion of the proposed methods. Finally, we conclude the
paper with a brief discussion of future work in Section 5.

2. Related work

Nearest neighbor search, one of the important research
issues in location-based queries, has been studied over the
last two decades, and several NN search methods [4–
6,15,22,25] have been proposed. In this section, we briefly
review some existing work on processing NN queries in
road networks and data broadcast algorithms for NN
queries in Euclidean space.

2.1. Nearest neighbor queries in road networks

Jensen et al. [12] first tackled the problem of NN search
in road networks in the year 2003. Then, Papadias et al.
[19] presented an architecture that integrates network and
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Euclidean information to process static network-based
queries. They proposed two methods, IER and INE. The
efficiency of INE depends on the density of objects. If the
objects are sparsely distributed in the road network, the
method can be inefficient. To avoid on-line distance
computation in processing kNN queries, Kolahdouzan
et al. [13] proposed the VN3 method, which is based on
the network Voronoi diagrams. The VN3 can be efficiently
used for networks that have a low density. However, in
high density networks, its efficiency can be low since it
includes operations to construct, store and inquire a large
number of Voronoi polygons to answer kNN queries.
Huang et al. [9] proposed the Islands approach which
consists of a pre-computation component and an online
network expansion component. Since the Islands approach
can control the sizes of the islands, it offers flexibility in
balancing the amount of pre-computation data, the cost of
updating the pre-computed data, and the efficiency of the
kNN queries.

Kolahdouzan et al. [14] proposed two methods, IE and
UBA, for processing continuous k-nearest neighbor queries
in spatial network databases. IE is based on examining the
kNNs of all the nodes on a given path and the split points
between adjacent nodes whose nearest neighbors are
different. UBA eliminates the kNN computation for the
nodes that cannot have any split points in between. Cho
et al. [3] solved the same problem by introducing UNI-
CONS, which combines the pre-computed kNN lists with
Dijkstra's algorithm, thus it outperforms IE/UBA in high-
density networks. Safar et al. [23] proposed a PINE based
method to process CNN queries in road networks. To
efficiently find the location of the split point(s) on the
path, they used a modified version of the IE algorithm
proposed in [14]. However these three methods are just to
determine the kNNs of any point on a given path and they
assume the data objects are static.

Mouratidis et al. [17] addressed the issue of processing
CkNN queries in road networks by proposing two algo-
rithms (namely, IMA/GMA) that handle arbitrary object
and query movement patterns in the road network. They
can process kNN monitoring over moving objects and
query points and re-calculate query results whenever an
update occurs. However due to the nature of discrete
location updates, the kNNs of the query point within two
successive updates are unknown. Thus, these methods
would return invalid results between two successive
update time stamps. Huang et al. [10] proposed a contin-
uous monitoring method for moving objects in road net-
works. This method includes the pruning phase and the
refining phase, and it can continuously give the kNN result
of query q. However, the objects in question are assumed
to move with constant speeds.

2.2. Data broadcast algorithms for nearest neighbor search
in Euclidean space

A straightforward method to NN search in broadcast
environments is to have the server broadcast all the data
points sequentially and the clients filter all the data points
by always tuning into the broadcast channel. Obviously,
this approach is inefficient in terms of latency and tuning
time since all the data points should be examined. There
are generally two kinds of methods to address this issue:
(1) using an index in the broadcast to improve the
performance on the access latency and tuning time; (2)
instead of using an index, assigning all the data points to
the packets in the broadcast in some order and/or add
some additional information in each site in the broadcast.

In [27], Zheng et al. adapted the R-tree index [7] to
search CNN in broadcast environments. Additionally, they
presented a CNN search algorithm based on the Hilbert-
Curve air index. However, since the air index is located at
the beginning of each broadcast cycle, the clients have to
wait until the beginning of the next broadcast cycle in
order to obtain the index segment. Thus, it may incur
longer access latency. Hambrusch et al. [8] presented
techniques for scheduling a spatial index tree for broadcast
in single and double channel environments. The algo-
rithms executed by clients aim to minimize latency and
tuning time. However, the algorithms may still incur
longer access latency due to the same reason as that of
the Hilbert Curve air index. In [21], the authors proposed a
new broadcast-based NN processing method. In this
method, broadcast data objects are sorted and broadcast
sequentially based on their locations. Thus, it is not
necessary for the client to wait for an index segment, if
it has already identified the desired data items based on
the broadcasting order before the associated index seg-
ment has arrived. Liu et al. [16] proposed efficient proto-
cols for kNN search using a broadcast R-tree. By adding
some additional entries to the index nodes of the R-tree,
the method allows the kNN search to start in the middle of
a broadcast cycle, thereby reducing the access latency.
In [28], the authors developed a generalized search algo-
rithm for CkNNs based on the Hilbert–Curve index in
wireless broadcast systems. This is the first study on this
issue. Zheng et al. [29] presented a distributed spatial
index to support efficient location-based data access in
wireless data broadcast systems. This index has a linear yet
fully distributed structure that naturally shares links in
different search paths and it is very resilient to error-prone
wireless communication environment. However, data objects
in the above methods are assumed static. Park et al. [20]
proposed a client–server architecture for answering CNN
queries in wireless broadcast environments, and this method
does not require any conventional spatial index. Besides, it
can be adapted to handle static or moving objects, and does
not require additional information beyond the maximum
speed and the location of each object.

However, these previous studies have at least one of
the following limitations: (1) they focus on point-to-point
communication and do not consider wireless data broad-
cast environment; (2) they are limited to Euclidean space
and cannot handle spatial queries in the road network
which is a more realistic scenario. Thus, it is important to
devise an efficient method to deal with CNN queries in the
road network under data broadcast environments.

3. CN3B query processing

Fig. 1 gives an illustration of a CN3B query, where query
q moves from qstart to qend along a given road namely query
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line. CN3B query requires that its query result should be
updated timely when q keeps moving along its query line.
Broadcast-based CNN query processing in real road net-
works (i.e., CN3B) is different from and more difficult than
that in Euclidean space. This is mainly because in road
networks, the distance between a query point q and a data
point o is determined by the connectivity of the network,
as opposed to the positions of q and o in Euclidean space,
which are comparatively easy to obtain. Moreover, since
most mobile clients (MC) keep moving from time to time
on the road network, it is unrealistic to require an MC to
store the structure of the road network and the positions
of the objects in the road network before the MC launches
a query. In other words, the information of both the road
network and the data objects being searched have to be
broadcast by the server. In view of this, how to organize
and broadcast the information on the server side, as well
as design efficient algorithms to process queries on the
client side, are the major issues that must be addressed for
CN3B query processing.

