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Recent research has focused on Continuous K Nearest Neighbor (CKNN) queries in road

networks, where the queries and the data objects are moving. Most existing approaches

assume the fixed velocity of moving objects. The release of fixed moving velocity makes

the query process slowly due to the significant repetitive query cost. In this paper, we study

Interval Model (DIM) is designed to calculate the minimal and maximal road network

distances between moving objects and query point. Furthermore, we propose a novel

Possibility-based Vague KNN (PVKNN) algorithm to process the query efficiently, which

determines the CKNN query results with possibility within each division time subinterval

of given time interval by applying the vague set theory. In the PVKNN algorithm, the query

efficiency can be improved significantly with the pruning, distilling and possibility-ranking

phases. With these phases, the objects candidates are scaled down and the given time

interval is divided into subintervals to reduce the repetitive query cost. In addition, an

index structure TPRuv-Tree is designed to efficiently index moving objects with uncertain

velocity in road network by involving edge connection and moving objects information.

Experiments with simulation and comparison show that significant improvement in the

performance of efficiency can be achieved with our proposed algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing complicated traffic problems in road
networks, which involve large spatio-temporal data sets,
recent research has focused on processing queries in such
environment. One of the important types of queries in
spatio-temporal database is the Continuous K Nearest
Neighbor (CKNN) queries [1–3]. A CKNN query is defined
as retrieving the K nearest neighbors (KNNs) to a query
point within a user-given time interval [4–8]. In road
network scenarios, for example, a CKNN query could be
finding two nearest police cars while one person is driving
within next 1–5 min, which indicates that both the query
ll rights reserved.

an).
object and the data objects are moving [9,10], different from
the static query object or static data objects [11,12]. As the
query and data objects are moving, the updating for the
locations of moving objects frequently, especially in a larger
user-given time interval, could make the query process
slowly because of the significant repetitive query cost.

In order to improve the efficiency of CKNN query process
for the moving objects, some previous work in this field
assumed that the velocity of each moving object is fixed,
since the motion of each object can be precisely determined
under this assumption [13–15]. However, in road networks
of real world, the objects move arbitrarily. The release of the
fixed velocity makes it difficult to determine precisely the
distance between moving objects and query object, which
leads to a more complicated CKNN query process.

We take an example to illustrate the CKNN queries
over moving objects with uncertain velocity in a road
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Fig. 1. Example of a CKNN query.
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network, as shown in Fig. 1. A CKNN query is issued to
find 1NN of query object q within a time interval [0, 1.5].

Assume that the nearer moving objects to the query
point q are o1 and o2 at the start time, which can be
determined by the mobile information system [16,17].
The start location of object o1 is at the distance 5 from
node n1, with uncertain velocity within [1,2], and the
moving direction of o1 is toward node n1. While the start
location of object o2 is at the distance 2 from node n1,
with uncertain velocity within [2,3], and the moving
direction of o2 is toward node n2. The velocity of query
point q is assumed within [1,2], and the moving direction
of q is toward node n1. The direction and velocity of the
object is updated when the object reaches the road
intersection. The moving distance of the objects can be
calculated according to the moving direction and velocity.
For example, at time 1, the minimal distance of the query
point q can move is 1 (dq¼1), and the maximal distance of
q can move is 2 (Dq¼2). The minimal distance of the
moving object o1 can move is 1 (do1

¼ 1), and the maximal
distance of o1 can move is 2 (Do1

¼ 2). The minimal
distance of the moving object o2 can move is 2 (do2

¼ 2),
and the maximal distance of o2 can move is 3 (Do2

¼ 3).
The minimal distance between q and o1 at time 1 is
denoted as dq,o1

ð1Þ ¼ 7, and the maximal distance between
q and o1 at time 1 is denoted as Dq,o1

ð1Þ ¼ 9, then the
distance between q and o1 could be within a distance
interval [7,9]. The minimal distance between q and o2 at
time 1 is denoted as dq,o2

ð1Þ ¼ 8, and the maximal distance
between q and o2 at time 1 is denoted as Dq,o2

ð1Þ ¼ 10,
then the distance between q and o2 could be within a
distance interval [8,10]. By comparing two distance inter-
val [7,9] and [8,10], it is non-trivial to determine, which
moving object is nearer to the query point q at time 1. At
time 1.5, the minimal distance of the query point q can
move is 1.5 (dq¼1.5), and the maximal distance of q can
move is 3 (Dq¼3). The minimal distance of the moving
object o1 can move is 1.5 (do1

¼ 1:5), and the maximal
distance of o1 can move is 3 (Do1

¼ 3). The minimal
distance of the moving object o2 can move is 3 (do2

¼ 3),
and the maximal distance of o2 can move is 4.5
(Do2
¼ 4:5). The minimal distance between q and o1 at

time 1.5 is denoted as dq,o1
ð1:5Þ ¼ 5, and the maximal

distance between q and o1 at time 1.5 is denoted as
Dq,o1
ð1:5Þ ¼ 8, then the distance between q and o1 could be

within a distance interval [5,8]. The minimal distance
between q and o2 at time 1.5 is denoted as dq,o2

