
Information Sciences 301 (2015) 241–261
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Network Voronoi Diagram on uncertain objects for nearest
neighbor queries
http://dx.doi.org/10.1016/j.ins.2014.12.050
0020-0255/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +86 027 87543104.
E-mail address: jianjunli@hust.edu.cn (J. Li).
Guohui Li a, Li Li a, Jianjun Li a,⇑, Yanhong Li b

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
b Department of Computer Science, South-Central University for Nationalities, Wuhan, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 July 2013
Received in revised form 30 October 2014
Accepted 31 December 2014
Available online 8 January 2015

Keywords:
Nearest neighbor
Uncertain data
Road networks
Voronoi diagram
In the past decade, probabilistic nearest neighbor (PNN) query processing has received sig-
nificant research attention due to the development of mobile smart terminals and the
advances in wireless communication technologies. However, to the best of our knowledge,
most of the existing PNN-oriented studies are aimed at the Euclidean space and cannot be
readily extended to road networks. This paper takes the first step toward processing PNN
queries in road Networks (NPNN). We first present an efficient method to construct
Network Voronoi Diagram on Uncertain objects (UNVD), in which we first find the possible
NNs of all the vertices, and then compute the u-edges as well as their corresponding
possible NNs. Next, to process NPNN queries, we first present a computational method
to calculate the probabilities for each possible nearest object, and then propose two data
structures, namely gIndex and qIndex, to index the u-edges in UNVD. Finally, we evaluate
the performance of our NPNN query processing methods via extensive experiments on
both real road networks and synthetic 2-dimensional grid networks. Experimental results
demonstrate the effectiveness and efficiency of our methods in terms of I/O cost and query
time.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Thanks to the rapid growth in popularity of smart mobile terminals like mobile phones and the advances in wireless com-
munication technologies, location-based service (LBS) has become popular over the past few years. Being one of the enabling
technologies for LBS, location based queries (LBQs) have been a hot research topic. An important class of LBQs is the nearest
neighbor (NN) query, which answers query based on where the query is issued, and returns the object that is closest to the
query point. Generally speaking, existing NN studies can be classified into two types: NN in the Euclidean space and NN in
the network space, both assume that the object locations are precise. However, in practice, the locations of objects can be
uncertain due to various reasons, such as the impreciseness of positioning technologies, where errors may originate from
the satellite, the receiver, or the signal propagation. Moreover, location uncertainty is desirable for better privacy preserva-
tion, especially when one needs to reveal personal location information to the public for some particular purposes, like
research. In such cases, to reduce the risk of being identified at a particular site, a user’s position should be represented

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.12.050&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.12.050
mailto:jianjunli@hust.edu.cn
http://dx.doi.org/10.1016/j.ins.2014.12.050
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

242 G. Li et al. / Information Sciences 301 (2015) 241–261
as a larger region rather than a single point [1,2]. All these factors have led to a flurry of activity [9,3] on query processing
over uncertain data, which is also known as probabilistic nearest neighbor (PNN) query processing.

In PNN, due to location uncertainty, an object may have multiple nearest neighbors, each having the probability value of
being the nearest neighbor. A common uncertainty model used in PNN is to assume an uncertain object o has an uncertainty
region where o possibly resides and a probability distribution function (pdf) which describes the distribution of o’s precise
position within the uncertainty region. To our best knowledge, most of the existing work on PNN deals with objects embed-
ded in Euclidean space, where the distance between any two points is determined by their coordinates (Euclidean distance).
However, in real life situations, objects are usually limited to move in road networks such as the railway networks and the
highway networks, where the distance between objects is determined by the connectivity of the network, rather than the
objects’ coordinates in Euclidean space. Hence, existing PNN processing methods cannot be applied in road networks
directly, and it is therefore essential to design PNN query methods suitable for use in real road Networks (abbreviated as
NPNN in the following).

As a well known space partitioning technique, the Voronoi diagram (VD) [36] has been widely applied for processing spa-
tial queries, especially the Nearest-Neighbor queries [41,15,48,35]. A general VD partitions the space into disjoint regions so
that every point in the same region has the same nearest neighbor. Fig. 1 illustrates an example of VD, where every point
located in polygon abcdef takes p as its NN, and every point located in polygon abcdef is the reverse NN of p. Such good prop-
erties make VD a promising tool for spatial query processing. Specifically, for NN queries, by representing the solution space
as VD, the queries can be reduced to and processed as simple point queries.

In general, VD is generated by a set of space objects, termed as generators. In terms of the types of generators (certain or
uncertain object) and which space (Euclidean or network) is assumed, the family of VDs can be classified into four types: (1)
VDs for certain objects in Euclidean space; (2) VDs for certain objects in networks; (3) VDs for uncertain objects in Euclidean
space; and (4) VDs for uncertain objects in networks. The first three types have been well studied in previous works, as
shown in Table 1. On the contrary, there is no work reported on studying the network VD based on uncertain objects (UNVD).
Constructing UNVD is of great importance not only because it can be used to efficiently answer NPNN queries, but also
because it has great potential to be extended to facilitate other spatial queries such as reverse and range NN queries. More-
over, although NVD has been used in previous studies [26,27] to support NN queries in road networks, the VD designed for
certain objects are not appropriate to be applied for uncertain objects, since multiple objects are possible to be the NNs of a
point in UNVD, while only one NN exists for a point in NVD.

In this paper, we focus on two major issues: constructing UNVD and processing NPNN by using the constructed UNVD,
both are fresh attempts. In our UNVD-constructing method, we first compute the possible NNs of all the network vertices by
proposing a novel algorithm MarkV. MarkV traverses the network vertices one by one and records the potential possible NNs
of each vertex, until the real possible NNs are obtained. In this way, the entire network only needs to be scanned once. Then,
by proposing another algorithm MarkE, we partition the network edges into u-edges and compute the possible NNs of every
u-edge. All points on the u-edge have the same possible NNs. Depending on whether the two endpoints of an edge have the
same possible NNs, MarkE directly computes the possible NNs of the edge, or further splits the edge and repeats the exam-
ination on the sub-edges derived. By executing MarkV and MarkE sequentially, the UNVD can be constructed efficiently.
Based on the constructed UNVD, we first show how to calculate the probabilities for each possible nearest object, and then
present two data structures, namely gIndex and qIndex, to index the UNVD. Specifically, gIndex is implemented as a hash
table, while qIndex adopts a PMR quad tree framework. In both indexes, the entire UNVD space is partitioned into a number
of grid cells, each corresponding to a set of linked disk pages. Moreover, since NPNN queries, especially continuous NPNN
queries, usually search for u-edges that are closely located, the grid cells are arranged in the order of Hilbert curve in gIndex.
Overall, the main contributions of this paper can be summarized as follows:

� We address the UNVD construction problem by first proposing a novel method MarkV to compute the possible NNs for all
the vertices in a road network, and then introducing another method MarkE to partition the network edges until all points
on each sub-edge have the same possible NNs. MarkV exhibits the location-uncertainty property of uncertain objects and
requires to scan the entire network only once, and thus is of high efficiency.
Fig. 1. An example of VD.

Table 1
Voronoi diagrams.

Euclidean space Network

Certain objects Ordinary VD [36] NVD [37]
Uncertain objects UV-diagram [9] UNVD

G. Li et al. / Information Sciences 301 (2015) 241–261 243
� To efficiently process static and continuous NPNN queries, we propose two data structures: gIndex and qIndex, to index
the constructed UNVD. In particular, by utilizing Hilbert curve to organize the grid cells and allowing different buckets
pointing to the same disk pages in gIndex, and adopting a PMR quad tree framework in qIndex, the two indexes enable
efficient retrievals when dealing with static and continuous NPNN queries, respectively.
� We evaluate and comment on the performance of the proposed methods via extensive simulation experiments on both

synthetic and real datasets. The experimental study shows that our NPNN processing methods are quite efficient in terms
of I/O performance and query time.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3 details our UNVD construct-
ing method. Section 4 presents how to answer NPNN queries by using UNVD. Section 5 evaluates the performance of the
proposed methods. Finally, Section 6 draws a conclusion.
2. Related work

The NN problem has been extensively studied during the last decade and is still an attractive topic currently
[24,32,46,11,22]. In this section, we briefly review some existing work on NN search in Euclidean space and road networks
with certain objects, and PNN search in Euclidean space with uncertain objects. We also discuss some existing work on Voro-
noi diagram.
2.1. NN search in Euclidean space and road networks

NN search in Euclidean space is the earliest type of the NN problem. Roussopoulos et al. [39] pioneered the work on NN
processing. They provided a branch-and-bound R-tree traversal algorithm as well as metrics for ordering and pruning. How-
ever, it is difficult to achieve high efficiency in multi-user environments due to the depth-first fashion. Chen and Chin [6]
overcomed this disadvantage by considering the concurrency feature. As an important variant of NN search, continuous
nearest neighbor (CNN) queries in Euclidean space [47,45,13] has also been studied since the first solution was proposed
by Song and Roussopoulos in [43].

NN processing in road networks has received significant attention ever since it is first addressed by Jensen et al. in
[21]. Papadias et al. [38] used an architecture integrating the network and Euclidean information to answer static que-
ries in networks. To avoid on-line distance computation, Kolahdouzan and Shahabi [26] studied the kNN processing
problem based on the Network Voronoi Diagram. Huang et al. [18] used pre-computation and on-line network expansion
to offer flexibility in balancing the amount of pre-computation, the updating of the pre-computed data and the query
processing efficiency. An architecture called MOVNet which utilizes an on-disk R-tree to store the network structure
information and an in-memory index to maintain object position updates was presented by Wang and Zimmermann
in [44]. Two CkNN processing methods called IE and UBA were proposed by Kolahdouzan and Shahabi in [27]. In IE,
kNN of all vertices on a given path are examined. Cho and Chung [10] combined the pre-computed kNN lists with Dijk-
stra algorithm to answer CkNN queries efficiently. A progressive incremental network expansion strategy which adopts a
modified version of the IE algorithm was also adopted to address the CNN problems [40]. To answer concurrent CkNN,
Mouratidis et al. [33] utilized an in-memory data structure to store network connectivity and an expansion strategy,
while Huang et al. [19] utilized the pruning and refining techniques. Recently, continuous nearest neighbors in road net-
works on the air is studied in [30].
2.2. PNN in Euclidean space

As one kind of attribute uncertainty, location uncertainty is represented as a range of possible values and a pdf is bounded
within the range [42]. Several algorithms have been proposed to process PNN over attribute uncertainty. Cheng et al. [8] uti-
lized numerical integration techniques to address the PNN problems based on R-tree. Later, Cheng et al. [7] discussed the
constrained NN problem, which returns objects whose probabilities are higher than some threshold. Kriegel et al. [28] com-
puted the probabilities of answer objects based on sampling. Cheng et al. [9] answered PNN based on UV-diagram, which
outperforms the R-tree based methods. Ali et al. [3] provided a pre-computation approach and an incremental approach
to handle moving nearest neighbor queries on uncertain data in Euclidean space.