As well known, Voronoi Diagram (VD) is a useful structure
for CNN query processing. A Voronoi Diagram (VD) divides a
spatial space into several disjoint Voronoi Polygons (VP)
where the nearest neighbor of any point inside a VP is the
generator point (object) of the VP [18]. NVD is a specialization
of VD, where the location of objects is restricted to the edges
of the graph and the distance between objects is defined as
the shortest path connecting them in the network instead of
their Euclidean distance [18]. For a given generator object p in
an NVD, its VP includes all the edges (or sub-edges), where all
the points on these edges are closer to p than any other
generator objects in the network. In this section, we first
introduce a straightforward method which uses NVD directly,
p8

p12

p10
qend

qstart

Fig. 1. An illustration of CN3B query in a road network.

Fig. 2. An example of constructing a D-tree index from a given NVD that de
interpretation of the references to color in this figure caption, the reader is re
and point out its inefficiency on CN3B query processing in
Section 3.1, then we present our novel method in Section 3.2.
3.1. A straightforward method

Given a road network, a common method for proces-
sing CNN queries consists of the following three steps:
(1)
picts
ferred
Construct the NVD diagram based on the objects
distributed in the road network.
(2)
 Utilize a D-Tree [26] to index the VPs of the NVD
constructed.
(3)
 Repeatedly search the D-Tree to locate the VP which
contains the query point when it keeps moving along
the road network, and the generator object of the VP is
the query result.
We call the above D-Tree based Method DTM in the
sequel. Now we give a concrete example to show how DTM

works. Fig. 2(a) depicts a road network, where p1, p2, p3
and p4 are the data objects and the hollow points are the
intersections of the road network. Fig. 2(b) shows the NVD
constructed based on the objects distributed in the road
network. As can be seen, the green lines divide the whole
road network into four VPs (VP1 to VP4). Note here
bi ð1r ir8Þ is a border point of the VPs, while v is an
auxiliary point which connects adjacent border points. To
construct the D-tree index, we can use a large cell to
confine the whole NVD and define this cell as the root
node of the D-tree. The NVD is recursively partitioned into
two sub-spaces until each space contains only one region
(VP). As shown in Fig. 2(b), we first partition the whole
NVD into two sub-spaces, VP5 and VP6, by the polyline
b1b2vb7b8. Then VP5 (VP6, resp.) is further partitioned into
VP1 (VP2, resp.) and VP3 (VP4, resp.), by the polyline b3b4v
(vb5b6, resp.). In this way, we can get the D-tree index as
shown in Fig. 2(c). Next, we can linearize the D-tree index
to get an air index, in particular, the air index can be
constructed by traversing (starting from the root node)
the D-Tree in a level-based order. Notice here for each VP,
the pointer always points to their child VPs. After deriv-
ing the air index, we can simply interleave it with NVD
diagram and data objects on the broadcast channel and
then broadcast them. For instance, for the above example,
we can derive the air index and the broadcast cycle of the
a road network. (a) A road network. (b) NUD. (c) D-tree index. (For
to the web version of this paper.)
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Fig. 3. The air index and the broadcast cycle of the NVD in Fig. 2.
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Fig. 4. A road network and the corresponding NVD. (For interpretation of
the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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NVD, as shown in Fig. 3. Till now, we have finished all the
issues on the server side, on the client side, the MC can
repeatedly tune into the broadcast channel and search the
air index to locate the VP which contains the query point
when it keeps moving along the road network, and the
generator object of the VP is the query result.

Drawback of DTM: Although DTM is an effective scheme
for CN3B query processing, it is not an efficient one. This is
because in DTM, executing an NN/CNN search has to start
from the root of the D-Tree (i.e., the beginning of a
broadcast cycle), which may lead to long access latency.
Moreover, since the VPs of NVD are irregular polygons, the
partition size of D-Tree is large, which in turn can enlarge
the size of the D-Tree index, and this may further result in
long access latency and tuning time. To determine which
VP a query point belongs to, one would need some
reference polylines. For example, to find out that the query
q belongs to VP3, we need two polylines, viz. b1b2vb7b8
and b3b4v. However, these two lines cannot be obtained
without searching the D-tree index (Fig. 2(c)) that is
broadcast from the server. Thus the client has to continu-
ously listen to the broadcast channel to get the index
information of the frames which contain the VPs covered
by the query line of q. As a result, DTM is not efficient for
processing spatial queries in data broadcast environments,
which will also be demonstrated in our experimental
study in Section 4.
3.2. Our novel method

The inefficiency of DTM mainly steps from that it
depends on a tree-based air index. In this section, by fully
leveraging the key properties of NVD, we propose a novel
method for CN3B query processing. Firstly, in Section 3.2.1,
we construct the NVD structure of the underlying road
network according to the positions of the data objects in it.
Then in Section 3.2.2, we propose an efficient quad
partition method to divide the NVD structure into several
rectangular areas (called grid cells) and obtain a quad-tree
to keep the grid cells of the NVD structure. Thirdly, we
propose an NVD-based distributed index, namely NVD-DI,
to support CN3B query processing in Section 3.2.3. In
Section 3.2.4, we introduce an efficient algorithm on the
client side to process CN3B queries. Finally, we present an
analytical model in Section 3.2.5 to study the performance
of our proposed query processing method.

3.2.1. NVD structure construction
Figure 4 presents a road network and its corresponding

NVD diagram. In this figure, the road network is divided
into several VPs and each VP includes a data point (object),
which is the generator of the VP. As can be seen, q is
located in the VP of p12 (bounded by blue lines), hence it is
easy to conclude that the NN of query q is p12.

Since the query clients are constrained to move on the
roads (also called edges) of the underlying network, the
actual boundaries between adjacent VPs are some special
points, called split points. As can be seen from Fig. 4, sp1,
sp2, and sp3, each represented by a green cross, are split
points. A split point cuts the edge where it lies into two
parts, each of which belongs to one of the VPs of two
different objects. For example, sp1 cuts the edge it locates
into two edges which belong to the VPs of p12 and p13,
respectively. Thus, an edge e may belong to several VPs of
different objects. We mark each edge of the road network
with an attribute obj_dom to indicate that this edge
belongs to the VP of a certain object. Hereinafter, we call
this marked road network which keeps NVD properties
NVD structure. Note NVD structure is different from NVD
diagram. In particular, An NVD diagram consists of a set of
Voronoi polygons with different shapes and sizes, which
make it hard to be divided evenly in the space partition
step. On the contrary, an NVD structure consists of a set of
edges with the same sizes, and thus can be evenly divided
easily. The pseudo code for building an NVD structure is
given in Algorithm 1. It is not difficult to see that
Algorithm 1 has a linear time complexity OðjSjÞ, where jSj
is the number of objects in set S.

