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The GPU (Graphics Processing Unit) has recently become one of the most power efficient processors in
embedded and many other environments, and has been integrated into more and more SoCs (System
on Chip). Thus modern GPUs play a very important role in power aware computing. Strongly Connected
Component (SCC) decomposition is a fundamental graph algorithm which has wide applications in model
checking, electronic design automation, social network analysis and other fields. GPUs have been shown
to have great potential in accelerating many types of computations including graph algorithms. Recent
work have demonstrated the plausibility of GPU SCC decomposition, but the implementation is ineffi-
cient due to insufficient consideration of the distinguishing GPU programming model, which leads to
poor performance on irregular and sparse graphs.

This paper presents a new GPU SCC decomposition algorithm that focuses on full utilization of the con-
temporary embedded and desktop GPU architecture. In particular, a subgraph numbering scheme is pro-
posed to facilitate the safe and efficient management of the subgraph IDs and to serve as the basis of
efficient source selection. Furthermore, we adopt a multi-source partition procedure that greatly reduces
the recursion depth and use a vertex labeling approach that can highly optimize the GPU memory access.
The evaluation results show that the proposed approach achieves up to 41� speedup over Tarjan’s algo-
rithm, one of the most efficient sequential SCC decomposition algorithms, and up to 3.8� speedup over
the previous GPU algorithms.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Decomposing a directed graph into its strongly connected com-
ponents (SCCs) is a fundamental operation in graph algorithms,
which is widely used in many different fields such as model check-
ing, computer-aided design and social network analysis. Sequential
algorithms of SCC decomposition have been well studied over the
past decades. Some well-known solutions, such as Tarjan’s [6], Kos-
araju’s [10] and Dijkstra’s [7], achieve linear time complexity. Tar-
jan’s algorithm is often considered the standard and one of the
most efficient sequential SCC decomposition algorithms as it tra-
verses each vertex and edge of the graph exactly once.

Limited by manufacturing process and power consumption, the
major processor manufacturers have run out of room with most of
their traditional approaches to boosting the hardware performance
such as clock speed increase, pipelining, branch prediction, out-of-
order execution, etc. Therefore, contemporary processors are
evolving toward multi-core and many-core architecture while
maintaining power efficiency. CPUs with four cores are now com-
mon in computers and even in mobile phones and many embedded
environments such as set-top boxes and in-car entertainment
systems. Modern GPUs push this trend to an extreme, featuring
hundreds of cores inside, and delivering a computational through-
put over 1 TFlop/s. Although born as graphics processors, GPUs are
now widely used in many types of general-purpose computations
from embedded systems to supercomputers due to the fact that
modern GPUs are designed for optimal performance per watt and
thus much more power efficient than CPUs.

In embedded systems, power consumption is often very limited,
so it is crucial that the computation in such systems be highly
power efficient. The high-performance power-aware GPU architec-
ture is well suited for such computation, and in particular, the GPU
and CPU are recently being integrated into a single chip on more
and more SoCs which makes the GPU computing widely applicable.
Researchers have been seeking to shift many tasks to the GPU and
achieved both higher performance and lower power consumption
[25,26].

In order to benefit from the new hardware, software needs to be
modified or even redesigned to incorporate multi-threaded execu-
tion. The transformation from a sequential algorithm to a parallel
one is generally not easy, as fundamental changes in the basic idea
and underlying data structures are often required. Furthermore,
parallel programming in practice is much more difficult than
sequential programming because the order in which instructions
in different threads are executed is unpredictable and thus extra
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care should be taken to consider all the possible results that a pro-
gram might exhibit. In addition, parallel programming often makes
use of locks and barriers to prevent data races, causing high syn-
chronization overhead. Hence, if poorly designed, parallel pro-
grams may not run any faster than traditional sequential programs.

Researchers have relied on some architectural features to re-
duce the synchronization overhead. The most effective approach
is to take advantage of atomic operations, which can eliminate data
races at a low cost but it requires more consideration because they
do not provide mutual exclusion for a segment of code as locks do.
Another mechanism that is gaining more and more attention is
hardware transactional memory, which allows a group of load
and store instructions to execute in an atomic way. However,
few processors have implemented this mechanism so far.

GPU programming is generally more complicated than CPU pro-
gramming. Despite their high memory and computational
throughput, it is fairly easy to underutilize the GPU horsepower
as GPU programming has many restrictions and requires much
more attention from the programmers. Unlike the CPU multi-
threaded execution which typically uses MIMD, GPUs often make
use of a hybrid execution mode of SIMD and MIMD, and the wide
SIMD execution is very sensitive to branch divergence, load imbal-
ance and irregular memory access, which can lead to a significant
performance hit. In particular, parallel graph algorithms tend to
suffer a lot from these issues due to the substantial diversity of
graph structure. Hence they are considered to be a class of prob-
lems for which it is hard to obtain significantly better performance
from GPU parallelization. Moreover, GPUs rely on massively paral-
lel execution for hiding memory latency, typically employing tens
of thousands of threads to run concurrently, which is much more
than that of CPUs. Therefore, atomic operations will cause much
higher overhead because all the operations on the same location
will be serialized. As a result, atomic operations should be mini-
mized in GPU programming.