244 G. Li et al. / Information Sciences 301 (2015) 241–261
2.3. The Voronoi diagram

As an important technique for facilitating NN related queries, VD [36] has been extensively studied and many variants
and construction algorithms have been proposed. The two most important variants related to our proposed UNVD are
NVD [37] and UV-diagram [9]. Okabe et al. [37] constructed the Voronoi diagram in road networks based on objects having
precise locations. Cheng et al. [9] constructed the Voronoi diagram in Euclidean space based on objects whose locations are
imprecise. Evans and Sember [12] and Jooyandeh et al. [23] set similar assumptions to [9], but their goal is to find the set of
points that are guaranteed to be closer to a particular site than to any others, while [9] returns objects that may have a
chance to be the nearest neighbor of the query point.

3. UNVD

We consider a set of uncertain objects O ¼ fo1; o2; . . .g in a road network which is modeled as a connected weighted graph
NGðV ; EÞ, where V ¼ fv1;v2; . . .g and E ¼ fe1; e2; . . .g are the sets of vertices and edges, respectively. We use jOj; jV j and jEj to
denote the number of elements in O; V and E, respectively. The distance between two objects in NG is determined by the
shortest-path distance. Specifically, the shortest-path distance between two points p1 and p2 in NG is denoted by
dðp1; p2Þ. For simplicity, we assume the weight of an edge in NG is equal to the length of the edge, and any edge e 2 E can
be represented by v sve or vev s, where v s and ve are the two endpoints of e. We use nn domðpÞ to denote the set of possible
NNs of a point p in NG, and use nn domðlÞ to denote the set of possible NNs of a line segment l in NG. Note here all the points
on l have the same possible NNs. Since practical road networks (e.g., city street networks) generally have a fixed structure in
a long period, which means the generator objects of UNVD are stationary uncertain objects, we do not consider the update of
UNVD in this paper. Formal definitions of the symbols used in this paper are presented in Table 2.

In the following, we first briefly introduce some basic knowledge regarding UNVD in Section 3.1, and then present our
UNVD construction method in Section 3.2.

3.1. Introduction of UNVD

Unlike previously studied VDs, UNVD is generated by uncertain objects and measured by shortest-path distances. An
uncertain object is assumed to have an uncertain location, which is represented by an uncertainty region of possible loca-
tions (sub-graphs of NG) with pdfs assigned to the edges in the region.

Definition 1. The uncertainty region of uncertain object o 2 O, denoted by CðoÞ, is defined as the area which includes all
possible positions of o in NG. This means the precise position of o can only be located in CðoÞ. Unlike uncertainty region in a
plane, CðoÞ in NG is composed of several line segments.

Each uncertainty region has a pdf and a set of extreme points. The pdf describes the distribution of o’s position within CðoÞ.
In this paper, we assume that the complete pdf of o is composed of N (the number of line segments in CðoÞ) sub-functions,
each of which is bounded in a line segment. The extreme point is defined as follows.

Definition 2. An extreme point of uncertain object o 2 O, denoted by EiðoÞ ði ¼ 1;2; . . . ; kÞ, is located on the boundary
between the sub-graphs covered by CðoÞ and the other parts of NG. Here k is the total number of the extreme points in CðoÞ.
Table 2
Symbols and definitions.

Symbol Definition

NG A connected weighted graph modeling a road network
O=V=E The set of uncertain objects/vertices/edges in NG
jOj=jV j=jEj The number of uncertain objects/vertices/edges in NG
dðp; qÞ The shortest-path distance between two points p and q
vsve An edge where the endpoints are vs and ve

nn domðpÞ The set of possible NNs of a point p
nn domðlÞ The set of possible NNs of a line segment l, on which all the points have the same possible NNs
CðoÞ The uncertainty region of uncertain object o 2 O
pdf The probability distribution function
dmaxðo; qÞ The possible maximal distance from o 2 O to a point q
dminðo; qÞ The possible minimal distance from o 2 O to a point q
EiðoÞ An extreme point of o 2 O
k The total number of the extreme points in CðoÞ
bðoi ;ojÞ A break point with respect to oi 2 O and oj 2 O ðoi – ojÞ
o : ½a; b� A label allocated to vertices in V
LSi A label set allocated to vertex v i 2 V
a The maximum number of the u-edges overlapped with a grid cell

G. Li et al. / Information Sciences 301 (2015) 241–261 245
As an illustration, Fig. 2(a) shows an example of CðoÞ (depicted as bold lines), in which there are three extreme points
E1ðoÞ; E2ðoÞ and E3ðoÞ.

The UNVD built on NG can be regarded as an updated version of NG, where each edge is associated with a set of possible
NNs. An edge in UNVD is referred to as a u-edge, which is a line segment corresponding to all or part of an original edge in
NG. All the points in a u-edge have the same possible NNs. A UNVD is partitioned into a set of subnetworks, each specifying a
part of NG on which any point has the chance to take one or more specified uncertain objects as its NNs. To sum up, we have
the following definition regarding UNVD.

Definition 3. Given a set O of two or more but finite number of distinct uncertain objects in a road network, we associate all
locations in the network space with the possible NN(s) with respect to the shortest-path distance. The result is a tessellation
of the network into a set of the regions associated with subsets of O. This tessellation is called the Network Voronoi
Diagram on Uncertain objects (UNVD) generated by O.

Fig. 2(b) gives an example of UNVD, which is generated by three uncertain objects o1; o2 and o3. To clearly show the par-
titions, the u-edges are drawn with different types. Specifically, three types of line segments: densely dotted, solid and
loosely dotted, are used to represent the sub-networks where o1; o2 and o3 are taken as the possible NNs, respectively. Note
in this example, any point on line segment sisj ði 2 f1;3;5;7;9g; j ¼ iþ 1Þ has two possible NNs.

3.2. Construction of UNVD

In this section, we present our method for constructing UNVD. We first compute the possible NNs for each v 2 V , and then
compute the u-edges as well as their corresponding possible NNs. Due to location uncertainty, it is impossible to obtain a
precise distance value dðo; qÞ from an uncertain object o to a point q in NG. Hence, we use the possible maximal/minimal dis-
tances, which are defined in the following, to approximate the distances involving uncertain objects.

Definition 4. The possible maximal distance from an uncertain object o to a point q in NG, denoted by dmaxðo; qÞ, is the
longest shortest-path distance among the distances between q and any point r in CðoÞ, i.e., dmaxðo; qÞ = maxfdðr; qÞ; r 2 CðoÞg.
Definition 5. The possible minimal distance from an uncertain object o to a point q in NG, denoted by dminðo; qÞ, is the
shortest shortest-path distance among the distances between q and any point r in CðoÞ, i.e., dminðo; qÞ = minfdðr; qÞ; r 2 CðoÞg.

Based on Definitions 4 and 5, we have the following observation:

Observation 1. For any uncertain object oj 2 O and an arbitrary point q in NG, if there exists an uncertain object ok 2 Oðj – kÞ
which satisfies dmaxðq; okÞ < dminðq; ojÞ, then oj is impossible to be the NN of q, i.e., oj R nn domðqÞ, and vice versa. In other
words, for any uncertain object ok 2 Oðj – kÞ, if dmaxðq; okÞP dminðq; ojÞ, then oj is q’s possible NN, i.e., oj 2 nn domðqÞ, and
vice versa.
3.2.1. Marking vertices
This section aims to compute nn domðvÞ for each v 2 V . To achieve this goal, a straightforward method may work as fol-

lows: (1) utilize the shortest path algorithm (e.g., Dijkstra’s algorithm) to find the shortest-path distances from each extreme
point to each v 2 V; (2) based on the obtained shortest-path distances, compute the possible maximal and minimal distances
from each o 2 O to each v 2 V; and (3) calculate the set of possible NNs nn domðvÞ of each v 2 V by comparing the possible
maximal and minimal distances from each o 2 O to v.

The above method, though effective, is not cost-efficient due to that the Dijkstra’s algorithm has to be executed many
times, especially when jOj is large. To address this problem, we propose a novel two-step method called MarkV, which only
needs to scan NG once. Below we introduce the two steps of MarkV in detail.

Step 1. This step aims to compute the possible maximal and minimal distances from each uncertain object o 2 O to the
vertices directly connected to it.
It is clear that the possible minimal distance dminðo;vÞ must be equal to one of the distances from
fdðE1ðoÞ;vÞ; . . . ; dðEkðoÞ;vÞg. Hence, we mainly focus on computing the possible maximal distance dmaxðo;vÞ from o to
v, and the challenge lies in how to compute it without scanning every point in CðoÞ. Suppose e1; e2; . . . ; ek are k line seg-
ments in CðoÞ, we have,
dmaxðo;vÞ ¼max
16i6k
fdmaxðo;vÞjeig ð1Þ
where dmaxðo;vÞjei denotes the possible maximal distance from o to v when o is located on ei. Further, suppose vs and ve are
the two endpoints of ei and p is an arbitrary point on ei; dmaxðo;vÞjei can be computed by
dmaxðo;vÞjei ¼minfdðv s; vÞ þ dðv s;pÞ;dðve;vÞ þ dðve; pÞg ð2Þ
Regarding Eq. (2), we have the following three cases:

246 G. Li et al. / Information Sciences 301 (2015) 241–261
� If dðve;vÞ þ dðve;v sÞ � dðvs;vÞ > 0, then dmaxðo;vÞjei ¼ dðve;vÞ;
� If dðv s;vÞ þ dðve; vsÞ � dðve;vÞ > 0, then dmaxðo;vÞjei ¼ dðv s;vÞ;
� Otherwise, we find p which satisfies the following formula:

dðvs;vÞ þ dðv s; pÞ ¼ dðve; vÞ þ dðve;pÞ
dðvs;pÞ þ dðve;pÞ ¼ dðvs;veÞ

�
ð3Þ

where dðv s;vÞ ¼min16i6kfdðv s; EiðoÞÞ þ dðEiðoÞ;vÞg and dðve;vÞ ¼min16i6kfdðve; EiðoÞÞ þ dðEiðoÞ; vÞg, and then we can get
that dmaxðo;vÞjei ¼ dðvs;vÞ þ dðv s; pÞ ¼ dðve;vÞ þ dðve; pÞ.
Step 2. This step is responsible for computing nn domðvÞ for each v 2 V . To facilitate the computation, we allocate every
vertex a set of labels, each of which is defined as follows.
Definition 6. A label, denoted by o : ½a; b�, is composed of an uncertain object o 2 O and a distance range ½a; b�, where a and b
represent the upper and lower bounds of the range, respectively. For presentation convenience, we also use ~o to represent
o : ½a; b� in the following discussion.

For any two distance ranges ½ai; bi� and ½aj; bj�, we say ½ai; bi� > ½aj; bj�, if and only if ai > bj, and say ½ai; bi� � ½aj; bj�, if and only
if ½ai; bi� and ½aj; bj� overlap, i.e., aj < ai 6 bj or ai < aj 6 bi. Based on this claim, we define the relationship between any two
labels oi : ½ai; bi� and oj : ½aj; bj� as follows.

Definition 7. We say label ~oi is larger than label ~oj, denoted by ~oi > ~oj, if and only if ½ai; bi� > ½aj; bj�. And, we say ~oi � ~oj, if and
only if ½ai; bi� � ½aj; bj�.

By the above definition, we have oi : ½2;4� < oj : ½5;6� and oi : ½2;4� � ok : ½3;5�. For each vertex v i 2 V , there is a label set
LSi ¼ f ~oi1; ~oi2; . . .g associated with it. LSi contains at most jOj labels, and is initialized to be empty. Similar to Definition 7, we
define the relationship between two label sets as follows.