3.2.2. NVD partition and coding
We now discuss how to partition the NVD structure

constructed above. There are many space partition meth-
ods, such as fixed partition, which divides the search space
into grid cells with fixed spatial size, and adaptive parti-
tion, which divides the search space into grid cells such
that each grid cell contains nearly the same number of
data objects. In this subsection, we propose an efficient
approach, namely NVD quad partition, to partition the NVD
structure constructed so as to derive an NVD quad tree.
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Algorithm 1. Building NVD structure.
p1

p2
p3

p4

p5 p6

p7

p8
p9

p12
p10

p11 p13

q

0010

0000
000100

000101

000110
000111

0100 0101

0111011000

011001

011010
011011

001100 001101

001110 001111

1000

1010 1011

100100
100101

100110 100111

110000 110001

110010 110011
1101

1110
1111

Fig. 5. The grid cells after partition of the NVD structure in Fig. 4.
Considering that each broadcast frame is of fixed size, the
basic idea of our NVD partition method is to make each
transmitted unit in the broadcast channel contain approxi-
mately equal amount of information about the underlying
road network. Before giving the detail of the partitionmethod,
we first introduce a threshold λ that will be used later.

Definition 1. Let sF be the size of a broadcast frame, si be
the size of an index table, and se be the space size needed
for keeping an edge. λ is decided by sF, si and se, where
λ¼ ðsF�siÞ=se.

Now we proceed to detail our partition method. At first,
we use a large cell C to confine the whole NVD structure and
define C as the root node of the NVD quad-tree. If the number
of edges overlapping with cell C exceeds the predefined
threshold λ, C is split into four sub-cells, 00, 01, 10, and 11,
each having the same size, and the sub-cells become the child
nodes of C. Besides, the edges of C are distributed into these
four sub-cells according to their positions in cell C. In
particular, 00, 01, 10, and 11 represent the sub-cells at the
upper-left, upper-right, lower-left, and lower-right side,
respectively. Note that different parts of a single edge in C
can be distributed into different sub-cells of C. For each edge e
of C, if the entire or part of edge e overlaps with the sub-cell ij
(i, j¼0 or 1), we add 1 to the number of edges in cell ij. After
all the edges of C have been processed, the numbers of edges
in cell ij can be readily obtained.

The above process repeats until every grid cell contains
no more than λ edges, and then the quad tree rooted at C is
obtained. For ease of query processing at the client side,
each node (grid cell) in the quad-tree is assigned an
identification (ID) which is a sequence of 0–1 bits, except
for the root node C, which has an empty string as its ID. For
a non-root node, its ID is obtained by concatenating its
parent node's ID with one of the four two-bits 00, 01, 10
and 11, which is determined by the relative position of the
node as described in the preceding paragraph. Hereinafter,
we call this ID the GCode of the grid cell. It is not difficult to
see that the length of the GCode of a grid cell is twice the
level of the cell in the quad-tree. With this naming
scheme, we know that for a given NVD, there is a one-
to-one relationship between the grid cell and its GCode.
Hence, given a GCode, the area that the grid cell covers can
be readily figured out, and, given a space point, the GCode
of the cell containing the point can also be immediately
determined. Moreover, since geographically neighboring
cells are also adjacent in their cell numbers, the grid cells
of the NVD quad-tree obtained have good locality-
preserving behavior. Now let us go back to the running
example illustrated in Fig. 4. With our NVD partitioning
and naming schemes, the NVD structure is partitioned into
multiple numbered grid cells where solid dots represent
data objects and rectangles in dotted line represent grid
cells, as shown in Fig. 5, and the corresponding NVD quad-
tree is given in Fig. 6.

The next step is to organize the NVD quad-tree into the
broadcast channel. To ensure that geographically neigh-
boring cells are adjacent in the broadcast channel, we put
the leaves of the NVD quad tree into the channel from left
to right. In this way, we can obtain the linear sequence of
the 31 grid cells for the NVD quad-tree constructed above,
as shown in Fig. 7. Note that the linear sequence obtained
is in an ascending order of the GCode value. It is worth
mentioning that since some areas (grid cells) have fewer
edges, the edges within a road network are usually
unevenly distributed. In order to increase the storage
utilization, we merge consecutive cells to form a new
one if the sum of the number of edges in these cells
remains no larger than λ. Note that if two or more cells are
merged, then the first cell's GCode will be used as the
GCode of the merged cell. We again use the above example
to illustrate how to conduct the merge operation. Assume
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Fig. 6. The constructed NVD quad-tree corresponding to Fig. 5.
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Fig. 7. The linear sequence of the NVD quad-tree in Fig. 5.
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Fig. 8. The linear-compressed sequence of the NVD quad-tree in Fig. 5.
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that λ¼10, since the sum of the number of edges in the
continuous three cells 0000, 000100 and 000101 is no
larger than 10, these three cells can be merged to form a
new cell 0000. Similarly, the cells 0100 and 0101 can be
combined to form a new one 0100. After conducting the
merging process, we can obtain a new linear-compressed
sequence which consists of 18 cells, as shown in Fig. 8.

After the above merging process, some grid cells may
contain several smaller grid cells. Moreover, since the grid
cells in our system belong to different level of the NVD
quad-tree, the grid cells which are not located at the
lowest-level of the tree contain several lowest-level grid
cells. For ease of processing, for each grid cell, we keep the
maximum cell code of the lowest-level cells it contains,
namelyMaxGCode. For example, cell 0000 consists of three
cells 0000, 000100 and 000101, so its MaxGCode is 000101.

Now we discuss the time complexity of NVD partition
and coding. In the first round of partition, each edge will
be checked once to determine which sub-cell it belongs to,
so the time complexity for this round is O(r), where r is the
number of edges in the road network. For a road network
whose edges are evenly distributed, it takes log2ðrÞ
partition round at most to get the final partition result,
hence the time complexity is Oðr � log2ðrÞÞ. However, for
extreme situation where the edges in a road network are
pretty concentrated, it may take r round partitions in the
worst case, thus the time complexity is Oðr2Þ. The cost for
assigning an ID to each grid cell and getting the liner
compressed sequence of grid cells are both O(K), where K
is the number of grid cells to be processed. In sum, the
time complexity of this stage is Oðr2þKÞ.

3.2.3. NVD-DI index construction
Since the clients do not know in advance when the grid

cells they require will arrive, they have to listen to the
broadcast channel continuously and keep retrieving all the
grid cells being broadcast until the desired ones are located.
Obviously, this behavior consumes quite a long tuning time,
which in turn can result in large power consumption of
mobile clients. For an ordered linear sequence to be broad-
cast, in order to realize energy-efficient selective tuning,
distributed index has been widely accepted as a good
choice. Based on the NVD quad-tree constructed above,
we present a linear distributed index namely NVD-DI in this
section. With NVD-DI, the execution of a CNN search can be
started whenever an MC tunes in the broadcast channel.
Moreover, it allows clients to keep in sleep mode until the
desired frame(s) and the relevant index frame(s) arrive,
which can significantly save energy consumption.