SCC decomposition is particularly difficult to parallelize because
generally the sequential SCC decomposition algorithms with linear
time complexity all make use of the depth-first search (DFS), which
is inherently sequential [8]. Therefore, to benefit from the GPU
architecture, completely different approaches need to be applied.
Prior work has proposed several CPU parallel algorithms on SCC
decomposition. They generally rely on divide-and-conquer ap-
proaches and breadth-first search (BFS) to recursively partition
the graph into small subgraphs, both of which are relatively suit-
able for parallelization. Due to the architectural difference between
the GPU and CPU, adapting the existed parallel algorithms for GPUs
is challenging. To the best of our knowledge, there is only one pub-
lished work on GPU SCC decomposition [9]. Barnat et al. [9] select
three CPU algorithms and introduced the modified GPU versions.
However, their implementations are more like a direct transforma-
tion from the CPU to GPU, which fails to consider many of the dis-
tinguishing features of the GPU such as SIMD execution within a
warp and global memory overhead, and thus resulting in signifi-
cantly underutilization of the GPU capability.

In this paper we present a new GPU algorithm on SCC decompo-
sition which is highly architecture-aware. It uses an iterative vari-
ant of the divide-and-conquer approach to partition the graph
iteratively. In particular, we use an efficient parallel BFS operation
which has linear work complexity to compute the reachability clo-
sure. Furthermore, we introduce a multi-source partition proce-
dure that can greatly reduce the recursion depth, which is crucial
to good performance of a divide-and-conquer approach. We also
design a subgraph numbering scheme, which helps manage the
IDs of every subgraph in a safe and efficient way without using
atomic operations, and serves as the basis of efficient source selec-
tion. In addition, we propose a vertex labeling approach that cou-
ples the reachability test, subgraph ID update and SCC output
into a single process and further reduces the GPU memory access
overhead. The whole implementation is highly optimized for GPUs
and aims to fully utilize the GPU horsepower. The evaluation re-
sults show that the proposed approach achieves up to 41� speed-
up over Tarjan’s algorithm, one of the most efficient sequential SCC
decomposition algorithms, and up to 3.8� speedup over previous
GPU algorithms.

The remainder of the paper is organized as follows. We give a
brief overview of the basic definitions, modern GPU architecture
and prior work on parallel SCC decomposition in Section 2. We
present our design and implementation of the GPU SCC decompo-
sition algorithm in Section 3. Experimental results are discussed in
Section 4, and finally, we conclude this paper in Section 5.
2. Background and related work

Parallel SCC decomposition is a challenging problem, and doing
it on the GPU is even trickier. Yet, some related research exists that
acts as the basis of our work. In this section, we first introduce
some basic graph definitions and a few concepts in GPU program-
ming. Then we review some previous parallel SCC decomposition
algorithms on both the CPU and GPU. In particular, we survey
the previous work on GPU BFS, one of the most important basic
operations in parallel SCC decomposition algorithms.
2.1. Basic definitions

A directed graph G is denoted as G = (V, E), where V is a set of
vertices, and E # V � V is a set of directed edges. A transpose of a
directed graph is the same graph with the edges reversed. If there
is a sequence of directed edges (u, x1), (x1, x2), . . . , (xk, v) from ver-
tex u to vertex v, we say that v is reachable (or forward-reachable)
from u, and that u is backward-reachable from v. We consider a
vertex to be reachable from itself. A set of vertices is strongly con-
nected if for any two vertices u and v in the set, v is reachable from
u. A strongly connected component (SCC) is a maximal strongly con-
nected set. In addition, an SCC is trivial if it is made of a single ver-
tex c, and (c, c) R E, and is non-trivial otherwise.

We also define two procedures, FWD and BWD, which compute
the forward closure and backward closure, respectively. That is, for
P # V, FWD (P, V) computes the vertices in V that are reachable
from any vertex in P, and similarly BWD (P, V) computes the verti-
ces in V that are backward-reachable from any vertex in P.
2.2. Modern GPU architecture

In order to deliver high computational throughput, modern
GPUs generally adopt two types of parallel execution mode. Within
a warp, programs are executed in an SIMD mode. That is, each
thread executes the same instructions synchronously. Therefore,
branch divergence within a warp will result in serialization of the
different execution paths, thus causing a slowdown. Among warps,
however, programs are executed in a MIMD mode, and threads are
free to diverge.

Threads are grouped into blocks. A block is a group of threads
that will be located on the same multiprocessor and threads in a
block can communicate through a local shared memory. Threads
within a block can be explicitly synchronized and are often used
for fine-grained parallelization. On the contrary, different blocks
are used for coarse-grained parallelization. Global memory access
on GPUs can be very expensive if the access made by a warp exhib-
its low spatial locality. Multiple requests will be serialized if they
belong to different cache lines. Hence, special care should be taken
to ensure the appropriate memory access pattern.
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2.3. Parallel CPU algorithms of SCC decomposition

To the best of our knowledge, the first parallel SCC decomposi-
tion algorithm was proposed by Fleischer et al. [1], and was im-
proved later in [3]. Their algorithm is based on two simple lemmas:

Lemma 1. Let p 2 V, F = FWD (p, V), then BWD (p, F) is an SCC
containing p.
Lemma 2. Let p 2 V, then any SCC is contained in either FWD (p, V) or
V – FWD (p, V).