ð1:5Þ ¼ 8,
and the maximal distance between q and o2 at time 1.5
is denoted as Dq,o2
ð1:5Þ ¼ 11, then the distance between q

and o2 could be within a distance interval [8,11]. By
comparing two distance interval [5,8] and [8,11], we can
determine that o1 could be nearer to q than o2 at time 1.5.
In order to tackle the comparing problem of intersect
distance interval, such as [7,9] and [8,10], the vague set
theory is applied to determine the possibility that which
moving object is nearer to the query point. From the
example of Fig. 1, we can conclude that the CKNN query
result could be different within a query time interval, and
the query result may not be acquired precisely. Further-
more, with the increased number of moving objects and
larger time interval, it is more complicated to process
CKNN queries. In order to tackle these issues, we propose
methods in PVKNN algorithm to scale down the moving
object candidates and divide the given time interval into
time subintervals, and apply vague theory in the distance
interval comparison to determine the CKNN query result.

The major contributions of this paper are summarized
as follows:
�
 Our work remedies the major drawbacks of the past
related work and provides a more practical and effi-
cient solution for the CKNN problem in road networks.

�
 A Distance Interval Model (DIM) is designed to calcu-

late the distance intervals for the moving objects to the
query point in road network at a time instant.

�
 An index structure TPRuv-Tree is proposed to effi-

ciently index moving objects with uncertain velocity
in road network by involving edge connection and
moving objects information.

�
 A Possibility-based Vague KNN (PVKNN) algorithm is

proposed to efficiently determine the KNN query result
with the possibility within a given time interval.

�
 Simulation experiments are conducted to evaluate the

performance of the proposed PVKNN algorithm using
both synthetic and real data sets.
The rest of this paper is organized as follows. In Section
2, we discuss some related work about processing CKNN
queries. In Section 3, we present the proposed Distance
Interval Model (DIM). The index schema TPRuv-Tree is
presented in Section 4. In Section 5, we illustrate three
phases of the PVKNN algorithm in detail. Section 6 shows
extensive experiments on the performance of our
approach. Section 7 concludes the paper with some
future works.



P. Fan et al. / Information Systems 37 (2012) 13–32 15
2. Related work

The continuous K nearest neighbor query (CKNN) has
been intensively studied in recent years due to the
emergence of many e-commerce mobile services. Efficient
processing of CKNN queries in road networks has also
attracted a lot of attentions. Previous methods in this
literature mainly focused on processing KNN queries for
static objects or moving objects with fixed velocities
[1–3,18,9,10].

2.1. Methods for CKNN queries over static objects

Kolahdouzan and Shahabi [18] propose a solution-
based approach for KNN queries in spatial networks over
static objects. Their approach, called VN3, precalculates
the network Voronoi polygons (NVPs) and some network
distances, and then processes the KNN queries based on
the properties of the Network Voronoi diagrams. Once
objects move continuously, the KNN result would change
over time. As a result, the VN3 must be repeatedly
evaluated and thus the performance significantly
degrades because of the high re-evaluation cost. Further-
more, for continuous KNN queries, Kolahdouzan and
Shahabi [8] propose a solution, namely upper bound

algorithm (UBA), which performs snapshot KNN queries
at the locations where they are required, and hence
provides better performance by reducing the number of
KNN evaluation. When the data objects moves, the re-
evaluation cost would be significantly increased. Cho and
Chung [19] develop a unique continuous search algorithm

(UNICONS) for CKNN queries over the moving objects in
road networks, which is restricted in processing the CKNN
queries over static data objects (that is, only the query
object moves continuously). UNICONS first divides the
path of the query object into sub-paths by the intersec-
tions, and then the snapshot KNN queries are performed
at two endpoints of each sub-path. Finally, the KNNs for
each sub-path can be found from the union of the KNN
sets at its two endpoints and the objects along it. When
the data objects’ locations change over time, the perfor-
mance of this technique would be significantly degraded.

2.2. Methods for CKNN queries over moving objects

Mouratidis et al. [20] address the issue of continuous
monitoring KNN on moving objects. They propose an
incremental monitoring algorithm (IMA) to re-evaluate
query at those time instants at which updates occur. At
each evaluation time, the query result may be incremen-
tally obtained from the result at the previous timestamp.
Therefore, the overhead incurred by processing repeated
queries can be reduced. However, due to the nature of
discrete location updates, the KNNs of the query object
within two successive updates are unknown. Thus, IMA
would return invalid results between two successive
update timestamps. As such, IMA would return incorrect
results as long as there exist some time points within two
consecutive updates at which two consecutive updates
are unknown. Huang et al. [15] propose a continuous
monitoring method over moving objects in road
networks. The procedure of this monitoring method is
divided into two phases, the pruning phase and the
refining phase. The main aim of the pruning phase is to
calculate the pruning distance. With the given pruning
distance, unqualified objects are efficiently pruned. Then
in the refinement phase, candidates are verified whether
they belong to the KNNs of query q or not. Because the
pruning distance setting of pruning strategy of this paper
is a little large, several unqualified objects cannot be
pruned, and then the performance of the refining phase
cannot be improved enough. Li et al. [21] propose an
efficient algorithm of CKNN query based on moving_state