Assume that each broadcast frame contains only one
grid cell and the total number of grid cells is N. In addition
to the information of a grid cell, each frame also has the
following information as its header: (1) the GCode and
MaxGCode of this grid cell; (2) a forward Index Table (IT)
which keeps n entries in the form of 〈i;GCodei〉, where
iA ½0;n�1� and GCodei represents the GCode of the grid cell
corresponding to the frame which is the 2ith frame
following the current frame in the broadcast cycle. More
clearly, the IT contains the GCodes of the grid cells
corresponding to the 1th, 2th, 4th, …, and 2n�1th frame
following the current frame. With this definition, it is not
difficult to see that n¼ ⌈ log2ðNÞ⌉. Note that the frame size,
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Fig. 9. The NVD-DI structure of the network shown in Fig. 4.
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Fig. 10. An example of a CN3B query crossing the boundary of two
neighboring VPs.

1 In a road network, the roads are curves with indefinite shapes.
People typically use a sequence of road segments, which are line
segments, to simulate an actual road. Since a normal query client moves
on the roads of a network, its query line consists of the road segments on
its way.
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as well as the time needed to broadcast each frame (called
tframe) are both fixed. Hence, given the broadcast order of a
frame, its arrival time can be readily obtained. To help an
MC calculate the GCode of the grid cell where it is located,
we define three parameters H, W, and h for each frame,
where H and W are the height and width of the road
network, respectively, and h is the height of the NVD quad-
tree. Thus, for a linear-compressed sequence derived from
an NVD quad-tree, the broadcast cycle consists of several
frames, where each frame includes the following items
sequentially: (1) three parameters H, W, and h; (2) the
corresponding index table; and (3) the edge and object
information included by the corresponding grid cell. The
three organized items are delivered by the server sequen-
tially, and the mobile client can distinguish the bit
sequence between the index part and the data part. This
is because the three parameters and the index table are
placed at the beginning of each frame, and moreover, their
sizes are fixed.

Now let us go back to the example given in Fig. 4, from
which we obtain the NVD-DI index. Fig. 9 shows the index
tables which corresponds to the frames of grid cells 000110
and 0100. Since N¼18, each index table has ⌈ log2ðNÞ⌉¼ 5
entries. Take the index table for frame 000110 as an example,
the first entry 〈0;0010〉 means that the first (20th) frame
following the current frame has GCode¼0010, and its arrival
time is 1� tframe after the current frame. The remaining
entries can be interpreted in a similar way.

Since we need to construct an IT table for each frame in
the broadcast cycle, it is no difficult to see that the time
complexity of this step is O(N), where N is the number of
frames (grid cells) in a broadcast cycle.

3.2.4. CN3B query processing algorithm on the client side
In this section, we present an efficient algorithm to process

CN3B queries on the client side. Since a client q may move
continuously within a road network, it makes the retrieval of
q's NN a challenge. A CNN query finds the NN object to every
point on a given query line.1 As discussed before, we only
report the NN's status change when query q arrives at a split
point, as opposed to continuously issuing NN queries when q
keeps moving. Fig. 10 gives an example where the query line
of q crosses the Voronoi Polygons of objects p12 and p10. The
split point sp1, which is the intersection of the query line of q
and the boundary of the VPs of p12 and p10, cuts the query line
into two line segments qstartsp1 and sp1qend, with their NNs
being p12 and p10, respectively.

We now detail our CN3B query processing algorithm on
the client side, denoted by Client. The pseudo-code of
Client is presented in Algorithm 2. Table 1 lists the formal
definitions off some symbols that will be frequently used
later. Given a query line of q, Client performs the following
three steps:
(1)
 Obtain a list of GCodes of the grid cells overlapping
with the query line (Algorithm 3).
(2)
 Search the NVD-DI index to locate and retrieve the
frames that contain the information of the grid cells
with the GCodes obtained in step 1) (Algorithm 4).
(3)
 Get the split points of the query line and the



Table 1
Symbols and definitions.

Symbol Definition

CGCode Calculated GCode used on the client side
SGCode Actual GCode used on the server side
QL The list of GCode s of the grid cells covered by the query

line of q
WL The waiting time list for the frames, which keeps more

direct index
information of the desired grid cells

FIT The forward index table of frame F
i%j The result of i mod j

2

the t
segm
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corresponding NNs, according to the edge information
stored in these frames. The split points cut the query
line into several line segments, and all the line seg-
ments together with their NNs form the final query
result.
Since step (3) is quite straightforward, in the following, we
will only describe the first two steps.

Algorithm 2. Client.

input: the query line of q

output: the query result of q
1
 Invoke Algo. GetGCs; //To obtain an ordered list of grid cells
overlapping with the query line of q;
2
 Invoke Algo. LocateGCs; //To locate and retrieve the frames
which contain the information of the list of grid cells obtained
previously;
3
 Get the split points of the query line and the corresponding NNs,
return the final query result of q;
Algorithm 3. GetGCs.

input: the query line of q

output: QL(a list of the GCodes of grid cells overlapping with the
query line of q)
1
 list QL¼Ø;

2
 Tune into the channel and retrieve the first frame F;

3
 Cut the query line of q into several line segments by the turning

points;

4
 for each query line segment s do$

5
6

Calculate the GCodeðsÞof grid cellðsÞ containing the end pointðsÞ of s;
Insert the GCodeðsÞ obtained into QL in ascending order;
7
 Return QL;
Step (1) In this step, Algorithm 3 – GetGCs is designed
to obtain the list of GCodes of the grid cells that overlap
with the query line of q. In particular, it cuts the query line
into several line segments by its turning points,2 and for
each line segment, the algorithm obtains the GCode(s) of
the grid cell(s) containing the end point(s) of the line
segment, with the final result stored in QL.

Recall that for a given NVD structure, there is a one-to-
one correspondence between a grid cell and its GCode.
Hence, given the coordinates of a point, the GCode of the
grid cell containing this point can be easily determined. In
order to facilitate the query processing, we first assume
Since a normal query client moves on the roads of a road network,
urning points of its query line are the intersections of adjacent road
ents on its way.
that the broadcast NVD quad-tree on the client side to be a
complete quad-tree with height h, and each leaf node at
the lowest level represents a grid cell whose covering area
is H=2h �W=2h. Moreover, we assume that each client lies
in a lowest-level grid cell and the calculated GCode is a
string whose length equals to 2nh. Hereinafter, we call this
lowest-level grid cell supposed on the client side Cgrid cell,
and use CGCode to represent the calculated GCode. Fig. 11
(a) gives an example to illustrate our approach, where the
query line of q overlaps with Cgrid cells 110000, 110001,
and 110100, hence QL¼ f110000;110001;110100g.