The proof can be found in [1]. These two lemmas are the basis of
nearly all the parallel SCC decomposition algorithms. Note that in
Lemma 2, vertex p can actually be extended to a set P # V. When
dealing with sparse graphs or highly skewed graphs a multi-source
forward closure can partition the graph much more evenly, and
thus reduce the recursion depth. This is also the basis of our Parti-
tion procedure. With this in mind, the algorithm can be easily
implemented using a divide-and-conquer approach, which is listed
as Algorithm 1. Divide-and-conquer approach is relatively easy to
parallelize. As long as the problem is divided into multiple sub-
problems that are independent of each other, the sub-problems
can be solved in parallel. Fleischer et al. also prove the expected se-
rial time complexity to be O(mlogn). Although it is slower than the
efficient linear time sequential algorithms, it can outperform the
former due to parallel execution. Our GPU algorithm is based on
an iterative variant of Algorithm 1, and some GPU-specific optimi-
zations are applied.

Algorithm 1 (Basic divide-and-conquer SCC decomposition
a
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Fig. 1. Example of CSR representation.
lgorithm).

procedure decompose_scc(V)
if V is empty then

return
p random vertex in V
F FWD(p, V)
SCC BWD(p, F)
output SCC
decompose_scc(F – SCC)
decompose_scc(V – F)

Several other parallel algorithms aim to improve the perfor-
mance of this algorithm for some kinds of graphs. Orzan [2]
propose a novel coloring algorithm, which gives each vertex a un-
ique color. Whenever the color is updated, it is propagated to ver-
tices with a smaller color. When the colors stabilize, the graph is
partitioned into independent subgraphs by each color. Then a
backward closure is computed on each vertex keeping its original
color, and the result is an SCC. After the SCCs are output, the
algorithm is applied to each subgraph recursively. This algorithm
works well for graphs with many small SCCs. Barnat et al. [4,5]
introduce OBFR-MP, which is reported to perform very well for
graphs containing many trivial SCCs. Warren [23] presents a
MultiPivot algorithm and proved it uses O(log2n) reachability que-
ries. However, most of these algorithms are not well suited for
GPUs and more importantly, their performance are not
necessarily better than the basic divide-and-conquer algorithm
in general.

2.4. GPU algorithms of SCC decomposition

Barnat et al. [9] select three CPU algorithms and introduce mod-
ified GPU versions. To our knowledge, this is the only published
work that attempted to do SCC decomposition on GPUs. They
choose the basic divide-and-conquer approach, the coloring ap-
proach and the OBFR-MP approach as the basis and they try to
make these three suitable for the GPU environments. However,
their implementations are generally not efficient. They use a direct
mapping between vertices and threads, which makes most of the
threads idle during every iteration as only a small portion of the
vertices are actually processed. Some hardware resources are
wasted and this poses an overhead to the task scheduler, and for
the most important reachability query procedure, its complexity be-
comes O(n2 + m) instead of O(n + m). Furthermore, assigning one
thread to each vertex totally ignores the SIMD processing mode
within a warp. The degree of each vertex can be highly irregular,
and a thread needs to process each neighbor sequentially. As a con-
sequence, threads within a warp will diverge severely, which re-
sults in significant GPU underutilization. If this happens, the CPU
implementation will easily outperform the GPU implementation.

2.5. BFS on GPUs

As a basic and one of the most important operations in the SCC
decomposition algorithm, the efficiency of BFS can significantly af-
fect the overall performance. In the past few years, BFS algorithms
on the GPU have been studied in several works. Harish et al. [11]
pioneer the acceleration of BFS on the GPU. However, they use a di-
rect mapping between vertices and threads in a similar way as
mentioned in the above section. It results in quadratic work com-
plexity and significant GPU underutilization. Hong et al. [12] use a
different mapping strategy. Warps are mapped to vertices rather
than threads. Although it still has quadratic work complexity, the
warp divergence is largely reduced, and thus it achieves a consid-
erable performance improvement. Luo et al. [13] use a hierarchical
technique to implement a queue structure on the GPU, achieving
linear work complexity. However, they still use a direct mapping
between vertices and threads. Merrill et al. [14] also use a queue
structure to perform linear work, and they use a hybrid strategy
of fine-grained mapping and warp mapping, delivering signifi-
cantly higher performance than prior work.
3. SCC decomposition on GPU

3.1. Data representation

Due to the massively parallel processing nature of GPUs, arrays
are generally the only kind of efficient data structure we can use
when programming on them. Similar to the previous work, we
use compressed sparse row (CSR) format to store the graph in
GPU main memory. CSR representation contains two arrays,
namely column-indices C and row-offsets R as illustrated in
Fig. 1. Array C is a concatenation of the adjacency lists of all verti-
ces, whereas each element in array R acts as an index to array C,
which indicates the starting point of the adjacency list of that ele-
ment. CSR representation suits the GPU memory model well be-
cause multiple threads can access successive vertices or direct
successors of a vertex in parallel in a cache-friendly way and thus
it achieves the highest memory throughput.
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In addition to the graph itself, two frontier queues are also used
to maintain the vertices when processing a reachability query. A
vertex label array is adopted to indicate which subgraph each ver-
tex belongs to as well as which SCC each vertex belongs to. A ran-
dom number array is applied to store random numbers used in the
Partition procedure, and we also have some other auxiliary arrays.