Definition 8. For any two label sets LSi and LSj, we say LSi > LSj, if and only if any label in LSi is larger than all the labels in LSj,
and say LSi < LSj, if and only if any label in LSi is smaller than all the labels in LSj. Otherwise, we say LSi � LSj.

The value of the labels would change during the execution of our algorithm. If the value of a label does not change any
more, then it is considered to be permanent. Specifically, let o : ½a; b� be a label that is allocated to a vertex v 2 V at a time
instant, if o : ½a; b� is permanent, we have a ¼ dmaxðo;vÞ and b ¼ dminðo;vÞ. Otherwise, we have a P dmaxðo; vÞ and
b P dminðo;vÞ. An uncertain object contained in a permanent label allocated to vertex v is a possible NN of v. A label set
consisting of all permanent labels is called a permanent label set, and a vertex which is allocated a permanent label set is
termed as a visited vertex.

Algorithm 1. MarkV

Input: O; NGðV ; EÞ
Output: nn domðvÞ for each v 2 V
1: for each v directly connected to o 2 O do
2: Compute dmaxðo;vÞ and dminðo;vÞ; Step 1
3: end for
4: Initialize CUR O;VI ;; //Step 2
5: for each uncertain object o 2 O do
6: for each vertex v i 2 V in an uncertainty region CðoÞ do
7: Insert a permanent label ~o into LSi;
8: VI v i;
9: end for

10: end for
11: while VI – O do
12: CUR = RETRðNG;CURÞ;
13: VI = EXAMðNG;CUR;VIÞ;
14: end while
15: for each vk 2 VI do
16: for each label ~o 2 LSk do
17: Insert o into nn domðvkÞ;
18: end for
19: end for

G. Li et al. / Information Sciences 301 (2015) 241–261 247
Algorithm 1 shows the pseudo-code of MarkV. Step 1 is first executed to compute the possible maximal and minimal dis-
tances (lines 1–3). Let VI and CUR be the set of visited vertices and current vertices, respectively. Step 2 starts by initializing
CUR and VI to be O and ;, respectively (line 4 of Algorithm MarkV). Then, for each o 2 O, a permanent label ~o is allocated to
every vertex located in CðoÞ, and the corresponding vertices are inserted into VI (lines 5–10). Next, two functions RETR and
EXAM, which will be detailed later, are executed repeatedly, until all the vertices are visited (lines 11–14). Finally, for each
vk 2 VI, we can obtain the set of possible NNs by collecting the uncertain objects reside in LSk (lines 15–19). Now we detail
the two functions RETR and EXAM, respectively.
Algorithm 2. RETR

Input: NGðV ; EÞ; CUR
Output: CUR

for each v j 2 ðV � VIÞ do
for each v i 2 CUR do

for each label ~o 2 LSi do
Compute ~oþwij;
Add ~oþwij to LSj;

end for
end for

end for
Select the smallest label set(s);
Empty out CUR and insert the vertices corresponding to the smallest label set(s) into CUR;
Return CUR;
Algorithm 3. EXAM

Input: NGðV ; EÞ; CUR; VI,
Output: VI

for each vertex vs 2 CUR do
Check (vs; CUR);

end for
VI CUR;
Return VI;
Algorithm 4. Check

Input: vs; CUR
for each vertex v t 2 CUR that is directly connected to vs do

for each label ~oi 2 LSs do
Compute ~oi þwst;
Add ~oi þwst to LSt;

end for
if LSt is changed then

Check(v t; CUR);
end if

end for

RETR (Algorithm 2) aims to select a set of new current vertices, and is implemented by sequentially executing the fol-
lowing two steps.

(1) For each unvisited vertex v j and an arbitrary vertex v i in CUR, we compute new labels for v j and add them to the label
set LSj (lines 1–8). More specifically, for each label ~o 2 LSi, we compute a new label ~oþwij ¼ o : ½aþwij; bþwij� (by
Definition 6), where wij is the weight of the edge from v i to v j, and add it to LSj (lines 3–6). When adding the new label
o : ½aþwij; bþwij� to LSj, depending on whether there exists a label o : ½a0; b0� 2 LSj that contains the same uncertain
object o, there are two cases to be considered.

(a) An example of C(o)

1

1 2

3
4

5
6

7

8

9 10

2

3

(b) An example of UNVD

Fig. 2. Examples.

248 G. Li et al. / Information Sciences 301 (2015) 241–261
� If o : ½a0; b0 � exists, we first replace o : ½a0; b0� with a new label o : ½minfaþwij; a0g;minfbþwij; b
0g�, and then check

whether there exist labels in LSj that are larger than this new label. If such labels exist, they will be removed from
LSj.

� If o : ½a0; b0� does not exist, we compare the new label o : ½aþwij; bþwij� with all the labels in LSj. If
o : ½aþwij; bþwij� is larger than every label in LSj; o : ½aþwij; bþwij� is directly discarded; If o : ½aþwij; bþwij�
equals approximately every label in LSj; o : ½aþwij; bþwij� is inserted into LSj. Otherwise, o : ½aþwij; bþwij� is
inserted into LSj and the labels that are lager than o : ½aþwij; bþwij� are removed from LSj.
(2) Determining the smallest label set(s) (by Definition 8) among all the label sets currently allocated to the unvisited ver-
tices, and replacing the vertices in CUR with the vertex (vertices) corresponding to the smallest label set(s) (lines 9–11).

EXAM (Algorithm 3) is designed to compute the permanent labels for the current vertices returned in Function RETR.
First, for each vertex v s 2 CUR, Algorithm 4 (Check) is executed (lines 1–3). Then, all the current vertices in CUR are inserted
into VI, which is finally returned (lines 4–5). In Algorithm 4 (Check), for each current vertex v t 2 CUR that is directly con-
nected to a given current vertex v s 2 CUR, we first update the label set LSt by adding new labels (lines 2–5), and then check
whether LSt keeps unchanged. If the answer is negative, then Algorithm 4 (Check) itself will be invoked, taking v t and CUR as
the inputs (lines 6–8).

It seems that endless loops may appear in EXAM, since the current vertices may form circles. But in fact, such endless
loops do not exist, as illustrated in the following theorem.

Theorem 1. Any current vertex can be allocated a permanent label set by being examined a limited number of times.
Proof. We prove it by contradiction. Suppose a current vertex would be examined unlimited times, i.e., EXAM falls into end-
less loop, then according to the logic of Algorithm 3 (EXAM), there must exist at least one circle C that is composed of the
current vertices, and the label set allocated to each current vertex in C is always changing. However, the label set LSi of a
vertex v i cannot be always changing, since by RETR, LSi keeps unchanged when the new label to be added is larger than
every old label in LSi, and a vertex v i in C can always obtain a new label that is larger enough than every label in LSi, due
to that the edge weights are continuously accumulated to form new labels. We thus come to a contradiction and the theorem
follows. h

Illustrative Example. To better understand Step 2 of MarkV, we now give an example, as shown in Table 3, to find the per-
manent labels (represented in bold) for all the vertices in Fig. 3, in which we assume the possible maximal and minimal dis-
tances from every uncertain object to the vertices that directly connected to it have been computed. In this example, we first
set CUR and VI to be fo1; o2; o3g and fv6g, respectively, since v6 is located in Cðo3Þ. Meanwhile, v6 is allocated a permanent
label ~o3, and the label sets of the other vertices are set to be empty. Then, in each of the next four iterations (see Table 3), the
two functions RETR and EXAM are executed sequentially.

Take iteration 3 for example, in RETR, for each unvisited vertex v j 2 V n VI, we add the weight of the edge v iv j to each
label allocated to v i 2 CUR in last iteration, i.e., v10. Since v10 is connected to unvisited vertices v2 and v4, and the edge
weights of v10v2 and v10v4 are 7 and 4, respectively, we can obtain new labels o3 : ½4;3� þ 7 ¼ o3 : ½11;10� for v2, and
o3 : ½4;3� þ 4 ¼ o3 : ½8;7� for v4. Because the new label o3 : ½11;10� is larger than every label in
LS2 ¼ fo1 : ½9;8�g; o3 : ½11;10� is discarded and LS2 remains unchanged. Moreover, because the new label o3 : ½8;7� equals
approximately every label in LS4 ¼ fo2 : ½8;7�g, we insert the new label o3 : ½8;7� into LS4. Then, we compare the label sets
LS2 ¼ fo1 : ½9;8�g; LS3 ¼ fo3 : ½8;6�g; LS4 ¼ fo2 : ½8;7�; o3 : ½8;7�g; LS7 ¼ fo2 : ½6;5�g; LS8 ¼ fo3 : ½11;9�; o2 : ½10;9�g and
LS9 ¼ fo1 : ½6;5�gwhich are now allocated to the unvisited vertices, and select the smallest label sets LS3; LS7, and LS9. Finally,
we remove v10 from CUR, and insert v3; v7 and v9 into CUR.

Next, in EXAM, since v7 and v9 are directly connected to each other, we add the weights of edges v9v7 and v7v9 to the
labels in LS7 and LS9, respectively, and obtain two new labels o2 : ½16;15� and o1 : ½16;15� for v7 and v9, respectively. Because
the two new labels o2 : ½16;15� and o1 : ½16;15� are respectively larger than every label in LS7 ¼ fo2 : ½6;5�g and
LS9 ¼ fo1 : ½6;5�g; o2 : ½16;15� and o1 : ½16;15� are discarded, and LS7 and LS9 keep unchanged. In this way, we can obtain three

Table 3
An example of Step 2 in MarkV.

Iteration Operation v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 CUR VI

0 Initial ; ; ; ; ; ~o3 ; ; ; ; o1; o2; o3 v6

1 RTER o1 : ½2;1� ; o3 : ½8;6� o2 : ½8;7� o2 : ½3;2� ; o3 : ½11;9� o1 : ½6;5� o3 : ½4;3� v1; v5 v6

EXAM o1 : ½2;1� ; o3 : ½8;6� o2 : ½8;7� o2 : ½3;2� ; o3 : ½11;9� o1 : ½6;5� o3 : ½4;3� v1; v5 v6; v1

2 RTER o1 : ½9;8� o3 : ½8;6� o2 : ½8;7� o2 : ½6;5� o3 : ½11;9� o1 : ½6;5� o3 : ½4;3� v10 v6; v1; v5

o2 : ½10;9�
EXAM o1 : ½9;8� o3 : ½8;6� o2 : ½8;7� o2 : ½6;5� o3 : ½11;9� o1 : ½6;5� o3 : ½4;3� v10 v6; v1; v5; v10

o2 : ½10;9�
3 RTER o1 : ½9;8� o3 : ½8;6� o2 : ½8;7� o2 : ½6;5� o3 : ½11;9� o1 : ½6;5� v3; v7; v9 v6; v1; v5; v10

o3 : ½8;7� o2 : ½10;9�
EXAM o1 : ½9;8� o3 : ½8;6� o2 : ½8;7� o2 : ½6;5� o3 : ½11;9� o1 : ½6;5� v3; v7; v9 v6; v1; v5; v10;

v3; v7; v9

o3 : ½8;7� o2 : ½10;9�
4 RTER o1 : ½9;8� o2 : ½8;7� o3 : ½11;9� v2; v4; v6; v1; v5; v10;

v3; v7; v9

o3 : ½11;9� o3 : ½8;7� o2 : ½10;9� v8

o1 : ½9;8�
EXAM bio1 : ½9;8� o2 : ½8;7� o3 : ½11;9� v2; v4; v8 v6; v1; v5; v10;

v3; v7; v9; v2; v4; v8

o3 : ½11;9� o3 : ½8;7� o2 : ½10;9�
o1 : ½9;8�

Possible
NNs

o1 o1; o3 o3 o1; o2; o3 o2 o3 o2 o2; o3 o1 o3

1

2

3

5

6

7

8

4

9

10

1

2

3

Fig. 3. An illustrative graph.