It is important to note that the above Cgrid cells are
only supposed ones, the actual grid cells broadcast by the
server may be located at different levels of the NVD quad-
tree. From now on, we call these actual grid cells being
broadcast at the server side Sgrid cell, and use SGCode to
represent its GCode. It is not difficult to see that the actual
NVD quad-tree broadcast by the server is a sub-tree of the
complete quad-tree assumed by the client side, and each
leaf node represents a Sgrid cell whose covering area is
H=2i �W=2i, where ið1r irhÞ is the level of the cell in the
tree. For a Sgrid cell that is not at the lowest level, it covers
22nðh� iÞ Cgrid cells. Comparing to Fig. 11(a), Fig. 11(b)
presents the actual grid cells covered by the query line of
the query q, i.e., 110000, 110001, and 1101. Note that
although the CGCode is not always in accordance with
the actual SGCode, we can still use the CGCodes to find out
the actual grid cell where query q is located. This is
because, for a frame F being broadcast, we have kept its
GCode and MaxGCode, hence, if the CGCode being searched
is between F.GCode and F.MaxGCode, then F must contain
the information of the desired grid cell.

Step (2) In this step, Algorithm 4 – LocateGCs is
performed to retrieve the list of grid cells kept in QL, which
is in ascending order of the GCode value. We use WL to
record the waiting times of the frames, which keeps more
direct index information of the desired grid cells. For
example, WL½i� ¼ 2j � tframeð0r jrn�1Þ means that the
frame, which will be broadcast after 2j � tframe following
the current frame, keeps more direct index information of
grid cell QL½i�. Moreover, we use two variables next and found
to specify the subscript of the element being searched in QL
and keep the number of the found grid cells, respectively.

Algorithm 4. LocateGCs.

input: QL – An ordered list of the GCodes of grid cells covered
by the query line of q;
F – The first frame retrieved when q tunes into the broadcast
channel;

output: The frames which contain the grid cells of QL;
1
 m¼QL.length;

2
 int WL½m� ¼ f0g;

3
 int found¼ next ¼ i¼ 0;

4
 while ðiomÞ do6

5
6
7
8
9

ifðF :GCoderQL½i�rF:MaxGCodeÞ then
repeat���foundþþ ; next ¼ ðiþ1Þ%m; iþþ ;

untilðQL½i�=2½F:GCode; F :MaxGCode�Þ;
break;

66666664

66666666664

10
 for ði¼ next; ionextþm�1� found; iþþÞ do
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Fig. 11 d cells 110,000, 110,001, and 110,100 obtained by running Algorithm 4 and (b) the
actual
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11
12
13
14
15
3 I
Code
cle

IT ½ðjþ
for ðj¼ 0; jrn�1; jþþÞ do
ifðQL½i%m�A ½FIT ½j�:GCode; FIT ½ðjþ1Þ%n�:GCodeÞÞ then
ifðWL½i%m�o2j � tframeÞ then
WL½i%m� ¼ 2j � tframe;

break;

$
6666664

66666666664

66666666666664

. The grid cells covered by the query line of q. (a) The client gri
grid cells being broadcast: 110,000, 110,001, 1101.
16
 Let next be the subscript of the smallest item in WL;

17
 Turn into doze mode, sleep for a time period whose length

equals WL[next];

18
 for ðk¼ nextþ1; krnextþm�1� found; kþþÞ do

19
 ⌊WL½k%m� ¼WL½k%m��WL½next�

20
 Tune into the channel and retrieve the frame F;

21
 while ðfoundomÞ do6

22
23
24
25
26
27
28
29
ifðF :GCoderQL½next�rF:MaxGCodeÞ then
repeat
jfoundþþ ;next ¼ ðnextþ1Þ%m;

untilðQL½next�=2½F :GCode; F:MaxGCode�Þ;

66664
iffoundZm then
⌊break;
Repeat lines 10–15;
Repeat lines 17–20;

66666666666666664

30
 Return the frames retrieved.
We first check whether one or more items in QL are
included in the first frame of F (Lines 4–9 in Algorithm 4).
If the answer is affirmative, we modify the values of next
and found correspondingly. Note that QL is regarded as a
cyclic structure, which means the next item of QL½m�1� is
QL½0�. Then we use FIT to set WL (Lines 10–15). For each non-
found grid cell, if it belongs to ½FIT ½j�:GCode; FIT ½ðjþ1Þ
%n�:GCodeÞ3 ð0r jrn�1Þ, then it means FIT ½j�: GCode may
keep more direct index information of this frame, and we
thus modify the related item in WL correspondingly. Note
here we also need to modify the waiting time of each non-
found item in WL (Lines 18 and 19) since a time duration of
WL½next� has elapsed. Finally, we repeat the following three
steps until m grid cells have been found:
(i)
 Check whether QL½next� is included in the current frame
F. Since a frame may contain the information of more
than one grid cell, we repeat step (i) until the next item
being searched does not belong to frame F (Lines 22–25).
(ii)
 Repeat lines 10–15 to modify the waiting time of the
non-found items in WL.
(iii)
 Repeat lines 17–20 to get the desired frame.
f FIT ½j�:GCode4FIT ½ðjþ1Þ%n�:GCode, then ½FIT ½j�:GCode; FIT ½ðjþ1Þ%n�:
Þ equals to ½FIT ½j�:GCode, the GCode of the last frame of a broadcast
�⋃½ the GCode of the first frame of the broadcast cycle,
1Þ%n�:GCodeÞ.
110001;110100g, thus the lengths of QL and WL are both
To illustrate the process of Algorithm 4, we again use
query q in Fig. 1 as an example. Note QL¼ f110000;

3. Assume that the first frame F is 000110, since all the three
cells in QL are behind frame F in the broadcast cycle, and
110000 is the nearest one from frame F, we know that frame
110000 is the first one being searched. Moreover, since
FIT ½3�:GCodeð100100ÞrQL½0�ð110000ÞoFIT ½4�:GCodeð1111Þ
and frame 100100 contains more direct index information of
the desired frame, WL½0� is set to be 8n tframe. The other two
elements in WL are handled in a similar way. The detail of
the above process is shown in phase 1 of Fig. 12. In phase 2,
after sleeping for a duration of 8n tframe, query q wakes up
and tunes into the channel to retrieve frame 100100, andWL
is modified correspondingly. In phase 3, query q sleeps for a
time duration of 4� tframe, and then wakes up to retrieve
frame 110000. Since both 110000 and 110001 belong to
[110000, 110001], we know that frame 110000 includes the
information of cell 110000 and 110001. Note that 110001 is
the MaxGCode of frame 110000, hence WL is modified
according to the IT table of frame 110000. Finally, query q
sleeps for a duration of 2� tframe, and wakes up to retrieve
frame 1101. Since 110100 belongs to [1101, 110111], and
110111 is the MaxGCode of frame 1101, we can conclude that
frame 1101 contains the information of cell 110100. Up to
now, all the desired frames have been retrieved.