3.2. Algorithm overview

Our GPU SCC decomposition algorithm is based on Algorithm 1.
However, we need to apply an iterative variant instead as GPUs are
not suitable for recursive function calls. The modified version is
illustrated in Algorithm 2.

Algorithm 2 (Main algorithm).

While (TRUE)
partition the graph into more subgraphs
empty source
for each subgraph i in parallel

source.Enqueue(random vertex in subgraph i)
if source is empty then

return
for each v in source in parallel

ForwardClosure(v)
update vertex label
BackwardClosure(v)
mark SCCs

On each iteration, a single source vertex is chosen from each
subgraph, and then the forward reachability queries are carried
out in parallel. During the query process, reachable vertices form
new subgraphs and the corresponding label entries are updated.
We then perform the backward reachability queries for these ver-
tices, and the SCCs containing these vertices are identified. Then
the identified SCCs are removed and the remaining vertices pro-
ceed to the next iteration.
3.3. Reachability query

As we can see from Algorithm 2, reachability query is one of the
most important basic operations in the SCC decomposition algo-
rithm. It will be used in several steps of the algorithm. Therefore,
the efficiency of the reachability query is crucial to achieve the
good performance of the whole process. Furthermore, to fully ex-
ploit the GPU horsepower we need to do a reachability query with-
in a subgraph and we need to process multiple reachability queries
simultaneously.

We traverse the graph in breath-first order to detect reachable
vertices. Due to the independence of the vertices at each BFS
level, they can be processed in parallel. An efficient BFS operation
optimized for GPUs has been shown to have excellent
performance which has the work complexity of O(m + n) [14].
However, like many algorithms, there is a tradeoff between time
and space. The linear complexity BFS requires additional O(m)
global storage for maintaining the input and output queues. Luck-
ily, modern GPUs typically have large video memory on the
graphics cards so this should not be a problem. Our algorithm
computes the forward or backward reachability closure during a
linear complexity BFS process, and each closure forms a new
subgraph.

As for the need to do a reachability query within a subgraph,
there are two options to achieve this. For the first option, we can
remove edges between the subgraphs, and then the reachability
queries can be performed without any knowledge of subgraphs.
For the second approach, we can use an s_label array of the same
size as the vertex number n, and record the subgraph each vertex
belongs to. The first approach is clearer as it does not require addi-
tional memory and does not hamper the performance of the BFS
procedure. However, edge removal is not well suited to be per-
formed in parallel on GPUs, because serial searches will be needed
to locate each edge to be removed. We therefore opt for the latter.
Furthermore, as shown in Section 3.7, we can combine the sub-
graph lookup and reachability detection arrays into one array to
save memory and processing time.

The forward reachability query algorithm is listed as Algorithm
3. The main structure of the algorithm is similar to the traditional
CPU BFS traversal [10] with the queue elements processed in par-
allel. However, the adjacent list expansion step is highly optimized
for GPUs. When dealing with adjacent lists of different sizes, a hy-
brid strategy of coarse-grained expansion and fine-grained expan-
sion is used to fully utilize the GPU memory and instruction
throughput. For backward reachability query, we just do a forward
reachability query on the transposed graph.

Algorithm 3 (Forward reachability query).

procedure ExpandAdjlist(v, list, n, outQueue, grain)
index threadID
while index < n

if grain = coarse_grain
u list[index]

else
u the vertex ID at address list[index]

if u not reached yet and s_label[u] = s_label[v]
mark u as reachable
outQueue.Enqueue(u)

index index + BLOCK_SIZE
procedure ForwardClosure(inQueue, outQueue, sources)
inQueue.Enqueue(sources)
while inQueue not empty

empty outQueue
for each v in inQueue in parallel

//For large adjacent lists, do coarse-grained expansion
for each v in the same block having the adjacent list size

>= BLOCK_SIZE
list adjacent list of v
ExpandAdjlist(list, list.size, outQueue, coarse_grain)
adjacent list size 0

//For small adjacent lists, use prefix sum to scatter the
addresses and then do fine-grained expansion

scatter the addresses of each remaining v’s adjlist entries
into an idx_list in each block’s shared memory

ExpandAdjlist(v, idx_list, idx_list.size, outQueue, fine_grain)
inQueue outQueue
3.4. Graph partitioning

For divide-and-conquer algorithms, one of the key factors to af-
fect the overall performance is the quality of the divide step, i.e.
each divide step should divide the current problem into two or
more sub-problems of similar sizes. That way, the depth of the
recursive tree will be O(logn) and the whole problem can be solved
in O(nlogn) time complexity. However, if the sizes of the sub-prob-
lems are highly skewed, the recursion depth may degrade to O(n)
and the time complexity may become O(n2).

When we choose a source vertex v in a subgraph, the forward
reachability closure divides this subgraph into two smaller
subgraphs, namely vertices reachable from v and vertices not
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reachable from v. When the graph is sparse or the degree distribu-
tion is highly skewed, the size of the forward closure may be very
small and this can result in a poor partition. For example, a graph
with no edges will have recursion depth n. Our GPU kernel is an
iterative variant of the divide-and-conquer approach, which fin-
ishes all the work from one level of the recursive tree at a time.
That means the times needed to launch the GPU kernel is directly
affected by recursion depth. Moreover, the GPU kernel launches
come with a cost higher than normal function calls, so the number
of kernel launches should be minimized. Fig. 2 plots the recursion
depth in log-scale for graphs of different average degree, using ran-
dom graphs generated by GTgraph [14] with 0.1 million vertices
and different number of edges. For the blue curve, the graphs are
decomposed using the single-source approach we just presented,
which reveals that the recursion depth will increase dramatically
as the average degree decreases.