G. Li et al. / Information Sciences 301 (2015) 241–261 249
permanent label sets LS3 ¼ fo3 : ½8;6�g; LS7 ¼ fo2 : ½6;5�g and LS9 ¼ fo1 : ½6;5�g for v3; v7 and v9, respectively. Meanwhile,
v3; v7 and v9 are inserted into VI.

Following a similar way, after conducting the four iterations as shown in Table 3, we can obtain the possible NN set for
each vertex by collecting the uncertain objects in the permanent labels allocated to it.

3.2.2. Marking edges
In this section, we aim to find the u-edges as well as their corresponding possible NNs. If any two points on an edge e 2 E

have the same possible NNs, then e is considered as a u-edge, and nn domðeÞ is equal to nn domðpÞ, where p is an arbitrary
point on e. Otherwise, we split e into sub-edges until any two points in a sub-edge have the same possible NNs, and each sub-
edge is considered to be a u-edge.

For an edge on which there does not exist any object to be searched, a property of the relationship between the exact NN
of a point on the edge and the NNs of the edge’s endpoints has been used to process CNN queries [10,27]. In brief, the prop-
erty can be described as follows: the NN of any point on an edge must be one of the NNs of the two endpoints of the edge. This
property is only proposed for certain (with 100% probability) NNs. Below we show in Lemma 1 that a similar property also
holds for possible NNs.

Lemma 1. Suppose vsve 2 E is an edge on which there does not exist any extreme point, q is an arbitrary point on vsve and oj is a
randomly selected uncertain object, if oj 2 nn domðvsÞ and oj 2 nn domðveÞ, then oj 2 nn domðqÞ; Conversely, if oj R nn domðvsÞ
and oj R nn domðveÞ, then oj R nn domðqÞ.
Proof. By Observation 1, when oj 2 nn domðv sÞ and oj 2 nn domðveÞ, we have dmaxðv s; okÞP dminðv s; ojÞ and
dmaxðve; okÞP dminðve; ojÞ, where okðk – jÞ is an arbitrary uncertain object. Moreover, for an arbitrary point p, there are,

250 G. Li et al. / Information Sciences 301 (2015) 241–261
dminðp; ojÞ ¼minfdminðv s; ojÞ þ dðv s;pÞ; dminðve; ojÞ þ dðve;pÞg
dmaxðp; okÞ ¼ minfdmaxðv s; okÞ þ dðvs;pÞ;dmaxðve; okÞ þ dðve;pÞg

�
ð4Þ
Hence, for an arbitrary uncertain object okðk – jÞ, we have dmaxðp; okÞP dminðp; ojÞ, which in turn means there does not
exist any uncertain object ok which satisfies dmaxðp; okÞP dminðp; ojÞ. Then according to Observation 1, we can get that
oj 2 nn domðpÞ.

Similarly, if oj R nn domðvsÞ and oj R nn domðveÞ, then by Observation 1, there must exist an uncertain object okðk – jÞ
such that dmaxðvs; okÞ < dminðvs; ojÞ and dmaxðve; okÞ < dminðve; ojÞ. Moreover, Formula (4) always holds for any arbitrary
point p. Hence, there must exist an uncertain object okðk – jÞ, such that dminðp; ojÞ > dmaxðp; okÞ. Then, according to
Observation 1, we can derive that oj R nn domðpÞ. h

For an edge v sve on which no extreme points exist, if nn domðv sÞ ¼ nn domðveÞ, then by Lemma 1, we can get that
nn domðv sveÞ ¼ nn domðv sÞ. Otherwise, v sve needs to be further split into several sub-edges until all the points in a sub-edge
have the same possible NNs, i.e., until all the u-edges derived from v sve are obtained. A boundary point between adjacent u-
edges derived from the same edge is called a split point. The concept of the split point has been used by CNN search in the
literature [10,27]. But, the calculation method proposed in this paper is quite different from, and more complicated than that
in traditional CNN search based on certain NNs.

In Fig. 4(a), where the NN of v s and ve are oi and oj, respectively, there exists only one split point S on edge v sve. However,
in Fig. 4(b), where the sets of possible NNs of v s and ve are foig and fojg, respectively, there exist two split points S1 and S2 on
edge v sve. In addition, nn domðv sS1Þ ¼ foig, nn domðS1S2Þ ¼ foi; ojg and nn domðS2veÞ ¼ fojg. When the endpoints vs and ve

have more possible NNs, the computation of the split points becomes more complicated. Before introducing our computation
method, we first give a definition as follows.

Definition 9. A break point on a line segment l is a point where the possible NNs of the points on l may change.
A break point concerns a pair of uncertain objects oi and oj. Given an arbitrary edge e ¼ v sve 2 E and two uncertain objects

oi 2 nn domðv sÞ and oj 2 nn domðveÞ (oi – oj): (1) when oi R nn domðveÞ and oj R nn domðv sÞ, there exist two break points
bðoi ;ojÞ and bðoj ;oiÞ on e; (2) when oi 2 nn domðveÞ and oj R nn domðv sÞ, there exists only one break point bðoi ;ojÞ on e; (3) when
oi R nn domðveÞ and oj 2 nn domðv sÞ, there exists only one break point bðoj ;oiÞ on e.

Our computation of the break points is inspired by the work in [37]. Specifically, we compute bðoi ;ojÞ and bðoj ;oiÞ by the fol-
lowing formula.
dmaxðoi; vsÞ þ dðv s; bðoi ;ojÞÞ ¼ dminðoj;veÞ þ dðve; bðoi ;ojÞÞ
dmaxðoj; veÞ þ dðve; bðoj ;oiÞÞ ¼ dminðoi; vsÞ þ dðv s; bðoj ;oiÞÞ
dðvs; bðoi ;ojÞÞ þ dðve; bðoi ;ojÞÞ ¼ dðv s;veÞ
dðve; bðoj ;oiÞÞ þ dðv s; bðoj ;oiÞÞ ¼ dðv s;veÞ

8>>><
>>>:

ð5Þ
The variables dmaxðoi;vsÞ; dminðoj;veÞ; dmaxðoj;veÞ and dminðoi;v sÞ in the above formula can be obtained during searching
the possible NNs for the vertices, as introduced in Section 3.2.1.

Without considering other break points, bðoi ;ojÞ partitions the edge into two parts, and oj is not a possible NN of every point
on v sbðoi ;ojÞ, but a possible NN of every point on bðoi ;ojÞve. Similarly, bðoj ;oiÞ partitions the edge into two parts, and oi is not a
possible NN of every point on bðoj ;oiÞve, but a possible NN of every point on vsbðoj ;oiÞ. Nevertheless, there may exist multiple
break points concerning different uncertain objects on an edge. All these break points should be analyzed together to com-
pute the split points (u-edges) on the edge.

Algorithm 5. MarkE

Input: An edge vsve 2 E
Output: The u-edges derived from vsve, as well as their possible NNs
1: if there exist extreme points on vsve then
2: Partition vsve using the extreme points, and insert the sub-edges into Tmp;
3: else
4: Insert vsve into Tmp;
5: end if
6: for each sub-edge v 0sv 0e in Tmp do
7: if nn domðv 0sÞ ¼ nn domðv 0eÞ then
8: Return v 0sv 0e and nn domðv 0sv 0eÞ ¼ nn domðv 0sÞ;
9: else

10: Return SplitEdge(v 0sv 0e);
11: end if
12: end for

G. Li et al. / Information Sciences 301 (2015) 241–261 251
Algorithm 6. SplitEdge

Input: e ¼ v 0sv 0e
Output: The u-edges derived from v 0sv 0e, as well as their possible NNs
1: Initialize TmpE e; TmpNNðeÞ ;;
2: for each pair of uncertain objects oi 2 nn domðv 0sÞ and oj 2 nn domðv 0eÞ do
3: if oi ¼¼ oj then
4: For each sub-edge e0 2 TmpE; TmpNNðe0Þ oi;
5: else if oi 2 nn domðv 0eÞ and oj R nn domðv 0sÞ then
6: Compute bðoi ;ojÞ and update TmpE with bðoi ;ojÞ ;

7: For each sub-edge e0 2 TmpE, if e0 is contained in v 0sbðoi ;ojÞ; TmpNNðe0Þ oi; Otherwise, TmpNNðe0Þ foi; ojg;
8: else if oj 2 nn domðv 0sÞ and oi R nn domðv 0eÞ then
9: Compute bðoj ;oiÞ and update TmpE with bðoj;oiÞ ;

10: For each sub-edge e0 2 TmpE, if e0 is contained in bðoj ;oiÞv 0e; TmpNNðe0Þ oj; Otherwise, TmpNNðe0Þ foi; ojg;
11: else
12: Compute bðoi ;ojÞ and bðoj ;oiÞ and update TmpE with bðoi ;ojÞ and bðoj;oiÞ;

13: For each sub-edge e0 2 TmpE, if e0 is contained in v 0sbðoi ;ojÞ; TmpNNðe0Þ oi; If e0 is contained in

bðoi ;ojÞbðoj ;oiÞ; TmpNNðe0Þ foi; ojg; Otherwise, TmpNNðe0Þ oj;
14: end if
15: end for
16: Merge adjacent sub-edges that have the same possible NNs in TmpE into a single edge.
17: Return each edge e0 2 TmpE and TmpNNðe0Þ; // The points shared by two edges in TmpE are the split points

Now we propose the whole algorithm MarkE (Algorithm 5) for calculating the u-edges derived from an edge, as well as
their possible NNs. For a given edge v sve 2 E, we first check whether there exist extreme points. If the answer is affirmative,
we partition v sve into sub-edges by using these extreme points, and insert all the sub-edges into a set Tmp (lines 1–2). Other-
wise, we insert v sve into Tmp directly (lines 3–4). Then, for each sub-edge v 0sv 0e in Tmp, we examine the possible NNs of its
end points. Specifically, if the two endpoints have the same set of possible NNs, then the possible NNs of v 0sv 0e is directly
obtained as the possible NNs of the endpoints (lines 7–8). Otherwise, Algorithm 6 (SplitEdge) is executed to compute the
u-edges derived from v 0sv 0e (lines 9–10). Note that if there exist extreme points on v sve, we should compute the set of pos-
sible NNs of each extreme point. Suppose EiðojÞ is an extreme point, then we have nn domðEiðojÞÞ ¼ foj; . . . ; omg, where
oj; . . . ; om are the uncertain objects whose uncertainty regions contain EiðojÞ.

In Algorithm 6 (SplitEdge), we only consider the uncertain objects contained in nn domðv 0sÞ or nn domðv 0eÞ, since only such
uncertain objects are possible to be the NNs of a point on v 0sv 0e (Lemma 1). Thus, each pair of uncertain objects
oi 2 nn domðv 0sÞ and oj 2 nn domðv 0eÞ will be examined.