It is straightforward to see the time complexity of the
first step is OðjsjÞ, where jsj is the number of edges the
query line covers. In the second step, since we need to
retrieve m data frames, and when searching for one frame,
we need to access log2ðNÞ frames in the worst case, where N
is the number of frames in a broadcast cycle. Besides, when
searching for the IT table of a frame to get the index
information of the desired frame, we need to compare n
index items in the worst case, where n¼ ⌈ log2ðNÞ⌉. Hence,
the time complexity of the second step is Oðm� n� log2ðNÞÞ,
wherem is the number of grid cells covered by the query line.
The third step has the same time complexity ðOðjsjÞÞ as that of
step one. Overall, the time complexity of the Client algorithm
is Oðjsjþm� n� log2ðNÞÞ.

Till now, we have finished introducing all the details of
our novel CN3B query processing method. Before finish-
ing this subsection, we highlight the advantages of our
method as follows:
(1)
 Each query can be finished within one broadcast cycle
length, as stated in Theorem 1 below.
(2)
 The total tuning time is much shorter than m� tu,
where tu is the average tuning time for retrieving one



 Phase2: sleep for a time duration of 8*tframe,
 then wake  up to retrieve frame 100100

Phase4: sleep for a time duration of 2*tframe,
 then wake  up to retrieve frame  1101.

Phase 1: retrieve frame 000110, and modify
WL correspondingly.
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0 110000 4*tframe
1 110001 4*tframe
2 110100 4*tframe
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Fig. 12. An example of getting the frames desired for CN3B query processing.
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grid cell separately. This is because we sort all the grid
cells in ascending order of their GCodes and we can get
more direct index information for grid cells in the back
end while searching for grid cells in the front end.
Theorem 1. With NVD-DI and the Client algorithm, each
CNN search can be completed within one broadcast cycle.

Proof. Assume that there are totally m frames overlapping
with the query line of q, and P is a randomly selected frame
from these m frames. Firstly, the broadcast cycle, which
starts from the time instant when q tunes into the broad-
cast channel, includes every frame. Secondly, assume that
the frame P is the t-th frame after the current one
(0rtrN�1, N is the number of frames in a broadcast
cycle). Then, we can calculate which frame(s) will be
retrieved in order to get the desired frame P according to
the value of t:
�
 Convert decimal value t into a binary string x1x2⋯xk
(krn, n is the number of entries in IT). To simplify the
discussion, we truncate leading zeros of the string to
make x1 ¼ 1.
�
 Assume the binary string x1x2⋯xk has l bits which
equal to 1 ðlrkÞ. We define a function f by f ðiÞ ¼
hðiA ½1; l�Þ, where h is the position of the i-th bit in
x1x2⋯xk (counting from left to right) that equals to 1. So
if the string is 1011, then f ð1Þ ¼ 1, f ð2Þ ¼ 3, f ð3Þ ¼ 4.
According to our Client algorithm, a client wakes up
to retrieve a frame after sleeping for a duration of
tframen2

k� f ðiÞ at the i-th iteration, where i¼ 1;2;…; l.
This process will repeat l times. When the client wakes
up at the l-th iteration, it will retrieve the t-th frame
which is exactly the desired frame P.
Since toN and ko log2ðNÞ, we have,

∑
l

i ¼ 1
2k� f ðiÞr ∑

k

i ¼ 1
2k� ir2k�1r2 log2ðNÞ �1oN ð1Þ

Thus, after waiting a time duration which is shorter than
tframenN and waking up l times, the frame P is retrieved
within a broadcast cycle. Since P is a randomly selected
frame, all thesem frames can be retrieved in one broadcast
cycle, therefore, the theorem follows. □

Actually, when tuning into a broadcast channel to
retrieve a frame, Algorithm LocateGCs will modify the
index information of the non-found frames according to
the IT of the current frame (Lines 13 and 14 of Algorithm 4),
which will cut down the tuning time to locate a frame.

3.2.5. Cost model
In this section, we conduct a performance analysis

based on the assumption that the clients tune into the
broadcast channel randomly and each edge in the road
network has the same probability to be accessed. In
wireless broadcast environments, tuning time and access
time are the two major metrics to measure the access
efficiency and energy consumption for mobile clients,
respectively. Access latency is the time elapsed from the
moment a query is issued to the moment it is answered,
while tuning time is the time a mobile client stays in active
mode to receive the requested data objects and index
information. In what follows, we use the number of access
data frames to evaluate the average access time (AAT) and
the average tuning time (ATT) for query processing.

1. Average access time
Let N be the total number of frames in a broadcast

cycle, SD be the size (in the number of frames) of data used
to include all the edges and objects, SNVD�DI be the size (in
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the number of frames) of the NVD-DI index, and m be the
number of grid cells covered by the query line. Since NVD-
DI is a complete distributed air index, it is obvious the
probe-wait time for getting the index table is zero. More-
over, it is not difficult to derive that the average broadcast-
wait time for getting the desired grid cells is ðN=2Þþm.
By summing the probe-wait time and broadcast-wait time
up, we have,

AAT ¼ N
2
þm¼ SDþSNVD�DI

2
þm ð2Þ

2. Average tuning time

Let si be the size of an index table, sF be the size of a
broadcast frame, and m be the number of grid cells
covered by the query line. Suppose a client tunes into
the broadcast channel and retrieves the first frame F.
Among the desired grid cells behind F, suppose the nearest
one to F is located in frame FiðiA ½0;N�Þ, where Fi the i-th
frame behind F. Note that NVD-DI is a distributed index
and retrieving Fi needs 1 search step at least and ⌈ log2ðNÞ⌉
search steps at most. Since we assume each edge in the
road network has the same probability to be accessed, i.e.,
the probability of selecting any value from ½0;N� for i is
equal, the average tuning time for accessing one frame,
denoted by ATTframe, can be computed as follows:

ATTframe ¼
1
2
þ ∑

N�1

i ¼ 0
t ið Þ ð3Þ

where

t ið Þ ¼
1 i¼ 0

t i�xð Þþ si
sF

i40

8<
: ð4Þ

The first part of ATTframe is the initial probe time for the
first complete frame. Since each frame contains a pointer
to the next frame, the initial probe requires retrieval of half
of a frame, i.e., 1

2 , on average. The second part of ATTframe

ð∑N�1
i ¼ 0 tðiÞÞ is the average number of frames accessed for

retrieving the desired frame Fi, where x in Formula (4) is
the maximum value no larger than i in the set of
f20;21;22;…; ⌊N=2cg.

Note that since we sort all the grid cells in ascending
order of their cell numbers, we can get more direct index
information for grid cells in the back end when searching
for grid cells in the front end. Besides, the NVD quad-tree
has good locality-preserving behavior. That is, geographi-
cally neighboring cells are also adjacent in their cell
numbers. Thus, the set of grid cells related to a CN3B
query may list adjacently in the broadcast cycle. As a
result, the total average tuning time for a CN3B query is far
smaller than m � ATTframe, and we have,

1
2
þ ∑

N�1

i ¼ 0
t ið ÞþmrATT5

1
2
þm � ∑

N�1

i ¼ 0
t ið Þ ð5Þ

where t(i) is defined in Formula (4).