of the objects with fixed velocity in a road network. The
proposed algorithm is composed of two phases: pruning
phase and refining phase. In the pruning phase, a pruning
distance is calculated efficiently to exclude the unquali-
fied objects to scale down the object candidates with the
help of moving_state of objects. The refining phase deter-
mines the time subintervals where the KNN query result
is certain. These two phases can highly reduce the
repetitive query cost incurred by the location update of
moving objects. However, when the fixed velocity is
released, in the pruning phase, the pruning distance
calculation should consider the velocity interval of mov-
ing objects; in the refining phase, the obtained object
candidate of each time subinterval is not the final KNN
result, because the distance between each object in the
object candidate and the query object cannot be com-
pared directly. Therefore, when processing CKNN queries
over the moving objects with uncertain velocity, these
two phases should be modified according to the velocity
intervals of moving objects.

The techniques mentioned above all focus on the
CKNN queries over moving objects with fixed velocity.
However, in road networks of real world, the velocity of
each moving objects is uncertain, which leads to more
repetitive re-evaluation queries as the updates of velo-
cities. Once the assumption of fixed velocity of moving
objects is released, it is more difficult to determine the
trajectory of a moving object precisely. Existing research
on the CKNN queries over moving objects with uncertain
velocity focus exclusively on Euclidean spaces [22–24]. Yu
et al. [24] propose a monitoring method to process CKNN
queries over moving object. This method involves the
Object-Indexing based on indexing the objects themselves
and the Query-Indexing based on indexing the queries to
determine the locations of moving objects. The grid index
used by this method cannot capture the constraints
imposed by a road network. Furthermore, the method
processes objects and updates falling in circles and
rectangles, while there is no trivial mapping or interpre-
tation of these shapes into road networks. Huang et al.
[25] investigate how to process a CKNN query over
moving objects with velocity varying within a known
interval. A cost-effective P2KNN algorithm is proposed to
find the objects that could be the KNNs at each time
instant within the given query time interval, where a
uncertain distance model is presented for representing
the distance between a moving object and the query
object at each time instant. Besides, a probability-based
model is designed to quantify the possibility of each
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object being one of the KNNs. However, the distance
between the moving object and the query point is
considered as the Euclidean distance rather than the
network distance. Therefore, if processing the CKNN query
over moving objects with uncertain velocity in road net-
works, the distance calculation method should be mod-
ified to accommodate to the road network distance.

When an object moves with uncertain velocity in the
road network, it is not so easy to determine the accurate
location of the object at a time instant. A Segment-Based
Tracking method [26,27] can be used to track the con-
tinuously changing positions of the moving objects with a
threshold C to minimize the updates. If the object’s
location is inside C, the object does not need to inform
the server; otherwise, the object must update the circle C
and inform the server. Our proposed algorithm just uses
the minimal and maximal distance between the object
and the query point to evaluate the possibility of candi-
date objects being CKNN, and it is not necessary to know
the moving locations of the object.

When calculating the minimal distance and maximal
distance between the object and the query point, if the
moving object and the query point are on different edges,
the shortest path distance between two nodes of the road
network should be calculated. For the shortest path
calculation in road networks, Hu et al. [28] propose an
efficient index, namely distance signature, for distance
computation over long distances. The distance signature
of each object stores the shortest path between the object
with other objects in a sequence in the form of a
categorical value based on the exact distance, where each
data object is distributed on the node. Since our paper
focuses on the shortest path distance computation of edge
nodes, the distance signature is not so suitable for our
paper, because it mainly calculates the distance between
the object and the node, although the objects is distrib-
uted on the nodes but not on all the nodes. Samet et al.
[29] propose an algorithm to compute the shortest paths
between the various vertices in the spatial network only
once, which can decouples the process of computing
shortest paths along the network from that of finding
the neighbors, whereas in the methods that are based on
Dijkstra’s algorithm the shortest paths between some
vertices are computed repeatedly as the query object
and the number of sought neighbors change thereby
causing the reapplication of the algorithm. Wei [30]
proposes an indexing and query processing scheme for
the shortest path query answering, namely TEDI, which is
based on the tree decomposition methodology. The road
network is firstly decomposed into a tree in which the
node of the tree contains more than one node from the
road network according to the MBR. A bottom-up opera-
tion can be executed to calculate the shortest path
distance between any two nodes of the road network.
TEDI is an efficient method to calculate the shortest path
distance of two nodes in road networks, which would be
used in our paper to calculate the shortest path distance
of two nodes.

Li et al. [31] propose a CUKNN query monitoring
method to continuously find the objects with uncertain
speed that could potentially be the k-nearest neighbors
(KNN) of the query. Based on the distance estimation
between objects and query, an efficient method is
designed to calculate the probability of each object being
a KNN of a query. The distance calculation method of Li
et al. [31] uses the line segments to calculate the dis-
tances between the objects and the query. When the
moving object and query object are on the different edges
without distance determinate, it is difficult to obtain the
maximal distance between the moving object and query
object. Then an approximate value is used to serve as the
maximal distance. Furthermore, in the pruning phase and
refining phase, Li et al. [31] just assumes the maximal and
minimal distances between the moving object and the
query object within the query time interval are mono-
tonic with time. Actually, within the query time interval,
the maximal and minimal distances are not monotonic
with time, which would change when the objects reach
the road intersection. Finally, Li et al. [31] uses a Possible-
Line-Segment (PLS) to represent the possible distance
between the object and the query within a time interval
to calculate the probability of each object being a KNN of a
query, where PLS is the distance interval at the middle
time instant of the time interval. This method can simplify
the probability calculation but decrease the precision.
These points are all considered and improved in
this paper.