In each examination, we use a set TmpE to keep the current sub-edges derived from e ¼ v 0sv 0e, and assign each sub-edge e0

a set TmpNNðe0Þ to maintain the presently known possible NNs of points on e0. By Lemma 1, if oi ¼ oj, then oi (or oj) is a pos-
sible NN of any point on e. Thus, we insert oi into TmpNNðe0Þ for each e0 2 TmpE (lines 3–4). If oi – oj, we compute the cor-
responding break points and further split the sub-edges in TmpE by using the break points (lines 5–13). Specifically,

� When oi is contained in both sets but oj is only in nn domðv 0eÞ, we compute break point bðoi ;ojÞ and use it to partition the
edges in TmpE. After updating TmpE by replacing the out-of-date sub-edges with newly generated sub-edges, we compare

the sub-edges in TmpE with line segment v 0sbðoi ;ojÞ. For each sub-edge e0 2 TmpE that is contained in v 0sbðoi ;ojÞ, we insert oi

into TmpNNðe0Þ. For other sub-edges in TmpE, we insert both oi and oj into TmpNNðe0Þ (lines 5–7).
� When oj is contained in both sets but oi is only in nn domðv 0sÞ, we conduct a similar operation to the second case, but the

break point bðoj ;oiÞ is calculated (lines 8–10).
� When oi and oj are separately contained only in nn domðv 0sÞ and nn domðv 0eÞ, break points bðoi ;ojÞ and bðoj ;oiÞ are computed

(lines 11–13).
(a) Split point in NN search

s i s j

(b) Split points in NPNN search

Fig. 4. Examples of split points.

252 G. Li et al. / Information Sciences 301 (2015) 241–261
The algorithm stops until any pair of uncertain objects oi 2 nn domðv 0sÞ and oj 2 nn domðv 0eÞ has been examined. Since dif-
ferent sub-edges in TmpE may have the same set of possible NNs, we merge such sub-edges that share the same endpoints
into a single edge (line 16). Finally, the sub-edges in TmpE are the u-edges derived from e, and the corresponding set TmpNN
is the set of possible NNs (line 17).

Illustrative Example. To help understand Algorithm 6 (SplitEdge), we now give an example in Fig. 5, where we assume
nn domðv 0sÞ ¼ fo1; o2g and nn domðv 0eÞ ¼ fo2; o3g. Note that the execution steps are shown in a top-to-bottom order. TmpE
is initialized to be v 0sv 0e and TmpNNðv 0sv 0eÞ is empty. In the first step, o1 and o2 are examined. Because o1 is only the possible
NN of v 0s and o2 is the possible NN of both endpoints, the break point bðo2 ;o1Þ is computed and TmpE is updated to be

fv 0sbðo2 ;o1Þ; bðo2 ;o1Þv 0eg. Meanwhile, fo1; o2g and o2 are inserted into TmpNNðv 0sbðo2 ;o1ÞÞ and TmpNNðbðo2 ;o1Þv 0eÞ, respectively. In
the second step, o1 and o3 are examined, and the break points bðo1 ;o3Þ and bðo3 ;o1Þ are computed. In the third step, o2 is inserted
into TmpNNðe0Þ for each edge e0 2 TmpE. In the last step, o2 and o3 are examined, and the split point bðo2; o3Þ is computed.

Finally, the edges bðo1 ;o3Þbðo2 ;o3Þ; bðo2 ;o3Þbðo3 ;o1Þ and bðo3 ;o1Þbðo2 ;o1Þ are merged into one edge, and we obtain two split points S1

(bðo1; o3Þ) and S2 (bðo2; o1Þ). S1 and S2 partition v 0sv 0e into three u-edges, v 0sS1; S1S2 and S2v 0e. The corresponding sets of possible
NNs are fo1; o2g; fo1; o2; o3g and fo2; o3g, respectively.

4. Processing NPNN queries

Although UNVD has the potential to answer various spatial queries such as NN queries, RNN queries and range queries,
due to space limitation, we only focus on static and continuous PNN queries in road Networks (NPNN) in this paper. Given a
query point q in a road network, a NPNN query returns the uncertain objects with non-zero probabilities for being the NN of
q, as well as their probabilities. Thus, processing NPNN queries involves efficiently finding the answer objects and evaluating
the probability of each answer object. In this section, we first show the computation of the probabilities, and then propose
two indexes as well as the corresponding processing methods for static and continuous NPNN.

4.1. Evaluation of probability

Let q be a query point located on a u-edge e, and PðoÞ be the probability of an uncertain object o 2 O being q’s NN. Obvi-
ously, if o R nn domðeÞ, then PðoÞ ¼ 0; If o is the only possible NN of e, then PðoÞ ¼ 100%. Otherwise, if o is one of the several
possible NNs associated with e, then we need to compute PðoÞ, as presented in the following.

Since the pdfs of any two uncertain objects are independent, for each o 2 nn domðeÞ, we have
PðoÞ ¼
Y

8oj2nn domðeÞ^oj–o

Pðoj; oÞ ð6Þ
where Pðoj; oÞ is the probability of oj being farther to q than o to q. Further, let E1 ¼ fe1; e2; . . .g and E2 ¼ fe01; e02; . . .g be the sets
of line segments which constitute CðoÞ and CðojÞ, respectively, then
Pðoj; oÞ ¼
X
ei2E1

PðeiÞ
X
e0

j
2E2

Pðe0jÞPðoj; ojei; e0jÞ ð7Þ
where PðeiÞ and Pðe0jÞ are the probabilities of o being located on ei and e0j, respectively, and Pðoj; ojei; e0jÞ is the probability of oj

being farther to q than o to q, when o and oj are located on ei and e0j, respectively.
Since PðeiÞ and Pðe0jÞ are known a priori, we only need to calculate Pðoj; ojei; e0jÞ. As shown in Fig. 6, suppose the two end-

points of e; ei and e0j are ðvs;veÞ; ðv s1;ve1Þ and ðv s2;ve2Þ, respectively, and the lengths of them are L; L1 and L2 respectively.
Moreover, for presentation convenience, we let dðv s1; p1Þ ¼ y1; dðv s; qÞ ¼ x and dðv s2; p2Þ ¼ y2. When u 2 fvs1;ve1g and
w 2 fv s;veg, according to the definition of shortest-path distance, we have dðu;wÞ ¼min16k6Z1fdðu; EkðoÞÞ þ dðEkðoÞ;wÞg,
where Z1 is the total number of extreme points of o. Similarly, when u 2 fv s2; ve2g and w 2 fv s;veg, we have
dðu;wÞ ¼min16k6Z2fdðu; EkðojÞÞ þ dðEkðojÞ;wÞg, where Z2 is the total number of extreme points of oj.
vs ve’
b(o1,o3) b(o3,o1) b(o2,o1)nn_dom(vs’)

={o1,o2}

{o1,o2}

{o2}

{o2,o3}

{o1,o2}

{o1,o2,o3} {o1o2,o3}

nn_dom(ve’)
={o2,o3}

(o1,o2)

(o1,o3)

(o2,o2) {o1o2} {o2,o3}{o1,o2,o3} {o1o2,o3}

(o2,o3)

b(o2,o3)

{o1o2} {o1,o2,o3} {o1o2,o3}{o1,o2,o3} {o2,o3}

{o1o2} {o1,o2,o3} {o2,o3}Merge

S1 S2

Fig. 5. An illustrative example of Algorithm 6 (SplitEdge).

vs veq
x L-x

vs1 ve1p1
y1 L1-y1

vs2 ve2p2

y2 L2-y2

ei ej'e

Fig. 6. An example of ei and e0j .

G. Li et al. / Information Sciences 301 (2015) 241–261 253
It is obvious that Pðoj; ojei; e0jÞ ¼ Pfdðp1; qÞ < dðp2; qÞg. For simplicity, we use d1; d2; d3 and d4 to denote
dðv s1;v sÞ; dðve1;v sÞ; dðv s1;veÞ and dðve1;veÞ, respectively, and use d01; d02; d03 and d04 to denote
dðv s2;v sÞ; dðve2;v sÞ; dðv s2;veÞ and dðve2;veÞ, respectively. Then dðp1; qÞ and dðp2; qÞ can be represented as follows:
dðp1; qÞ ¼minfy1 þ d1 þ x; y1 þ d2 þ L� x; L1 � y1 þ d3 þ x; L1 � y1 þ d4 þ L� xg
dðp2; qÞ ¼minfy2 þ d01 þ x; y2 þ d02 þ L� x; L2 � y2 þ d03 þ x; L2 � y2 þ d04 þ L� xg

�

Clearly, dðp1; qÞ can be expressed by a continuous piecewise function of y1 and x over a finite region R1 of the xy1-plane, and
dðp2; qÞ can be expressed by a continuous piecewise functions of y2 and x over a finite region R2 of the xy2-plane. The corre-
sponding piecewise functions are presented below:
dðp1; qÞ ¼

y1 þ d1 þ x; ðx; yÞ 2 D1

y1 þ d2 þ L� x; ðx; yÞ 2 D2

L1 � y1 þ d3 þ x; ðx; yÞ 2 D3

L1 � y1 þ d4 þ L� x; ðx; yÞ 2 D4

8>>><
>>>:

ð8Þ

dðp2; qÞ ¼

y2 þ d01 þ x; ðx; yÞ 2 D01
y2 þ d02 þ L� x; ðx; yÞ 2 D02
L1 � y2 þ d03 þ x; ðx; yÞ 2 D03
L1 � y2 þ d04 þ L� x; ðx; yÞ 2 D04

8>>><
>>>:

ð9Þ
where Dið1 6 i 6 4Þ is a subdomain of each subfunction of dðp1; qÞ and D0ið1 6 i 6 4Þ is a subdomain of each subfunction of
dðp2; qÞ. The domain of dðp1; qÞ is R1 ¼ ½0; L� � ½0; L1� and the domain of dðp2; qÞ is R2 ¼ ½0; L� � ½0; L2�.

By using gðx; y1; y2Þ to denote dðp1; qÞ � dðp2; qÞ, and using f 1ðy1Þ and f 2ðy2Þ to respectively represent the continuous pdfs
of p1 and p2, Pðoj; ojei; e0jÞ can be rewritten as:
Pðoj; ojei; e0jÞ ¼
X
Di2D

Z
Di

f 1ðy1Þdy1

X
D0i2D

0

Z
D0i\ðgðx;y1 ;y2Þ<0Þ

f 2ðy2Þdy2 ¼
X
Di2D

X
D0i2D

0

ZZ
X

f 1ðy1Þf 2ðy2Þdy2dy1 ð10Þ
where D ¼ fD1;D2;D3;D4g; D0 ¼ fD01;D
0
2;D

0
3;D

0
4g and X ¼ fðx; y1; y2Þjðx; y1Þ 2 Di; ðx; y2Þ 2 D0i; gðx; y1; y2Þ < 0Þg. The inner inte-

gral is integrated with respect to y2, regarding x and y1 as constants, while the outer integral is integrated with respect to
y1, regarding x as a constant. The final integral result is a function of x. Based on the above discussion, we can derive PðoÞ
as a function of x.

We now give a simple example in Fig. 7, which is based on the UNVD shown in Fig. 2(b), to illustrate how to compute the
probability. For simplicity, we assume the precise position of each uncertain object o is evenly distributed within CðoÞ and
the length of any line segment included in CðoÞ is 1. It is clear that Pðo1Þ ¼ 100% and Pðo2Þ ¼ Pðo3Þ ¼ 0 when the query point
is located on v1v2, due to that o1 is the only possible NN of v1v2.