Barnat et al. [9] use a TRIMMING procedure to solve this prob-
lem, which iteratively removes vertices that have no immediate
predecessors or successors because these vertices cannot be part
of any non-trivial SCCs. Hence they can be safely removed from
the graph as trivial SCCs. But this is only effective for certain kinds
of graphs, and the TRIMMING procedure is an expensive operation
itself. We have, therefore, opted for a different solution.

We add a procedure called Partition before each iteration. It
works by randomly choosing a certain number of vertices from
the whole graph, and do a multi-source forward reachability query.
Each source vertex still does the query within its underlying sub-
graph. After this procedure, a subgraph will be divided into two
subgraphs: reachable from those sources and not reachable from
them. As the computed forward closures are the union of multiple
single-source forward closures, we can no longer do backward
reachability queries and determine any SCCs. However, it is guar-
anteed that all SCCs are constrained in the subgraphs. In the best
situation, a graph containing k subgraphs will be partitioned into
2k smaller subgraphs, so we can proceed to do the following single
source reachability queries.

The problem now lies in how to choose these multiple source
vertices. The Partition procedure has best quality when half of
the remaining vertices are reachable in each subgraph from the
source vertices. However, as we do not know the size of the reach-
ability closures a priori, it is difficult for us to efficiently choose the
appropriate source vertices. If it has noticeable overhead, the per-
formance gain may be easily outweighed by the penalty for care-
fully choosing the source vertices. Therefore, we instead use
uniform random numbers for vertex permutation and the average
degree of the graph is adopted as a heuristic to determine the num-
ber of vertices to be chosen.
Fig. 2. Recursion depth for different average degree. Random graphs with 0.1 M
vertices.
Parallel random number generation on GPUs will be discussed
in Section 3.5. Once we have a random permutation of all the ver-
tices, we choose the first k vertices and remove the SCCs which
have already been identified. The remaining vertices are then put
into the input queue to initiate the multi-source reachability
query. Provided that the random numbers are uniformly distrib-
uted in general and the set of generated random numbers on each
iteration do not exhibit any correlations, the partition appears to
be very effective and has little overhead. The value of k is com-
puted from the average degree d of the graph, which is defined
as the ratio of edge number versus vertex number. By default, let
k = min (n/10, n/d2). According to our experience it performs well
in most cases. In addition, we can also adjust the value of k as a
command-line argument. The red curve in Fig. 2 shows that our
Partition procedure can greatly reduce the recursion depth. Fig. 3
presents recursion depth for different value of k using random
graphs with 0.1 million vertices and 0.1 million edges. We can
see that when the value of k reaches a certain threshold, increasing
it more won’t result in much benefit.
3.5. Source selection

Both the partition and the single-source reachability query
steps require random source vertex selection. The difference is that
for the former, multiple vertices from the whole graph are selected,
whereas for the latter, we need to select a single vertex in each
subgraph. The requirements for the statistical quality of the ran-
dom numbers are different, too. As mentioned in the previous sec-
tion, the Partition procedure needs generally uniformly distributed
random numbers and independent sets of them between iterations
to increase the partition quality, because if the numbers have cer-
tain obvious patterns, we might end up doing reachability queries
on the same sets of vertices and fail to divide the graph into more
subgraphs. On the contrary, single-source reachability query pro-
cedure is not very sensitive to the vertices selected in each sub-
graph, as after each backward reachability query, SCCs containing
those vertices will be removed and new vertices will be selected
on the next iteration. For graphs that have certain patterns be-
tween vertex IDs and edge distribution, performance may suffer
from poor randomness of the selected vertices. In that case, we
can randomly permute the vertex IDs beforehand on the CPU as
an offline preprocessing step.

Research on random number generators suitable for GPUs is
still in its infancy. Due to the requirement of generating a massive
amount of random numbers simultaneously and the limits of the
GPU programming model, many high-quality algorithms on CPUs
are not applicable [21,22]. Some simple algorithms that are highly
Fig. 3. Recursion depth for different source number. Random graphs with 0.1 M
vertices and 0.1 M edges.



Fig. 4. Example of the subgraph numbering scheme.
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efficient but do not have very good statistical properties however,
are well suited for GPUs. In our case, the Partition procedure only
needs basic randomness. Whether or not the generator can pass
certain tests is not an issue. Therefore, we try to improve the per-
formance in random number generation.

We use the well-known linear congruential generator, which
has the simplest form and best performance:

Xnþ1 ¼ axn þ cðmodmÞ: ð1Þ

We use a = 1664525 and c = 1013904223, which is suggested in
[24], and let m be the number of vertices of the graph. In addition,
we use an array of the same size as the vertex number to record the
last set of random numbers. At the initialization stage, the array is
filled with CPU generated random numbers as x0. On each iteration,
every thread reads in the last random number xn and then com-
putes xn+1 using Eq. (1), and finally it writes back the value xn+1

to seed the next iteration. Furthermore, if the vertex number n is
near to some power of two, we can avoid the expensive modulo
operations and replace it with efficient bitwise operations.