4. Performance evaluation

This section presents the performance evaluation of our
CN3B query processing method. Since our approach is an
NVD-DI based method, we call it NVD-DI-M for short. To
our best knowledge, there is no other work on dealing
with CNN queries in road networks under broadcast
environments in the literature up to now. Hence, we will
compare NVD-DI-M with DTM, a method presented in
Section 3.1 which runs repeatedly when a query client q
keeps moving along its query line segment. For simplicity,
we only run DTM whenever a query q leaves the edge it
locates and moves to another edge in our experiment
study. Moreover, to evaluate the effect of the distributed
index on access time prolongation and power saving, we
will also compare NVD-DI-M with its another version that
does not use NVD-DI index, denoted by NVD-No-DI for
convenience.

The performance of NVD-DI-M versus DTM and NVD-

No-DI is evaluated by measuring average access time and
tuning time for processing CNN queries in road networks.
Suppose the bandwidth of the broadcast channel is fixed,
we use the number of bytes transferred over the broadcast
channel as the time unit, instead of the real clock time. The
reason is that given a certain bandwidth, transferred bytes
can be easily converted into clock time. Note that here we
avoid using the number of packets for comparison since
the packet sizes in our experiments are varied to model
different real life applications. The effect of the distributed
index on access time prolongation and power saving of
mobile clients is also evaluated in this section.
4.1. Environments and parameters

The system model in the simulation consists of a base
station, a number of clients, and a broadcast channel. The
available bandwidth is set to 84 Mbps. Our method is
tested in both a real road network and a synthetic 2-
dimensional grid network containing MnM cells, where M
is a system parameter. The road traffic network of San
Francisco Bay Area in America [24], which consists of
175,343 nodes and 223,308 edges, is used as the real road
network.

First, the performance of our methods is tested both on
real data and uniform data sets in the above mentioned
real road network in Section 4.2. Then the performance is
evaluated both on real data and uniform data sets in a
synthetic grid network in Section 4.3. In particular, a set of
data objects obtained through the generator proposed in
[2] works as the real data set. Fig. 13 depicts the real road
network of San Francisco Bay and the real date objects in
it, with roads and data objects represented by blue lines
and red points, respectively. The uniform data set contains
several data objects which follow uniform distributions.
Table 2 lists the parameters for the investigation. The
values in bold face are the default values in our experi-
ments and the results presented in the following sections
are the average performance of all the queries in the
system. In the experiments the packet size is varied from
256 to 2048 bytes. Since the storage space needed for
keeping an edge is fixed, varying packet size is equivalent
to varying the value of the threshold λ discussed in Section
3.2.2. Moreover, three road networks, San Jose, San Rafael
and Oldenburg, are used to test the applicability of our
method in Section 4.3.



Table 2
Dataset parameters.

Number of queries 10, 50, 100, 150, 200(k)
Number of objects 5, 10, 20, 30, 40(k)
Query line length 2, 4, 6, 8, 10 (edges)
Packet size 256, 512,1024, 2048 (bytes)
The number of cells in grid

(MnM)
100n100, 200n200, 300n300,
400n400,500n500

The distribution of objects Real data, uniform distributed
data

Fig. 14. Normalized index size for real data set.

Fig. 13. San Francisco Bay and real data set. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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4.2. Performance on the real road network of San Francisco
Bay Area

4.2.1. Access latency
Firstly, NVD-DI-M is compared with NVD-No-DI and DTM

in terms of access latency. Access latency is influenced by the
length of the broadcast cycle and the number of multiple
paths provided by an index. The broadcast cycle is affected
by the index size. The larger the index size, the longer the
broadcast cycle. Fig. 14 shows the normalized index sizes
of our NVD-DI index and the D-tree index for the real data
set. This figure tells us that the former outperforms the
latter in most cases, while the D-tree index is smaller
than our index when the packet size is 256 byte. This is
because each frame in our method keeps an IT index table,
which will result in a larger normalized index size when
the packet size is small. However, NVD-DI is a fully
distributed index which allows the query client to start a
query processing at arbitrary time instants. Thus the
performance of NVD-DI-M, which is based on NVD-DI, is
much better than that of DTM even when the packet size
is small.

Fig. 15(a) and (b) show the effect of packet size on the
access latency of these three methods. It can be seen that
NVD-DI-M and NVD-No-DI outperform DTM significantly.
On average, NVD-DI-M incurs only 20.39% and 19.65% of
access time compared to DTM for the uniform and real
data sets, respectively. Similarly, NVD-No-DI incurs only
18.14% and 17.62% of access time compared to DTM for the
uniform and real data sets, respectively. This is because:
(1) DTM is based on a D-tree air index and its mobile
clients need to wait for the beginning of the broadcast
cycle to start the search. This leads to a longer latency; (2)
DTM repeatedly launches a query when query q moves
along the query line. On the contrary, NVD-DI-M is based



Fig. 15. Access latency for different packet sizes. (a) Uniform data set and (b) real data set.

Fig. 16. Access latency for different object cardinalities. (a) Uniform data set and (b) real data set.

Fig. 17. Access latency for different query line lengths. (a) Uniform data set and (b) real data set.
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on the NVD-DI index, which is a distributed index that has
sufficient multiple paths for MCs to access the desired data
simultaneously. Moreover, by determining the split points
on the query line, we can continuously give the NNs of
query q, instead of repeatedly issuing and processing
queries. For NVD-No-DI, the reason why its performance
is a little better than that of NVD-DI-M lies in that it does
not use any index.

As shown in Fig. 16(a) and (b), the access latency of these
three methods increases with the increment of the object
cardinality for both the uniform and real data sets. For DTM,
this is because that the number of Voronoi polygons of NVD
increases as the object size increases, thus the sizes of NVD
and D-tree index increase correspondingly which will, in
turn, enlarge the access latency and the tuning time of the
method. For NVD-DI-M and NVD-No-DI, the reason lies in
that the number of boundaries of adjacent Voronoi polygons
increases as the object cardinality increases, which in turn
enlarges the sizes of edge table and the NVD structure.
However, the increasing trend of NVD-DI-M and NVD-No-DI

is smooth compared to that of DTM.
Now we evaluate the effect of query cardinality on the
access latency of these three methods for the uniform and
real data sets, respectively. The result tells us that the
query size does not have an effect on the access time of the
methods and we omit the figures since the result is
apparent. As shown in Fig. 17(a) and (b), the access latency
of these three methods increases with the increment of
the query line length for both the uniform and real data
sets. For NVD-DI-M and NVD-No-DI, the reason lies in that
the number of grid cells overlapped by the query line
increases as the query line becomes longer, thus the access
time increases. For DTM, the reason is that as the query
line becomes longer, more static NN queries should be
launched to get the query result of q. However, the
growing trend of NVD-DI-M (and NVD-No-DI) is more
gentle than that of DTM.