Assume the query point q is located on s1s2, then the probability Pðo2Þ of o2 being the NN of q is 0, since the set of possible
NNs of q is fo1; o3g. Moreover, we have Pðo1Þ ¼ Pðo3; o1Þ, where Pðo3; o1Þ is the probability of o3 being farther to q than o1 to q. It
is obvious that the probability of o1 located on ei is 100%, and the probabilities of o3 located on E1ðo3Þv6, E2ðo3Þv6 and E3ðo3Þv6

are all 1
3. Thus, Pðo3; o1Þ ¼ 1

3 ðPðo3; o1jei; E1ðo3Þv6Þ þ Pðo3; o1jei; E2ðo3Þv6Þ þ Pðo3; o1je; E3ðo3Þv6ÞÞ, where Pðo3; o1jei; E1ðo3Þv6Þ,
1

2

3

4

5

6

7

8

1 2

3
4

5
6

7

8

9 10

i

j

1 1 2 11

1

2 36 2

2

1 2

3 3

1 3 2 3

Fig. 7. Probability evaluation.

254 G. Li et al. / Information Sciences 301 (2015) 241–261
Pðo3; o1jei; E2ðo3Þv6Þ and Pðo3; o1je; E3ðo3Þv6ÞÞ are the probabilities of o3 being farther to q than o1 when o3 is located on
E1ðo3Þv6; E3ðo3Þv6 and E2ðo3Þv6, respectively. Without loss of generality, suppose dðv2;v4Þ ¼ dðv3;v6Þ ¼ dðv1;v5Þ ¼ 11,
dðv2;v3Þ ¼ dðv4;v6Þ ¼ dðv1;v2Þ ¼ dðv5;v4Þ ¼ 5, then based on the construction method of UNVD, we can get that
dðv2; s1Þ ¼ 2:5, dðs1; s2Þ ¼ 1:5. Let p1 and p2 denote the precise positions of o1 and o3, respectively. To compute
Pðo3; o1jei; E2ðo3Þv6Þ, we assume p2 is located on ej ¼ E2ðo3Þv6 and dðE2ðo3Þ; p2Þ ¼ y2. Consequently, there are
dðp1; qÞ ¼ y1 þ xþ 11:5 and dðp2; qÞ ¼ 12þ y2 � x, where x 2 ½0;1�; y1 2 ½0;1� and y2 2 ½0;1�. Then, given the condition of Eq.
(10) and gðx; y1; y2Þ ¼ dðp1; qÞ � dðp2; qÞ ¼ 2xþ y1 � y2 � 0:5, we can get,
Pðo3; o1je; e1Þ ¼
1� 1

2 ð0:5þ 2xÞ2;0 6 x 6 0:25
1
2 ð1:5� 2xÞ2;0:25 6 x 6 0:75
0; 0:75 6 x 6 1

8><
>:
Following a similar way, Pðo3; o1jei; E1ðo3Þv6Þ and Pðo3; o1jei; E3ðo3Þv6Þ can be computed, which means Pðo1Þ can be readily
obtained.

4.2. Index and NPNN processing

In this section, we study how to process NPNN queries by utilizing UNVD. Since the networks and uncertain objects stud-
ied in this work are considered to be static, it is clear that the UNVD can be re-used for a large number of queries. Hence, we
pre-compute the entire UNVD. Moreover, since computing the probability online requires more time and needs to store the
information of the original network (including edge weight and connection), we also pre-compute the probabilities for the
possible NNs. By storing the possible NNs as well as the corresponding probabilities (functions) together with each u-edge in
UNVD, the results of a NPNN query can be obtained immediately, once the corresponding u-edges are located.

A NPNN query can be static or continuous. A static NPNN query searches the possible NNs as well as the corresponding
probabilities for a specified point. To answer a static NPNN query issued by a query point q, we need to find the u-edges that
contain q, and the union of the possible NNs associated with these u-edges is the set of possible NNs of q. Unlike static NPNN,
a continuous NPNN query requests the possible NNs of a specified path, which means the query object is not a point but a set
of line segments. To answer a NPNN query issued by a query path p, which consists of n straight line segments, we divide the
query into n sub-queries. A sub-query is issued by a straight line segment l, and returns a set of intervals of l, each associated
with a series of possible NNs and corresponding probabilities (functions). For each sub-query, our task is to find the u-edges
overlapped with the query line segment.

Observe that by using UNVD, the problem of NPNN search is reduced to the ‘‘where am I’’ problem in road networks,
which only requires the knowledge about the u-edges. Hence, the main task is to enable efficient retrieval of all the u-edges
that go through a specified point (in static NPNN) or overlap with a set of specified line segments (in continuous NPNN).
Below we present two index structures, namely gIndex and qIndex, which win by ease of implementation, conceptual clarity
and reasonable time cost on processing static and continuous NPNN, respectively.

4.2.1. gIndex
gIndex is implemented as a one-dimensional hash table, which means the array of buckets has to be stored in main mem-

ory. With the development of memory techniques, it is not difficult to achieve this. gIndex partitions the entire UNVD space
into a number of equal-sized regions, each called a grid cell. The Hilbert curve [16] is used to sort the grid cells in a linear
order, based on which the grid cells are assigned to the buckets sequentially. In this way, each bucket corresponds to a grid
(a) gIndex structure (b) partitioning

Fig. 8. An example of gIndex.

G. Li et al. / Information Sciences 301 (2015) 241–261 255
cell and contains a pointer pointing to a list of disk pages. Each page contains a set of 3-tuples in the form of
< Position;nn dom; Probability >, where Position records the endpoints of a u-edge, nn dom is the set of possible NNs, and
Probability indicates the probability (function) of each possible NN. To avoid waste of space and reduce the number of I/
Os during processing NPNN queries, different buckets are allowed to point to the same disk pages. The construction of gIndex
includes four steps, as presented in the following.

Step 1. Algorithm 7 (GetSplitLevel) is executed to determine the split level n. It starts by considering the entire UNVD space
D as the first grid cell, and then partitions the grid cell into four equal sub-cells repeatedly until the current cell overlaps with
no more than a u-edges. Here a denotes the maximum number of u-edges overlapped with a grid cell. In this way, the UNVD
space can be partitioned into 2n � 2n equal-sized grid cells by 2n vertical lines x ¼W=2i ði ¼ n; . . . ;1Þ and 2n horizon lines
y ¼ H=2i ði ¼ n; . . . ;1Þ, where W and V are the weight and height of the UNVD space, respectively.

Algorithm 7. GetSplitLevel
Input: Grid cell C
Output: The split level n
1: X (the number of the u-edges overlapped with C;
2: if X > a then
3: Split C to four equal sub-cells c1; c2; c3 and c4;
4: temp ¼maxfGetSplitLevelðc1Þ; GetSplitLevelðc2Þ; GetSplitLevelðc3Þ; GetSplitLevel ðc4Þg;
5: n ¼ tempþ 1;
6: else
7: n ¼ 0;
8: end if
9: Return n;

Step 2. A Hilbert curve [31] with an order of n (the split level) is generated to sort the grid cells in a linear order. We use
Hilbert curve since it has better locality-preserving behavior than other curves, such as Z-order, Gray-code and Peano curve.
This property is important because NPNN queries, especially the continuous NPNN queries, usually search for u-edges that
are closely located. For simplicity, we assume the UNVD space is square, but it is worth noting that it is also possible to
implement Hilbert curves efficiently when the UNVD space does not form a square [14].

Step 3. Create an array of 4n elements (buckets), and allocate each bucket a list of disk pages. Let nb be the number of the
u-edges which overlap with the grid cell corresponding to bucket b. Depending on whether nb fills in some pages, we classify
the buckets into two types. A bucket b belongs to the first type if a� a%nb is smaller than a given threshold h. Otherwise, b
belongs to the second type. For the buckets belonging to the first type, we directly allocate a linked list of dnb

a e disk pages to
each bucket b of them. For the buckets belonging to the second type, we search which buckets can be allowed to share the
same pages. Such a set of buckets, say gkð1 6 k 6 mÞ, has to satisfy the following two conditions: (1) a�

Pm
k¼1a%ngk

< h; and
(2) the difference between the maximal and minimal bucket indexes is smaller than a predefined threshold c. c indicates

how near these buckets should be, and we set c ¼ 10 in this work. For each bucket gk in the set, we allocate a list of bngk
a c

disk pages to gk. Meanwhile, we allocate a special page which is linked to these k buckets (gkð1 6 k 6 nÞ) at the same time.
For other buckets belonging to the second type, we directly allocate a linked list of dnb

a e disk pages to each bucket b of them.
Step 4. Insert u-edges to the disk pages. For each u-edge, we first find the grid cells overlapped with it, and then compute

the hash key values (Hilbert curve positions) of these grid cells. Given the mapping function of the Hilbert curve, it is easy to
convert the coordinates into Hilbert curve positions. Based on the hash key values, we insert the u-edge into the pages
pointed by the buckets, of which the array indexes are equal to the hash key values.

An example of gIndex with 16 buckets is shown in Fig. 8(a), and the corresponding partitioning on the UNVD space is
shown in Fig. 8(b).

The static NPNN processing using gIndex works as follows. Suppose q is a query point, we first compute its Hilbert curve
position, and then access the corresponding bucket to retrieve the associated disk pages. By comparing q with the u-edges
stored in the pages, we can find the exact u-edge where q resides. Finally, based on q’s position in the u-edge, we can com-
pute the probability for each possible NN. For continuous NPNN queries, since they can be divided into several sub-queries,
we focus on processing a single sub-query which is issued by a line segment l. To process a continuous NPNN sub-query, we
first compute the Hilbert curve positions of the grid cells overlapped with l, and then access disk pages to find the u-edges
that overlap with l. Such u-edges’ endpoints divide l into several parts, and the possible NNs of each part are the same as that
of the u-edge overlapping with it. Finally, a set of intervals of l, together with their corresponding possible NNs and proba-
bilities (functions), are returned.

4.2.2. qIndex
qIndex adopts a framework similar to PMR quad tree [17]. A non-leaf node records a pointer pointing to each of its four

child nodes as well as the coordinates of the upper-left and lower-right points of the corresponding region. A leaf node stores

256 G. Li et al. / Information Sciences 301 (2015) 241–261
a linked list of disk pages, and each page contains a set of 3-tuples in the form of < Position;nn dom; Probability >, where
Position records the coordinates of the u-edge’s endpoints, nn dom is the set of possible NNs and Probability indicates the
probability (function) for each possible NN. The region covered by each child node is one-fourth of the region covered by
its parent node, while the entire UNVD space is covered by the root node.

Similar to the construction of gIndex, a predefined threshold a is used to control the size of the grid cells. Algorithm 8
(Split) shows the constructing procedure of qIndex. This algorithm is a recursive procedure, and is first invoked for
g ¼ root, where g:region ¼ root:region is the entire UNVD space. For each node g, we check whether the number of u-edges
which overlap with g:region exceeds a (line 1). If the answer is affirmative, then g is split into four child nodes and we exe-
cute Split(gg) for each child node gg (line 3). Otherwise, new pages are allocated for g and the u-edges overlapping with
g:region are inserted into the new pages (line 5).