In the case of selecting a single vertex in each subgraph, we em-
ploy a different approach. The basic idea is the same as [9]. We
allocate a single location for each subgraph, and have each thread
write the vertex ID to the location corresponding to its subgraph
ID. According to the GPU programming model, when multiple
threads in a warp write to the same location using a non-atomic
instruction, only one thread actually performs the write [16]. Con-
sequently, the threads writing to the same location will vie for a
winner without causing too much memory overhead, and at the
same time we also gain some randomness.

The locations to do these writes are the main challenge here,
because we do not know how much memory to allocate and
how to map subgraph IDs into the array beforehand. Barnat
et al. [9] encounter the same problem, and they introduce two
solutions. For the first solution, one extra space is allocated for
every vertex. After a source vertex partition its underlying sub-
graph into some subgraphs by reachability queries, each subgraph
uses that source vertex’s extra space as the location to do the
election writes. However, the subgraphs are serialized for the
usage of that location, resulting in a performance penalty and
many unused spaces. For the second solution, an array of a cer-
tain size is allocated, and each subgraph is given a unique sub-
graph ID according to a complete ternary tree. The subgraph
IDs are used as indices to the array. This solution also suffers
from many unused spaces in the array, and what’s worse, the
subgraph IDs would soon grow beyond the size of the array,
and thus requiring a renumbering process.

As we can see, to solve this problem more efficiently, we need a
new way to manage the subgraph IDs. We introduce a subgraph
numbering scheme in Section 3.6. With this approach, we can solve
this problem in a highly efficient and clear way.

3.6. Subgraph numbering scheme

As the algorithm proceeds, the number of subgraphs will in-
crease in an irregular way that cannot be predicted in advance,
and the parallel execution of thousands of threads makes it worse.
As a consequence, giving every subgraph an appropriate ID is a
challenge. Generally, for the single-source selection and reachabil-
ity query to work efficiently, the subgraph numbering needs to
meet the following two requirements:

1. Subgraph numbering should be as compact as possible. In other
words, from a global point of view, subgraph IDs should
increase progressively from zero, and one at a time without
skipping any value. Because of this, we do not need to worry
about the subgraph IDs growing beyond the size of the array,
and the overhead of re-initializing the array before each itera-
tion is minimized. Unfortunately, when the Partition procedure
is added, totally continuous subgraph IDs is just impossible,
because occasionally a new subgraph would completely overlap
the old one.

2. Each subgraph should know the new subgraph ID assigned to it
when it is partitioned into two smaller subgraphs before the
reachability query starts. This makes all subgraphs agree on
the global numbering scheme, and each vertex can easily
update its label when it is visited during the traversal.

Due to the massively parallel execution of GPUs, we need to be
extremely careful when dealing with shared variables. Using atom-
ic operations to increase the subgraph IDs seems like a safe and
reasonable way. However, atomic operations are expensive and
moreover, all operations on the same location are serialized. In
general, they do not scale to thousands of threads and their use
should be minimized. As we can see, with enough care, the use
of atomic operations can be avoided altogether.

Our subgraph ID numbering scheme is depicted in Fig. 4. We
maintain a variable max_subgrah to denote the maximum number
of subgraphs the whole graph have so far and it is initialized to 1.
Note that this value may be larger than the actual number of sub-
graphs which currently exists, because some subgraphs may have
disappeared due to overlapping or SCC removal. We use a source
election array for single-source selection, an entry of which repre-
sents a subgraph, and it is indexed by subgraph IDs. Before each
iteration, the source election array is initialized to �1 for the first
max_subgrah elements. Each vertex writes its vertex ID to the loca-
tion corresponding to its underlying subgraph ID. Then we do a
parallel prefix sum [22,27] on these max_subgrah elements to com-
pute the index of each element that is not �1, and scatter them to
the input queue for reachability query. The total sum N of the pre-
fix sum operation is the number of new subgraphs that will be
formed. So on the next iteration the value of max_subgraph will
be updated to max_subgraph + N.

Now we need to assign a new unique subgraph ID to each sub-
graph, which will be used when the new subgraph is formed inside
each subgraph. A subgraphID_update array is used to record this
information. With the knowledge of the upper bound of the total
number of subgraphs by the end of this iteration, the subgraph
ID assignment is actually straightforward. We just employ N
threads to process the elements in the input queue. Each thread
reads in one vertex, looks up its corresponding subgraphID, and
stores the value max_subgrah + threadID to the location subgrap-
hID_update[subgraphID]. The single-source selection and subgraph
numbering algorithm is listed as Algorithm 4.
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The subgraph numbering in the Partition step is similar to the
single-source selection step. The difference is that we only have
every vertex which is randomly chosen write its vertex ID to the
source election array rather than having all remaining vertices
write their vertex IDs to the corresponding location.

Algorithm 4 (Single-source selection and subgraph numbering
algorithm).