In the following, the distance interval model and the
proposed PVKNN algorithm are presented in detail to
illustrate how to process CKNN queries efficiently under
the condition that all objects (including the query object)
move continuously with uncertain velocity in road
networks.

3. Distance interval model

Before going into the details, let us first consider a
relevant question: Given two objects o1 and o2, which is
better for a CKNN query over moving object? This pair-
wise competition has a clear answer when o1 and o2 are
precise points: the one nearer to the query point q wins
the competition. How about o1 and o2 being uncertain?
The answer is still clear: the one more likely to be nearer
to q is better, but how to calculate the distances between
o1 and o2 and query point with uncertain velocity?
Motivated by this question, we propose a Distance Inter-
val Model (DIM) to calculate the distances between
moving objects and query point with uncertain velocity.

Note that the distance mentioned in this paper repre-
sents the road network distance. For clarity, we present in
Table 1 the primary symbols used in the paper, along with
their interpretation.

Firstly, we give a brief explanation to the distance
interval concept in our proposed DIM. Assume an object o

is moving away with a fixed velocity o.v from a static
query point q on an edge, the distance between o and q is
denoted as d(t0) at start time t0. At time t, the distance
between o and q (denoted as d(t)) can be calculated as
d(t)¼d(t0)þo.v(t�t0) (Eq. (3)). Assume that the velocity
of object o becomes uncertain within [o.vm, o.vM]. By
substituting o.vm and o.vM with o.v in Eq. (3), respectively,
we can obtain two distances: one is d(t), indicating



Table 1
Primary symbols.

Symbol Description

- Positive direction, indicating from starting node to ending node on an edge

’ Negative direction, indicating from ending node to start node on an edge

o-’q Object o and query point q are moving towards each other on an edge

’q, o- Object o and query point q are moving with the opposite direction on an edge

o, q-- Object o is moving towards query point q with the same positive direction on an edge

q, o-- Query point q is moving towards object o with the same positive direction on an edge

dq,o(t) The minimal distance between query point q and object o at time t

Dq,o(t) The maximal distance between query point q and object o at time t

SDNij The shortest path distance between node ni and nj

DDij The Boolean value indicating whether edge ei and edge ej are distance determinate or not

dpruning The pruning distance

o1!o2 Object o1 is nearer to the query point than object o2
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the minimal distance between o and q, and the other is
D(t) indicating the maximal distance between o and q.
Thus, the possible distance between o and q at time t

should be within the distance interval [d(t), D(t)].
Since the data objects and query point move arbitrarily

in road networks, the computation of distance between a
moving object and the query point is more complicated
than the distance calculation of Eq. (3). For the edge in
road networks, we assume that there exist a starting node
and an ending node. For the moving direction, we assume
that if an object moves along the direction from the
starting node to the ending node of the edge where it
resides, its velocity is a positive value, denoted as -,
otherwise its velocity is a negative value, denoted as ’. In
the following, we present the proposed DIM to illustrate
how to calculate minimal distance and maximum dis-
tance between a moving object o and query point q with
uncertain velocity in road networks. For simplicity, when
considering the object o and query point q on the same
edge, we just present the method about how to calculate
the distance between the object o with positive moving
direction and the query point q. Meanwhile, for the object
with the negative moving direction, the distance calcula-
tion method could be similar.

3.1. Calculating the minimal distance dq,o(t)

There are two different cases regarding the minimal
distance calculation between a moving object o and the
query point q. One case considers that o and q are on the
same edge, and the other case is that o and q are on two
different edges.

Case 1. Object o and query point q are on the same
edge. The minimal distance between q and o at time t is
denoted as dq,o(t), which can be calculated in the follow-
ing four different cases, respectively, according to four
different moving directions of o and q, as shown in
Fig. 2(a). The dq,o(t0) denotes the minimal distances
between q and o at the start time t0. The velocity of query
point q is within the interval [q.vm, q.vM], and the velocity
of object o is within the interval [o.vm, o.vM].