Algorithm 8. Split
Input: Node g
1: X (the number of u-edges overlapped with g:region;
2: if X > a then
3: Split g into four child nodes gWN, gEN, gWS and gES, and partition g:region into four equal regions and assign each

region to one child node;
4: Split (gWN); Split (gEN); Split (gWS); Split (gES);
5: else
6: Allocate new pages for g and insert the u-edges overlapping with g:region into the new pages;
7: end if

The static NPNN processing using qIndex works as follows. Suppose the query point is q, we first traverse qIndex to find the
leaf node whose region contains q, and then retrieve the associated disk pages to find the u-edges that go through q. Finally,
based on q’s location, we compute the probabilities for each possible NN. To answer a continuous NPNN sub-query issued by
a line segment l, we first traverse qIndex to find the leaf nodes that overlap with l, then retrieve the associated disk pages to
find the u-edges that overlap l. Finally, a set of intervals of l as well as their corresponding possible NNs and probabilities are
returned. The possible NNs of each interval are the same as that of the u-edge overlapped with it.
5. Experiment

We conduct a set of experiments to evaluate the performance of the proposed methods. Section 5.1 describes the exper-
iment setup, and Section 5.2 discusses the experimental results.

5.1. Experiment setup

We use the generator described in [5] to generate uncertain objects and query points. To be exact, we first use the gen-
erator [5] to create a set P of discrete points, each of which represents an uncertain object o 2 O. Then for each point p 2 P, we
obtain a circle with a center p and a diameter of 30 units. Finally, the line segments covered by the circle is regarded as the
uncertainty region CðoÞ. We assume the pdfs of uncertain objects follow a uniform distribution. To generate the query line
segment for a continuous sub-query, we randomly select two different points on an edge, which is randomly selected from
the original network, and the interval between the two points is taken as the query line segment.

All the algorithms are evaluated on both synthetic and real datasets. Three real datasets downloaded from [29] are used in
our experiments: California road network with 21,047 vertices and 21,692 edges, San Francisco road network with 174,955
vertices and 223,000 edges, and city of Oldenburg road network with 6104 vertices and 7034 edges. For short, the three road
networks are denoted by ‘‘SF’’, ‘‘CA’’ and ‘‘OL’’, respectively. In addition, a series of synthetic graphs are generated by using
GTgraph [36]. The extra edges between pairs of vertices in the synthetic graphs are deleted, since road network vertices are
generally connected by only one edge in reality. By default, a synthetic graph is labeled as ‘‘Syn’’ and has 100k vertices and
150k edges that are evenly distributed.

Since no previous approaches have been proposed to answer NPNN queries, we compare gIndex and qIndex with two tech-
niques termed as Rtree and Transformed, both are evolved from existing methods. Specifically, Rtree uses the Hilbert R-tree
[25] to index the u-edges, which are represented by the minimal bounding rectangles (MBRs). In a Hilbert R-tree, the u-edges
in the same page are more likely to be close in the UNVD space and the resulting leaf nodes in R-tree tend to have smaller
areas. Transformed adopts the data structure proposed in [20] to index the u-edges, which stores a u-edge only once and is
proved to perform as well as or better than the representative methods using minimum bounding rectangles or end-points.
The basic idea of Transformed is to transform the u-edges into points in four-dimensional space. To organize the transformed
points, we use grid file [34], since it is suitable for indexing point objects. For simplicity, we use the most efficient

G. Li et al. / Information Sciences 301 (2015) 241–261 257
implementations of grid partitions which are obtained by drawing the boundary lines at fixed values on each dimension. By
Transformed, static and continuous NPNN queries are transformed into range queries on points in four-dimensional space.

The bucket array in gIndex, non-leaf nodes in qIndex and Rtree, and the grid directory in Transformed are all stored in the
main memory. In our experiments, the amounts of memory occupied by Rtree and Transformed are higher than that of gIndex
and qIndex. qIndex takes up more memory space than gIndex when the u-edges are distributed more evenly, but requires less
with skewed data. In all the indexes, the u-edges are stored in the disk. In the default setting, the page size is 4096 bytes, and
the maximal number of u-edges contained in a grid cell a is 100.

To improve efficiency, the UNVD construction algorithms are implemented by C/C++ language with OpenMP, which
allows us to add simple parallelism through OpenMP directives. Other algorithms are implemented in Java by using XXL
[4]. All the programs are tested on an Intel dual-core, 3.07 GHz, 4G-main memory machine.

5.2. Experimental results

5.2.1. UNVD construction
In this set of experiments, we examine the UNVD-constructing approach against data sets SF, CA, OL and Syn. Due to space

limitations, the results on different data sets are shown in the same graph. Recall that during the UNVD construction, we
mark the network vertices and edges successively. Fig. 9(a) shows the ratio (R) of the time spent on marking vertices by uti-
lizing the straightforward method mentioned in Section 3.2.1, to the total time cost of constructing UNVD. We can see that
marking vertices takes up most of the UNVD-constructing time on all the data sets (R exceeds 75% when jOj ¼ 100, and
(a) Proportion (b) Time ratio (c) UNVD-constructing time

Fig. 9. Analysis of UNVD-constructing algorithms.

(a) SF (b) Syn

(c) SF (d) Syn

Fig. 10. I/O in static queries.

258 G. Li et al. / Information Sciences 301 (2015) 241–261
exceeds 90% when jOj ¼ 5000), and the proportion R increases as jOj grows. The reason lies in that the network has to be
scanned OðjOjÞ times to compute the possible maximal and minimal distances during the process of finding the possible
NNs for all the vertices. The results described in Fig. 9(a) illustrate that efficiency enhancement in marking vertices is crucial.

Fig. 9(b) depicts the time ratio R of MarkV to straight (the straightforward method mentioned in Section 3.2.1). It can be
seen that R is relatively small (at most 19.6% when jOj ¼ 100) and decreases as jOj grows on all the data sets. This is because
the time cost of straight is proportional to jOj, while MarkV only needs to traverse the network once.

Fig. 9(c) shows the UNVD construction time for different data sets. As can be seen, for all data sets, the construction time
grows as jOj increases. This is because according to the construction approach introduced in Section 3.2, the more uncertain
objects there are, the more calculation operation it takes. But it is worth mentioning that the time cost T is still acceptable
(when jOj ¼ 5000, even for the largest data set SF, T does not exceed 2 h).
5.2.2. Query performance
In this set of experiments, we evaluate the I/O performance and query time of all the indexes on data sets SF, CA, OL and

Syn. Since the data sets vary in size, we use the density of uncertain objects, defined as D ¼ jOjjV j, rather than jOj, to evaluate the
query performance. We examine the running time of 50 queries. Due to space limitations, only the results on SF and Syn are
presented. For a data set, when D increases, the probability of an network edge being split into more u-edges increases, and
thus jUj also grows. Fig. 10(a) and (b) shows the I/Os of static NPNN queries versus D on SF and Syn, respectively. As can be
seen, gIndex and qIndex require significantly less number of I/Os than Transformed and Rtree. The reason lies in that, Trans-
formed has to retrieve a great number of grids since the static NPNN problem has been transformed into range queries with
large query areas. For Rtree, when determining which object is associated with a specific point, many extra objects may be
searched, because in Rtree, an object is only associated with one bounding rectangle, but the area spanned by it may be
included in several bounding rectangles. However, in gIndex and qIndex, we only need to look for the leaf node (or bucket)
that contains the query point. In most cases, gIndex has small grid cells than qIndex, and thus requires less I/Os. This explains
the difference between gIndex and qIndex.

The query time for all the indexes can be divided into four components: (1) finding target page(s); (2) disk page access;
(3) finding desired u-edges; and (4) obtaining possible NNs and probabilities (in static NPNN queries) or probability func-
tions (in continuous NPNN queries). In all the experiments, accessing disk pages is the most time-consuming operation.
Fig. 10(a) and (d) evaluate the query time on SF and Syn, respectively. As can be seen, as D increases, the query time of
all the indexes increases correspondingly. There are two main reasons: First, the increasing number of I/O increases the index
retrieval time in Rtree and qIndex; Second, a larger D incurs more u-edges and more possible NNs, which in turn will increase
the probability computation time in all the indexes.
(a) SF (b) Syn

(c) SF (d) Syn

Fig. 11. I/O in continuous sub-queries.

(a) SF (b) Syn

(c) SF (d) Syn

Fig. 12. Effect of a.

G. Li et al. / Information Sciences 301 (2015) 241–261 259
Since a continuous NPNN query can be divided into several sub-queries, each taking a single line segment as the query
object, we also examine the performance of the sub-queries. The average performance of an entire continuous NPNN query
can be roughly estimated by multiplying the performance of a sub-query by the number of the sub-queries. Fig. 11(a) and (b)
evaluate the I/O performance in continuous NPNN sub-queries. As D increases, the number of I/Os in all the indexes also
increase, and gIndex and qIndex outperform the other two schemes, due to the similar reasons as in the static context. Note
that gIndex, qIndex and Rtree require more I/Os than in the static NPNN queries, while Transformed requires less. Compared to
a single point, a query line segment tends to cover more grid cells in gIndex and qIndex, and belongs to more branches in
Rtree. Thus, more disk pages need to be retrieved in these indexes. For Transformed, since the query line segment has been
transformed to a point, and the query area in the transformed space has been greatly reduced, it requires less I/Os than in the
static NPNN queries. Besides, gIndex outperforms qIndex in continuous queries, due to the organization of u-edges in disk
pages by using Hilbert order. Fig. 11(c) and (d) evaluate the query time in continuous sub-queries. As can be seen, as D
increases, the query time for all the indexes increases, due to the similar reason as in static queries.

In the last set of experiments, we vary the value of a (Recall that a denotes the maximal number of u-edges overlapped
with a grid cell in gIndex and qIndex) from 25 to 175 to examine the performance of gIndex and qIndex in terms of I/O and
query time. D is set to be 0.08. Due to space limitations, the results in static queries (with the suffix ‘‘S’’) and continuous sub-
queries (with the suffix ‘‘C’’) are put in the same graph. Fig. 12(a) and (b) shows the number of I/Os on SF and Syn, respec-
tively, while Fig. 12(c) and (d) present the query times against SF and Syn, respectively. In Fig. 12(a) and (b), all the I/Os
increase as a grows. This is because when a grows, more disk pages are needed to store the u-edges overlapped with one
grid cell, which means we have to access more disk pages to find the target u-edges in gIndex and qIndex, for static and con-
tinuous sub-queries. Besides, gIndex-C performs better than qIndex-C, which benefits from the utilization of Hilbert curve
during the construction of gIndex. All the curves increase as a grows in Fig. 12(c) and (d), mainly owing to the increase in
the number of I/Os.
6. Conclusion

In this paper, we addressed the problem of processing queries over uncertain data in road network space. As far as we
know, this work serves as the first attempt to solve the given problem. First, we presented an efficient method to construct
the Voronoi diagram on uncertain objects in road networks. Then, we designed two data structures, namely gIndex and qIn-
dex, to index the built Voronoi diagram. We also illustrated how to process NPNN queries by using our indexes. Finally, we
conducted extensive experiments to evaluate our UNVD constructing methods and the NPNN processing algorithms.
Experimental results show that our approach performs quite well in terms of both I/O performance and query time.

260 G. Li et al. / Information Sciences 301 (2015) 241–261
For future work, we plan to extend our method to process NPkNN (k > 1) queries. Also, it would be interesting to study
how to use the UNVD to support other location-based queries, such as reverse nearest neighbor queries.