Function: PrefixSum(ranki) performs a parallel prefix sum
where each thread ti is returned the sum of rank0 to ranki

and the total sum
procedure SelSrc(s_label, source_election, subgraphID_update,

inQueue, max_subgraph)
for i = 0 to max_subgraph - 1 in parallel

source_election[i] -1
foreach v in the remaining graph vertices in parallel

subgraphID s_label[v]
source_election[subgraphID] v

for i = 0 to max_subgraph - 1 in parallel
rank source_election[i] = -1 ? 0 : 1
(offset, N)  PrefixSum(rank)
if source_election[i] != -1 then

inQueue[offset]  source_election[i]
for i = 0 to N - 1 in parallel

subgraphID s_label [ inQueue[i] ]
subgraphID_update[subgraphID] max_subgraph + threadID

max_subgraph max_subgraph + N
3.7. Vertex labeling

Reachability status update, subgraph attachment update and
SCC output all need vertex labeling. Consequently, the efficiency
of the labeling process has an impact on the overall performance.
We show a vertex labeling scheme highly optimized for GPUs.

3.7.1. Coupling of reachability label and subgraph label
A straightforward implementation would use two arrays r_label

and s_label to maintain reachability status and subgraph attach-
ment, respectively. During a reachability query process, reachable
vertices are marked in r_label. When the query finishes, s_label is
updated according to new assigned subgraph IDs and information
in r_label. Then the r_label needs to be re-initialized for the next
procedure. This however has a relatively high cost because after
each reachability query the s_label update and r_label re-initializa-
tion may cause up to 2n memory writes and 2n memory reads, and
additional array takes up more memory, too. We use an approach
coupling r_label and s_label into one array, and thus eliminate the
additional memory access.

To achieve this, we need to modify the subgraphID_update array
to hold the subgraph ID increments instead of new subgraph IDs. In
this way we can update the subgraph ID of each vertex on-the-fly
when traversing the graph and still be able to obtain the value of
the subgraph ID before update. To be exact, we apply the following
operation to set up subgraphID_update array:

subgraphID update½max subgrahþ threadID�
¼ max subgrahþ threadID� subgraphID:
3.7.2. SCC output
SCCs are identified when a backward reachability query is fin-

ished. Because every subgraph has a unique subgraph ID starting
from 0, the SCC labeling is rather easy. We just negate the corre-
sponding subgraph ID when a vertex is reached and then it can
be used as SCC IDs.
The whole vertex labeling algorithm is illustrated in Algorithm
5. Note that both reachability test and subgraph update are per-
formed, and we only use the s_label array, which is initialized to
0. Furthermore, no re-initialization is needed during the whole
process.

Algorithm 5 (Vertex labeling).

procedure LabelVertex(vertexID, predecessorID, s_label,
subgraphID_update)

subgraphID s_label[vertexID]
pred_subgraphID s_label[predecessorID]
if forward traversal then

subgraphID_increment subgraphID_update
[pred_subgraphID]
if subgraphID = pred_subgraphID - subgraphID_increment
then

s_label[vertexID] pred_subgraphID
Enqueue vertexID for subsequent traversal

else
vertexID is already processed or not reachable

else
if subgraphID = -1 ⁄ pred_subgraphID then

s_label[vertexID] pred_subgraphID
Enqueue vertexID for subsequent traversal

else
vertexID is already processed or not reachable

4. Experimental results

We compare the performance of the proposed algorithm with
Tarjan’s algorithm and the GPU SCC decomposition algorithms in
previous work. Tarjan’s algorithm is one of the most efficient
sequential SCC decomposition algorithms. It uses a stack and
DFS to traverse all the vertices and edges exactly once, and thus
it has a time complexity of O(m + n). We implement our own ver-
sion of Tarjan’s algorithm, and make use of five arrays instead of
other fancy data structures to record states during the process in
order to trade space for time, resulting in an extremely efficient
implementation, which outperforms the previous implementation
[9] by about two times. Barnat et al. [9] introduces several differ-
ent SCC algorithms. As we are unable to get the source code of
their implementation, we extract the best results reported in their
paper.

We use several kinds of graphs for input. Random, R-MAT [18]
and SSCA#2 [19] are synthetic graphs generated using GTgraph
[15]. The rest are real-world graphs from the University of Florida
Sparse Matrix Collection [20]. The details of the graphs are listed in
Table 1. Our GPU algorithm are implemented using CUDA 4.2 [17],
and all experiments are run on a host machine with 4 GB memory,
an Intel 4-core 3.4 GHz Core i7 2600 k CPU and an Nvidia Geforce
GTX 480 GPU. Note the GPU is the same with that used by Barnat
et al. [9]. Because these algorithms are run entirely on the GPU,
other hardware such as the CPU and system memory have negligi-
ble impact on the run time. Therefore, the results are comparable.

In addition, we have compared the results of our GPU algorithm
with that produced by the CPU algorithm to verify that all the SCCs
are correctly decomposed.

The results are presented in Table 2, Fig. 5 and Fig. 6. As we
can see, for synthetic graphs, our algorithm performs very well
and achieves over 10� speedup for most of the graphs compared
to Tarjan’s algorithm. In particular, we achieve 41� speedup for
random graphs because the edges are distributed uniformly so
the GPU algorithm can effectively exploit the parallelism. R-
MAT graphs have highly irregular degree distribution with nearly



Fig. 5. Run time for different algorithms on synthetic graphs.

Table 1
Selected graphs for experiments.