Case 1.1. Object o is moving toward query point q,
denoted as o-’q. The moving situations of object o and
the query point q at different times are presented in o-

’q of Fig. 2(b). When o and q move toward each other,
the minimal distance between o and q can be calculated
as d0, where d040. When the line segments of o and q

intersect with each other, the minimal distance of o and q

would be 0, where �drd0r0 and d indicating the
intersection distance. When d0o�d indicating that the
line segments of o and q have no intersection, object o and
query point q move away with each other, denoted as ’q,
o-, where the minimal distance calculation of o and q

can refer to case 1.2:

d0 ¼ dq,oðt0Þ2ðo:vM2q:vMÞðt2t0Þ

d¼ ððo:vM2o:vmÞþðq:vm2q:vMÞÞðt2t0Þ

dq,oðtÞ ¼
d0 d040

0 �drd0r0

(

Case 1.2. Object o and query point q are moving with
the opposite direction, denoted as ’q, o-, where it is
impossible for object o and query point q to intersect with
each other. The minimal distance between o and q can
calculated as follows:

dq,oðtÞ ¼ dq,oðt0Þþðo:vm2q:vmÞðt2t0Þ

Case 1.3. Object o is moving towards q with the same
positive direction, denoted as o, q--. The moving
situations of object o and the query point q at different
times are presented in o, q-- of Fig. 2(b). When o move
toward q, the minimal distance between o and q can be
calculated as d0, where d040. When o catch up with q, the
line segments of o and q intersect with each other, the
minimal distance of o and q would be 0, where
�drd0r0 and d indicating the intersection distance.
When d0o�d indicating that the line segments of o and
q have no intersection, the query point q moves toward
object o, denoted as q, o--, where the minimal distance
calculation of o and q can refer to case 1.4:

d0 ¼ dq,oðt0Þ2ðo:vM2q:vmÞðt2t0Þ

d¼ ððo:vM2o:vmÞþðq:vM2q:vmÞÞðt2t0Þ

dq,oðtÞ ¼
d0 d040

0 �drd0r0

(

Case 1.4. Query point q is moving towards object o

with the same negative direction, denoted as q, o--.
The moving situations of object o and the query point q at
different times are presented in q, o-- of Fig. 2(b).
When q move toward o, the minimal distance between o



Fig. 2. Object o and query point q are on the same edge.
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and q can be calculated as d0, where d040. When q catch
up with o, the line segments of o and q intersect with each
other, the minimal distance of o and q would be 0, where
�drd0r0 and d indicating the intersection distance.
When d0o�d indicating that the line segments of o and
q have no intersection, the query point o moves toward
object q, denoted as o, q--, where the minimal distance
calculation of o and q can refer to case 1.3:

d0 ¼ dq,oðt0Þ2ðq:vM2o:vmÞðt2t0Þ

d¼ ððo:vM2o:vmÞþðq:vM2q:vmÞÞðt2t0Þ

dq,oðtÞ ¼
d0 d040

0 �drd0r0

(

Case 2. Object o and query point q are on two different
edges. Assume that the query point q is moving on edge ei,
which starts from node ni and ends at node ni

0, and the
object o is moving on edge ej, which starts from nj and
ends at nj

0. Firstly, we give a definition about distance

determinate to facilitate the distance calculation, as shown
below.

Definition 3.1. Suppose that there are two different
edges ei and ej in a road network, for any two objects oi

and oj residing on edge ei and ej, respectively, no matter
which object is on ei or ej, if each shortest distance path
between ei and ej needs to pass through one same sub-
path, we say that ei and ej are distance determinate.

For a pair of edges ei and ej in a road network, we can
check whether ei and ej are distance determinate by
calculating four distances between two nodes ni and ni

0

of ei and two nodes nj and nj
0 of ej. These four distances

involves the shortest distance of (ni, nj) (denoted as SDNij),
the shortest distance of (ni, nj

0) (denoted as SDNij0), the
shortest distance of (ni

0, nj) (denoted as SDNi0j), and the
shortest distance of (ni

0, nj
0) (denoted as SDNi0j0). If and

only if these four distances satisfy Eq. (3.1), we conclude
that ei and ej are distance determinate, because these four
shortest network distances between ei and ej all pass
through the sub-path from node ni to nj. Note that w in
Eq. (3.1) indicates the weight of corresponding edge:

SDN0ij ¼ SDNijþej:w

SDN0ij ¼ SDNijþei:w

SDN0ij ¼ SDNijþei:wþej:w ð3:1Þ

The shortest path distance between two nodes, such as
SDNij, SDNij0, SDNi0j, and SDNi0j0, can be calculated from the
shortest path calculation tree using the TEDI method [30].
In the TEDI method, the road network is firstly decom-
posed into a tree in which the node of the tree contains
more than one node from the road network according to
the MBR (Minimal Boundary Rectangle). A bottom-up
operation can be executed to calculate the shortest path
distance for any two nodes of the road network. TEDI is an
efficient calculation method, which offers orders-of-mag-
nitude improvement over existing approaches. Using our
proposed distance determinate method, two edges in road
network, e.g. ei and ej, can be determined whether these
two edges are distance determinate or not, denoted as a
boolean variable DDij, if edge ei and edge ej are distance

determinate, DDij¼True, otherwise, DDij¼False.
There are two different cases about calculating the

minimal distance between q on edge ei and o on edge ej

at time t (denoted as dq,o(t)), one is that ei and ej are
distance determinate, and the other considers that ei and ej

are not distance determinate.