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive and helpful comments. This work was
substantially supported by the State Key Program of National Natural Science of China under Grant No. 61332001, National
Natural Science Foundation of China under Grants Nos. 61173049, 61300045 and 61309002, China Postdoctoral Science
Foundation under Grant No. 2013M531696 and the Fundamental Research Funds for the Central Universities, HUST: No.
2013QN119.

References

[1] C.C. Aggarwal, On unifying privacy and uncertain data models, in: Proc. of the 24th International Conference on Data Engineering (ICDE), IEEE, 2008, pp.
386–395.

[2] R. Agrawal, R. Srikant, Privacy-preserving data mining, ACM Sigmod Rec. 29 (2) (2000) 439–450.
[3] M.E. Ali, E. Tanin, R. Zhang, R. Kotagiri, Probabilistic voronoi diagrams for probabilistic moving nearest neighbor queries, Data Knowl. Eng. 75 (2012) 1–

33.
[4] J.v. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schneider, B. Seeger, Xxl-a library approach to supporting efficient implementations of

advanced database queries, in: Proc. of the Conference on Very Large Databases (VLDB), 2001, pp. 39–48.
[5] T. Brinkhoff, A framework for generating network-based moving objects, GeoInformatica 6 (2) (2002) 153–180.
[6] J. Chen, Y. Chin, A concurrency control algorithm for nearest neighbor query, Inf. Sci. 114 (1) (1999) 187–204.
[7] R. Cheng, J. Chen, M. Mokbel, C.-Y. Chow, Probabilistic verifiers: evaluating constrained nearest-neighbor queries over uncertain data, in: Proc. of the

24th International Conference on Data Engineering (ICDE), IEEE, 2008, pp. 973–982.
[8] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Querying imprecise data in moving object environments, IEEE Trans. Knowl. Data Eng. 16 (9) (2004) 1112–

1127.
[9] R. Cheng, X. Xie, M.L. Yiu, J. Chen, L. Sun, Uv-diagram: a voronoi diagram for uncertain data, in: Proc. of the 26th International Conference on Data

Engineering (ICDE), IEEE, 2010, pp. 796–807.
[10] H.-J. Cho, C.-W. Chung, An efficient and scalable approach to cnn queries in a road network, in: Proc. of the 31st International Conference on Very Large

Data Bases (VLDB), VLDB Endowment, 2005, pp. 865–876.
[11] J. Derrac, S. García, F. Herrera, Fuzzy nearest neighbor algorithms: taxonomy, experimental analysis and prospects, Inf. Sci. 260 (2014) 98–119.
[12] W. Evans, J. Sember, Guaranteed voronoi diagrams of uncertain sites, in: Proc. of the 20th Canadian Conference on Computational Geometry, 2008.
[13] Y. Gao, B. Zheng, G. Chen, Q. Li, C. Chen, G. Chen, Efficient mutual nearest neighbor query processing for moving object trajectories, Inf. Sci. 180 (11)

(2010) 2176–2195.
[14] C.H. Hamilton, A. Rau-Chaplin, Compact hilbert indices: space-filling curves for domains with unequal side lengths, Inf. Proc. Lett. 105 (5) (2008) 155–

163.
[15] M. Hasan, M.A. Cheema, X. Lin, Y. Zhang, Efficient construction of safe regions for moving knn queries over dynamic datasets, in: Advances in Spatial

and Temporal Databases, Springer, 2009, pp. 373–379.
[16] D. Hilbert, Ueber die stetige abbildung einer line auf ein flächenstück, Math. Ann. 38 (3) (1891) 459–460.
[17] E.G. Hoel, H. Samet, Efficient processing of spatial queries in line segment databases, in: Advances in Spatial Databases, Springer, 1991, pp. 235–256.
[18] X. Huang, C.S. Jensen, S. Šaltenis, The islands approach to nearest neighbor querying in spatial networks, in: Advances in Spatial and Temporal

Databases, Springer, 2005, pp. 73–90.
[19] Y.-K. Huang, Z.-W. Chen, C. Lee, Continuous k-nearest neighbor query over moving objects in road networks, in: Advances in Data and Web

Management, Springer, 2009, pp. 27–38.
[20] H. Jagadish, On indexing line segments, in: Proceedings of the 16th International Conference on Very Large Data Bases, 1990, pp. 614–625.
[21] C.S. Jensen, J. Kolářvr, T.B. Pedersen, I. Timko, Nearest neighbor queries in road networks, in: Proc. of the 11th ACM International Symposium on

Advances in Geographic Information Systems, ACM, 2003, pp. 1–8.
[22] Y. Jing, L. Hu, W.-S. Ku, C. Shahabi, Authentication of k nearest neighbor query on road networks, IEEE Trans. Knowl. Data Eng. (TKDE) 26 (6) (2014)

1494–1506.
[23] M. Jooyandeh, A. Mohades, M. Mirzakhah, Uncertain voronoi diagram, Inf. Proc. Lett. 109 (13) (2009) 709–712.
[24] H. Jung, Y.D. Chung, L. Liu, Processing generalized k-nearest neighbor queries on a wireless broadcast stream, Inf. Sci. 188 (0) (2012) 64–79.
[25] I. Kamel, C. Faloutsos, Hilbert r-tree: an improved r-tree using fractals, in: Proceedings of the 20th International Conference on Very Large Data Bases

(VLDB), 1994, pp. 500–509.
[26] M. Kolahdouzan, C. Shahabi, Voronoi-based k nearest neighbor search for spatial network databases, in: Proc. of the Thirtieth international conference

on Very Large Data Bases (VLDB), VLDB Endowment, 2004, pp. 840–851.
[27] M.R. Kolahdouzan, C. Shahabi, Continuous k-nearest neighbor queries in spatial network databases, in: STDBM, Citeseer, 2004, pp. 33–40.
[28] H.-P. Kriegel, P. Kunath, M. Renz, Probabilistic nearest-neighbor query on uncertain objects, in: Advances in Databases: Concepts, Systems and

Applications, Springer, 2007, pp. 337–348.
[29] F. Li, Real Datasets for Spatial Databases: Road Networks and Points of Interest, 2005. <http://www.cs.fsu.edu/�lifeifei/SpatialDataset.htm>.
[30] Y. Li, J. Li, L. Shu, Q. Li, G. Li, F. Yang, Searching continuous nearest neighbors in road networks on the air, Inf. Syst. 42 (0) (2014) 177–194.
[31] S.-Y. Lin, C.-S. Chen, L. Liu, C.-H. Huang, Tensor product formulation for hilbert space-filling curves, in: Proc. of the International Conference on Parallel

Processing, IEEE, 2003, pp. 99–106.
[32] L. Liu, S. Yang, D. Wang, Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima, Inf. Sci. 182 (1) (2012)

139–155.
[33] K. Mouratidis, M.L. Yiu, D. Papadias, N. Mamoulis, Continuous nearest neighbor monitoring in road networks, in: Proc. of the 32nd International

Conference on Very Large Data Bases (VLDB), VLDB Endowment, 2006, pp. 43–54.
[34] J. Nievergelt, H. Hinterberger, K.C. Sevcik, The grid file: an adaptable, symmetric multikey file structure, ACM Trans. Database Syst. (TODS) 9 (1) (1984)

38–71.
[35] S. Nutanong, R. Zhang, E. Tanin, L. Kulik, The v⁄-diagram: a query-dependent approach to moving knn queries, in: Proc. of the International Conference

on Very Large Data Bases (VLDB), VLDB Endowment, 2008, pp. 1095–1106.
[36] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, 2009.
[37] A. Okabe, T. Satoh, T. Furuta, A. Suzuki, K. Okano, Generalized network voronoi diagrams: concepts, computational methods, and applications, Int. J.

Geograph. Inf. Sci. 22 (9) (2008) 965–994.
[38] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao, Query processing in spatial network databases, in: Proc. of the 29th International Conference on Very Large

Data Bases (VLDB), VLDB Endowment, 2003, pp. 802–813.
[39] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, ACM Sigmod Rec. 24 (2) (1995) 71–79.

http://refhub.elsevier.com/S0020-0255(15)00002-X/h0005
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0005
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0005
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0010
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0015
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0015
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0025
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0030
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0035
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0035
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0035
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0040
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0040
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0045
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0045
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0045
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0055
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0065
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0065
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0070
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0070
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0075
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0075
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0075
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0080
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0085
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0085
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0090
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0090
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0090
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0095
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0095
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0095
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0105
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0105
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0105
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0110
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0110
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0115
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0120
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0135
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0135
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0140
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0140
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0140
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0150
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0155
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0155
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0155
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0160
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0160
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0170
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0170
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0180
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0180
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0185
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0185
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0195

G. Li et al. / Information Sciences 301 (2015) 241–261 261
[40] M. Safar, Enhanced continuous knn queries using pine on road networks, in: Proc. of the 1st International Conference on Digital Information
Management, IEEE, 2006, pp. 248–256.

[41] M. Sharifzadeh, C. Shahabi, Vor-tree: R-trees with voronoi diagrams for efficient processing of spatial nearest neighbor queries, Proc. VLDB Endowment
3 (1–2) (2010) 1231–1242.

[42] A.P. Sistla, O. Wolfson, S. Chamberlain, S. Dao, Querying the uncertain position of moving objects, in: Temporal Databases: Research and Practice,
Springer, 1998, pp. 310–337.

[43] Z. Song, N. Roussopoulos, K-nearest neighbor search for moving query point, in: Advances in Spatial and Temporal Databases, Springer, 2001, pp. 79–
96.

[44] H. Wang, R. Zimmermann, Location-based query processing on moving objects in road networks, in: Proc. of the International Conference on Very
Large Data Bases (VLDB), 2007, pp. 321–332.

[45] X. Xiong, M.F. Mokbel, W.G. Aref, Sea-cnn: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases, in: Proc. of the
21st International Conference on Data Engineering (ICDE), IEEE, 2005, pp. 643–654.

[46] S. Yi, H. Ryu, J. Son, Y.D. Chung, View field nearest neighbor: a novel type of spatial queries, Inf. Sci. 275 (0) (2014) 68–82.
[47] J. Zhang, M. Zhu, D. Papadias, Y. Tao, D.L. Lee, Location-based spatial queries, in: Proceedings of ACM SIGMOD International Conference on

Management of Data, ACM, 2003, pp. 443–454.
[48] B. Zheng, J. Xu, W.-C. Lee, L. Lee, Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services, Int. J. Very

Large Data Bases 15 (1) (2006) 21–39.

http://refhub.elsevier.com/S0020-0255(15)00002-X/h0200
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0200
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0200
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0205
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0205
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0210
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0210
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0210
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0215
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0215
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0215
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0225
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0225
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0225
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0230
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0235
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0235
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0235
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0240
http://refhub.elsevier.com/S0020-0255(15)00002-X/h0240

	Network Voronoi Diagram on uncertain objects for nearest neighbor queries
	1 Introduction
	2 Related work
	2.1 NN search in Euclidean space and road networks
	2.2 PNN in Euclidean space
	2.3 The Voronoi diagram

	3 UNVD
	3.1 Introduction of UNVD
	3.2 Construction of UNVD
	3.2.1 Marking vertices
	3.2.2 Marking edges

	4 Processing NPNN queries
	4.1 Evaluation of probability
	4.2 Index and NPNN processing
	4.2.1 gIndex
	4.2.2 qIndex

	5 Experiment
	5.1 Experiment setup
	5.2 Experimental results
	5.2.1 UNVD construction
	5.2.2 Query performance

	6 Conclusion
	Acknowledgments
	References