Name Description Vertices (106) Edges (106) SCCs

random1 Uniformly random graph 1.0 12.0 16
random2 Uniformly random graph 2.0 24.0 31
random3 Uniformly random graph 3.0 36.0 32
rmat1 R-MAT (A = 0.45, B = 0.15, C = 0.15) 1.0 12.0 0.48M
rmat2 R-MAT (A = 0.45, B = 0.15, C = 0.15) 2.0 24.0 0.97M
rmat3 R-MAT (A = 0.45, B = 0.15, C = 0.15) 3.0 36.0 0.97M
ssca1 SSCA#2 1.0 30.0 576
ssca2 SSCA#2 2.0 60.0 1.1K
ssca3 SSCA#2 3.0 90.0 1.7K
amazon-2008 Book similarity network, Amazon 0.7 5.2 91K
amazon0505 Amazon product co-purchasing network from May 5 2003 0.4 3.4 14K
language Finite-state machine for natural language processing 0.4 1.2 2.5K
flickr 2005 crawl of flickr.com 0.8 9.8 0.28M
FullChip Circuit simulation 3.0 26.6 35
pre2 AT&T, harmonic balance method, large example 0.7 6.0 391

Table 2
Run time in milliseconds for different algorithms running on different graphs.

Name Our algorithm Recursion Depth Tarjan’s algorithm (speedup) Barnat’s algorithms (speedup)

random1 13 9 432 (33�) 36 (2.8�)
random2 24 17 980 (41�) 73 (3.0�)
random3 38 23 1560 (41�) 111 (2.9�)
rmat1 35 560 295 (8.4�) 36 (1.0�)
rmat2 66 1020 647 (9.8�) 74 (1.1�)
rmat3 102 1440 975 (9.6�) 134 (1.3�)
ssca1 24 86 261 (11�) 72 (3.0�)
ssca2 46 150 583 (13�) 155 (3.4�)
ssca3 74 215 890 (12�) 284 (3.8�)
amazon-2008 31 450 103 (3.3�)
amazon0505 14 190 72 (5.1�)
language 5 75 32 (6.4�)
flickr 54 540 110 (2.0�)
FullChip 25 35 280 (11�)
pre2 7 60 57 (8.1�)
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half of the vertices having zero degree and many vertices having a
degree of several hundred. Thus there are a lot of trivial SCCs in
such graphs, and it is difficult for the Partition procedure to par-
tition the graph evenly. Therefore, the recursion depth tends to
be very high, resulting in a performance penalty, and we achieve
up to 9.8� speedup. SSCA#2 graphs typically contain many non-
trivial SCCs and little trivial SCCs so the total number of SCCs is
small, but they have a large number of edges which benefits
the CPU more because adjacency lists exhibit spatial locality
and CPUs have a more sophisticated cache system. Nonetheless,
we achieve up to 13� speedup. When compared to previous
GPU algorithms, our algorithm outperforms them by about three
times except for R-MAT graphs. They apply a TRIMMING proce-
dure to improve performance, which removes the leading and ter-
minal vertices iteratively as trivial SCCs. R-MAT graphs can
greatly benefit from this technique because nearly half of the ver-
tices are trivial SCCs and are all removed on a single iteration of
the TRIMMING procedure.



Fig. 6. Run time for different algorithms on real-world graphs.

G. Li et al. / Journal of Systems Architecture 60 (2014) 1–10 9
For real-world graphs, degree distribution is typically much
more irregular than synthetic graphs. To test the adaptability of
our algorithm, we choose six graphs from different fields. In gen-
eral, the vertex degree of the selected graphs can range from zero
to hundreds of thousands, resulting in poor partition of the
graphs and significant load imbalance on GPUs. From the results
we can see that, although not as impressive as on synthetic
graphs, our algorithm can handle different graph structure in
the real world and achieves 2.0� to 11� speedup over Tarjan’s
algorithm.

The experimental results also reveal that the performance of
our GPU algorithm is mainly affected by the recursion depth
whereas Tarjan’s algorithm is mainly affected by the number of
vertices and edges. Thus if the quality of the partition step is fur-
ther improved, for example by carefully selecting the source verti-
ces or adjusting the source number, the proposed algorithm has
potential to obtain even higher performance.
5. Conclusion

Utilizing the high-performance low-power GPU architecture to
accelerate traditional applications has become an important
approach to power aware computing. We have demonstrated an
efficient GPU algorithm for SCC decomposition. Through a divide-
and-conquer approach and massively parallel execution, our GPU
algorithm outperforms the optimal sequential algorithm signifi-
cantly for all the graphs we use in our experiments.

In order to fully exploit the parallelism of the GPU architec-
ture, our algorithm adopts several techniques that are specifi-
cally designed for GPUs. In particular, we use an efficient
parallel BFS operation which has linear work complexity to com-
pute the reachability closure. And we introduce a partition pro-
cedure that can greatly reduce the recursion depth, which is the
key to good performance of a divide-and-conquer approach. We
have also designed a subgraph numbering scheme, which helps
manage the IDs of every subgraph in a safe and efficient way.
This numbering approach is critical to source selection process
as it determines the locations needed for vertex election. In
addition, we propose a vertex labeling approach that couples
the reachability test, subgraph ID update and SCC output into
a single process and eliminates the use of additional arrays
and operations, resulting in further improvement of
performance.
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