Case 2.1. Edge ei and edge ej are distance determinate.
This case, DDij¼True, means that the shortest network
distance path of o and q should pass through the shortest
distance sub-path of node ni and node nj. This sub-path
distance is denoted as SDNij. Via this sub-path, object o

and query point q can be on the same edge, where we can
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Fig. 3. Object o and query point q are on two different edges.
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use the similar method described in case 1 to calculate the
shortest distance between object o and query point q.
Regarding different moving directions of query point q and
object o, the calculation of dq,o(t) can be conducted as follows:
1.
 The moving directions of query point q and object o are
described in Fig. 3(a):

dq,oðtÞ ¼ dq,oðt0ÞþSDNij2ðq:vM2o:vMÞðt2t0Þ
2.
 The moving directions of query point q and object o are
described in Fig. 3(b):

dq,oðtÞ ¼ dq,oðt0ÞþSDNijþðq:vmþo:vmÞðt2t0Þ
3.
 The moving directions of query point q and object o are
described in Fig. 3(c):

dq,oðtÞ ¼ dq,oðt0ÞþSDNijþðq:vm2o:vMÞðt2t0Þ
4.
 The moving directions of query point q and object o are
described in Fig. 3(d):

dq,oðtÞ ¼ dq,oðt0ÞþSDNijþðo:vm2q:vMÞðt2t0Þ
Case 2.2. Edge ei and edge ej are not distance determi-

nate. The calculation of dq,o(t) is more complicated than

the calculation described in case 2.1. We can use the
pairwise distance computation method [32] to help to
calculate dq,o(t).

We take the query point q on edge ei (ni, ni
0), object o

on edge ej (nj, nj
0), and moving direction described in

Fig. 3(a) as an example to illustrate the minimal distance
calculations. The four possible shortest distance sub-paths
for o and q are (ni, nj), (ni, nj

0), (ni
0, nj), and (ni

0, nj
0), while

these four sub-path distances are denoted as SDNij, SDNij0,
SDNi0j, and SDNi0j0, respectively. The minimal distance
between q and o via these four sub-paths is calculated,
respectively, denoted as dq,o

1
(t), dq,o

2
(t), dq,o

3
(t), and dq,o

4
(t), as

shown below. The minimal distance dq,o(t) is equal to the
minimum of these four distances. The minimal distance
calculation for the query point q and object o with
different moving directions, shown in Fig. 3(b)–(d), can
be calculated using the same method, respectively:

d1
q,oðtÞ ¼ dq,oðt0ÞþSDNij2ðq:vM2o:vMÞðt2t0Þ

d2
q,oðtÞ ¼ dq,oðt0ÞþSDN0ijþðo:vm2q:vMÞðt2t0Þ

d3
q,oðtÞ ¼ dq,oðt0ÞþSDNi0jþðq:vM2o:vmÞðt2t0Þ

d4
q,oðtÞ ¼ dq,oðt0ÞþSDNi0j0 þðq:vm2o:vmÞðt2t0Þ

dq,oðtÞ ¼minðd1
q,oðtÞ,d

2
q,oðtÞ,d

3
q,oðtÞ,d

4
q,oðtÞ

3.2. Calculating the maximal distance Dq,o(t)

There are two different cases regarding the maximal
distance calculation between a moving object o and the
query point q with uncertain velocity. One case considers
that o and q are on the same edge, and the other case is
that o and q are on two different edges.

Case 1. Object o and query point q are on the same edge.
The maximal network distance between q and o at time t is
denoted as Dq,o(t), which can be calculated in the following
1–4 equations, respectively, according to four different mov-
ing directions of o and q, shown in Fig. 2(a). Dq,o(t0) denotes
the maximal distances between q and o at the start time t0:
1.
 Object o is moving toward query point q, denoted as
o-’q:

Dq,oðtÞ ¼Dq,oðt0Þ2ðo:vm2q:vmÞðt2t0Þ
2.
 Object o and query point q are moving with the
opposite direction, denoted as ’q, o-:

Dq,oðtÞ ¼Dq,oðt0Þþðo:vM2q:vMÞðt2t0Þ
3.
 Object o is moving towards q with the same positive
direction, denoted as o, q--:

Dq,oðtÞ ¼Dq,oðt0Þþðo:vm2q:vMÞðt2t0Þ
4.
 Query point q is moving towards object o with the
same negative direction, denoted as q, o--:

Dq,oðtÞ ¼Dq,oðt0Þþðo:vM2q:vmÞðt2t0Þ

Case 2. Object o and query point q are on two different
edges. The distance determinate concept presented in
Section 3.1 is also used here to help compute the maximal
distance Dq,o(t). The moving direction of q and o can be
referred in Fig. 3. Two different cases about whether ei

and ej are distance determinate or not are considered in the
calculation of Dq,o(t).

Case 2.1. Edge ei and edge ej are distance determinate.
Regarding different moving directions of query point q

and object o, the calculation of Dq,o(t) can be conducted as
follows:
1.
 The moving directions of query point q and object o are
described in Fig. 3(a):

Dq,oðtÞ ¼Dq,oðt0ÞþSDNij2ðq:vm2o:vmÞðt2t0Þ
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The moving directions of query point q and object o are
2.

described in Fig. 3(b):

Dq,oðtÞ ¼Dq,oðt0ÞþSDNijþðq:vM2o:vMÞðt2t0Þ
3.
 The moving directions of query point q and object o are
described in Fig. 3(c).