4.2.2. Tuning time
In a broadcasting environment, it is desirable to cut

down the tuning time so as to save power consumption of
the clients. In general, tuning time is dependent on the



Fig. 18. Tuning time for different packet sizes. (a) Uniform data set and (b) real data set.

Fig. 19. Tuning time for different object cardinalities. (a) Uniform data set and (b) real data set.

Fig. 20. Tuning time for different query line lengths. (a) Uniform data set and (b) real data set.
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index structures and search algorithms adopted, para-
meters specified in a query, and system parameters such
as packet size.

Fig. 18(a) and (b) presents the effect of the packet size
on the tuning time performance of these three methods.
These two figures show that the tuning time of the methods
decreases as the packet size increases, and NVD-DI-M out-
performs NVD-No-DI and DTM for both the uniform and real
data sets. On average, NVD-DI-M incurs only 11.50% and
10.61% of tuning time compared to DTM for the uniform and
real data sets, respectively. However, the tuning time of NVD-
No-DI is very high and it incurs 438.05 and 463.12 times of
that of NVD-DI-M for the uniform and real data sets,
respectively. The reason why the tuning time of NVD-No-DI
is so high lies in that it does not use any air index and the
mobile clients have to continuously tune into the broadcast
channel to retrieve the information needed.

Fig. 19(a) and (b) shows that the object cardinality has an
obvious effect on the tuning time of these three methods for
both the uniform and real data sets. The tuning time of the
methods increases with the increment of the object size, due
to the reason very similar to that of Fig. 16(a) and (b).
Similarly, the increasing tendency of NVD-DI-M (and NVD-

No-DI) is more gentle than that of DTM.
Now we evaluate the effect of query cardinality on the

tuning time of these three methods. The result tells us that
the query size does not have an effect on the tuning time
of the methods and we omit to present the figures since
the result is apparent. As shown in Fig. 20(a) and (b), the
tuning time of these three methods increases with the
increment of the query line length for both the uniform
and real data sets. The reasons are similar to that of Fig. 17
(a) and (b). Note that in the above three figures (Figs. 18, 19
and 20), the y-axis is shown in a logarithmic scale.

4.3. Performance on the road networks of San Jose, San
Rafael and Oldenburg

In this subsection, we use three other road networks,
San Jose and San Rafael in America, and Oldenburg in
Germany, to evaluate the applicability of our method
on different networks. The San Jose (San Rafael and
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Oldenburg, resp.) road network consists of 49,482 (16,130
and 6105, resp.) nodes and 63,439 (20,178 and 7035, resp.)
edges, and includes 6k (2k and 0.7k, resp.) data objects.
Due to space limitation, in this set of experiments, we only
give the experimental results of NVD-DI-M by varying the
query line length (edges) from 2 to 10, and fixing other
parameters (e.g., packet size, query cardinality) at their
default values.

Fig. 21(a) and (b) depicts the performance of our NVD-DI-
M method on different road networks. As can be seen from
these two figures, the access time and tuning time for
different networks maintain at a reasonable level and
increase with the growth of the query line length. We can
conclude that the access time and tuning time are mainly
affected by the number of edges and objects in the road
network, and less affected by the distribution of the edges in
the road network. This is because we have addressed the
unbalanced edge distribution problem of real road networks,
by proposing an optimization technique to compress the grid
cells with small number of edges to form a new cell with
large number of edges, as described in Section 3.2.2.
4.4. Performance on synthetic grid network

In this subsection, we compare the performance of the
three algorithms with respect to the number of vertices in
the road network. A synthetic 2-dimensional grid network
is used as the basic network and 300n300 is the default
grid size of the network which includes 10k randomly
distributed objects. We vary the grid size of the network
from 100n100 to 500n500, and the number of objects
included in the network varies correspondingly to
Fig. 21. Access time and tuning time of NVD-DI-M for differen

Fig. 22. Access latency for different network sizes
maintain a constant ratio of object cardinality and edge
cardinality. The other parameters, such as packet size,
query line length, and query cardinality, are fixed at their
default values. Fig. 22(a) and (b) depicts the effect of
network size on the access latency performance of these
three methods. These two figures show that as the net-
work size increases, the access time of these algorithms
increases obviously for both the uniform and real data sets.
This is due to the fact that the number of edges and the
average size of Voronoi polygons in the system increase as
the network size increases, which in turn causes the
length of the broadcast cycle to increase.

As shown in Fig. 23(a) and (b), the tuning time of these
algorithms increases as the network size increases. For
NVD-DI-M, this is because that the number of edges and
the size of NVD structure increase as the network size
increases. Thus, the number of index items of each
distributed index table increases slightly which in turn
slightly increases the tuning time. For DTM, the reason
mainly lies in that the D-tree index becomes larger as the
network size increases, thus incurring more time on
searching the D-tree index, which in turn causes the
tuning time to increase correspondingly. Moreover, the
reason for NVD-No-DI is the same as that of Fig. 22.
4.5. Summary of experimental results

In summary, we revealed the following three observa-
tions from our experimental results.
(1)
t roa

. (a)
The performance of NVD-DI-M is much better than that
of DTM. In particular, it incurs no more than 20.39% of
d networks. (a) Access latency and (b) tuning time.

Uniform data set and (b) real data set.



Fig. 23. Tuning time for different network sizes. (a) Uniform data set and (b) real data set.
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access time and 11.50% of tuning time compared to
DTM.
(2)
 Using NVD-DI can result in a decrease in tuning time
to more than 438 times, at the expense of 10.25%
access time prolongation on average. Thus, NVD-DI is a
very effective and cost-efficient indexing mechanism.
(3)
 NVD-DI-M is robust with respect to different values of
the packet size, object cardinality, query line length,
and network size.
5. Conclusion and future work

In this paper, we addressed the problem of processing
CNN queries in road networks under wireless broadcast
environments (CN3B). As far as we know, this work is the
first attempt to solve the given problem. At first, we
presented an efficient approach, called NVD quad parti-
tion, to partition the NVD structure of the underlying
network into grid cells. These cells are generally balanced
in size and have good locality-preserving behavior. We
then proposed an NVD-based distributed index, called
NVD-DI, to facilitate efficient CN3B query processing.
Finally, we presented an efficient algorithm on the client
side to process CN3B queries. Experimental study on both
real data and uniform data sets demonstrate the efficiency
of our method and the associated NVD-DI index.

For future work, we intend to extend our method to
process Ck NN ðk41Þ queries. We also plan to study how to
use NVD-DI to process other location-based queries, such as
window queries and reverse nearest neighbor queries.
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