Dq,oðtÞ ¼Dq,oðt0ÞþSDNijþðq:vM2o:vmÞðt2t0Þ
4.
 The moving directions of query point q and object o are
described in Fig. 3(d):

Dq,oðtÞ ¼Dq,oðt0ÞþSDNijþðo:vM2q:vmÞðt2t0Þ

Case 2.2. Edge ei and edge ej are not distance determi-

nate. Similar to the calculation method used in the case

2.2 of Section 3.1, the maximal distance Dq,o(t) for the o

and q in Fig. 3(a) is equal to the maximum of four
distances, denoted as Dq,o

1
(t), Dq,o

2
(t), Dq,o

3
(t),Dq,o

4
(t). These

four distances can be calculated using the similar method
to calculate dq,o

1
(t), dq,o

2
(t), dq,o

3
(t), and dq,o

4
(t):

D1
q,oðtÞ ¼Dq,oðt0ÞþSDNij2ðq:vm2o:vmÞðt2t0Þ

D2
q,oðtÞ ¼Dq,oðt0ÞþSDNij0 þðo:vM2q:vmÞðt2t0Þ

D3
q,oðtÞ ¼Dq,oðt0ÞþSDNi0 jþðq:vM2o:vmÞðt2t0Þ

D4
q,oðtÞ ¼Dq,oðt0ÞþSDNi0 j0 þðq:vM2o:vMÞðt2t0Þ

Dq,oðtÞ ¼maxðD1
q,oðtÞ,D

2
q,oðtÞ,D

3
q,oðtÞ,D

4
q,oðtÞÞ
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Fig. 4. The structure
With the proposed DIM model, we can calculate
the minimal and maximal distances at time t between
moving object o and query point q with uncertain velocity
to obtain the distance interval [dq,o(t), Dq,o(t)]. The dis-
tance interval can be used to indicate the possible
distance between o and q while processing the CKNN

queries.
4. The TPRuv-tree

In order to obtain the information of moving objects
more efficiently, TPR-tree [33] like methods have been
used to index moving object. Tao and Papadias [2]
proposed a repetitive query processing approach with
TPR-tree for processing CKNN queries, but the method is
only applicable to static objects. Huang et al. [34]
proposed a TPR(s,d)-tree to efficiently index moving
objects with uncertain speed and direction in Euclidean
space. In TPR(s,d)-tree, the objects are recursively grouped
into a bottom-up manner according to their locations at
the time when the index is built, while the speed interval
and moving boundary information of each object are
involved in each node. However, the moving boundary
of each object is applicable for the Euclidean space,
and not restricted by the road network. Chen and Meng
[35] proposed an AU index schema to index the
moving objects in road network. In order to decrease
the overhead of keeping the index updated with the
frequently changing object location data, AU (Adaptive
point to database in disk

R-Treee

.. ... ... ... ... ...

o o o o
objset

o .id dist v v ptr

o .id dist v v ptr

... ... ... ... ...

of TPRuv-tree.
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Unit) is used to group objects having similar moving
patterns to dynamically adapting itself to cover the
movement of the objects it contains. However, when an
object moves from an edge in a leaf node of the AU index
to an edge in another leaf node of the AU index, we should
search from the root node of R-tree of AU index to update
the corresponding object location information.

Our proposed query method calculates the pruning
distance and divides the query time interval according to
the time when the object moves across an intersection
from one edge to another. Therefore, when an object
moves from one edge to another, the index structure
should be updated. In order to decrease the update cost of
index structure for the objects moving from one edge to
another edge, an index structure, namely TPRuv- tree, is
proposed to efficiently index moving objects with uncer-
tain velocity in road network by involving edge connec-
tion and moving objects information, where uv indicates
uncertain velocity.

As shown in Fig. 4, the top level of TPRuv-tree indexes
the spatial information of the road network, and each
leaf node consists of edges included in the corresponding
MBR. For example, in Fig. 4, the left most leaf node
consists of edge e1, the left second most leaf node consists
of edges e2, e3, e4, the left third most leaf node consists
of edges e5, e6, e7, and the left fourth most leaf node
consists of edge e8. For each leaf node, there is a direct
access table involving the information of edges. Each
entry of the direct access table consists of the edge ID,
Speed limit (SL), pointer1 pointing to the edge connection
information (ptr1), and pointer2 pointing to the object
information (ptr2). For example of left second most leaf
node, the direct access table of this leaf node is composed
of three entries representing e2, e3, e4 separately. For entry
of e2, ptr1 points to the edge connection information,
where the starting node e2.ns of e2 connecting to the edge
e3, e4, and the end node e2.ne of e2 connecting to the edge
e1. Two adjacent lists are connected with the starting and
end node of the edge, respectively. Each entry of adjacent
list is composed of the ID and the address of the
connected edge. Still for the entry of e2, ptr2 points to
the moving object set objset on the edge e2, where is {o4,
o5, o6, o7}. There is also a direct access table to record the
information of these moving objects. Each entry of this
access table is composed of o.id representing the object
identity, o.dist denoting the distance between object o and
the starting node of the edge where it resides, o.vmin and
o.vmax referring to the minimal and the maximal moving
velocity, respectively, and o.ptr pointing to the object
tuple in the database.

Based on the index structure TPRuv-tree, it is more
efficient to update the object information when an object
moves from one edge to another edge. For example, when
the object o4 moves from the edge e2 to the edge e1, we
can obtain the address of e1 from the adjacent list
connected to the end node e2.ne of e2. Then we can delete
o4 from the object set objset and corresponding object
information in the access table, and inserting o4 to the
object set objset and corresponding object information in
the access table of edge e1. Therefore, we can avoid
searching from the root node of TPRuv-tree to find the
information of connected edge to update corresponding
object information.

5. PVKNN algorithms

The proposed DIM model can be used to calculate the
distance intervals for the moving objects near to the
query point. Based on the distance intervals of moving
objects, we investigate to determine which K objects are
the nearest ones to the query point. It is complicated to
determine which objects are the KNN to the query point
at each time instant, due to the high repetitive re-evalua-
tion when the velocity of moving object updates. Since
the real applications pay more attention on more appro-
priate query results rather than the most accurate results,
we propose a Possibility-based Vague KNN (PVKNN)
algorithm to determine the possibility of moving objects
being the KNN to the query point within a given time
interval.

The main process of PVKNN algorithm includes:
1.
 A pruning phase: efficiently prunes the objects that are
impossible to be the KNN query results within the
given time interval.
2.
 A distilling phase: obtains the division time subinter-
vals of the given time interval where the object
candidates can be distilled, meanwhile the minimal
and maximal distances between moving objects and
query point can be represented as a linear function
of time.
3.
 A possibility-ranking phase: determines the moving
objects with the possibility to be the KNN query results
within each division time subintervals.

In the following, we present these three phases of
PVKNN algorithm in detail.

5.1. Pruning phase

The main idea of pruning phase in the CKNN queries is
to scale down the CKNN query region using a pruning
distance, denoted as dpruning. For any moving object, if the
minimal distance between this object and query point is
less than or equal to dpruning within a given time interval,
this moving object can be considered in the process of
CKNN queries, otherwise this object will be pruned. The
calculation of the pruning distance is defined as dpru-

ning¼Do,q
max
þDadd

max
. The explanations about Do,q

max
and Dadd

max

are presented in the following.
Do,q

max
indicates the maximal distance among all the

maximal distances between moving objects and query
point within a given time interval (denoted as [t0, tn]). In
order to continuously monitor the KNN result within the
time interval [t0,tn], we divide the time interval into
several time subintervals within which the directions of
moving objects are certain. At the start time t0, for K

moving objects nearest to the query point, we calculate
the time instants for each object and query point reaching
an intersection of the road network with their maximal
moving velocity. The fastest one of these time instants,
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denoted as t1,is chosen to divide the time interval [t0,tn]
into two subintervals: [t0, t1] and [t1, tn]. Next, the
subinterval [t1, tn] is divided into [t1, t2] and [t2, tn] with
the similar process. This process is repeated until the
chosen time instant is larger than tn. Thus, the time
interval [t0,tn] is divided into [t0,t1], [t1,t2],y[tj�1,
tj],y[tn�1,tn]. For each time subinterval, we just need to
focus on the distance between moving object and query
point at the time instant of boundary value. These chosen
time instants are t0, t1, t2, y, tjy, tn�1, and tn. Dq,oi

ðtjÞ is
calculated to obtain the maximal distance between the ith

moving object and query point at time tj using the method
presented in the Section 3.2. After calculating all of the
maximal distances between K objects nearest to the query
point at t0 and query point at all chosen time instants,
the maximal one is chosen to be the Dq,o

max
, shown in

Eq. (5.1.1):

Dmax
q,o ¼maxfDq,oi

ðtjÞg ð1r irK ,0r jrnÞ ð5:1:1Þ

The Dadd
max

indicates an additional distance to the distance
Dq,o

max
within the given time interval [t0,tn] Taking the query

point as a start point, if this point moves the distance Dq,o
max

via
all the possible edges in the road network, it will terminate
on a point of any of these possible edges. We take these
terminated points on the possible edges as boundary points
(denoted as Pbound). For an edge with Pbound and an object on
this edge, if the minimal distance between this object and
query point at t0 is larger than Dq,o

max
, and the object is moving

with the maximal speed limit of this edge toward the Pbound

within the time interval [t0,tn], if this object can reach or pass
through the Pbound, we need to consider this object in the
CKNN query. Therefore, we need to add a distance to the Dq,o

max

to be the pruning distance, in case missing any possible
object to be the KNN. If the number of Pbound is m, then the
number of edges with boundary point is m, assume that the
maximal speed limit of an edge with Pbound is denoted as SLx

(1rxrm), we can calculate the additional distance for
each edge as SLx(tn�t0). The maximal one of these calculated
additional distances is chosen to be Dadd

max
, shown in

Eq. (5.1.2):

Dmax
add ¼maxfSLxðtn�t0Þgð1rxrmÞ ð5:1:2Þ

The pruning distance dpruning is composed of Dq,o
max

and
Dadd

max
. Furthermore, we can determine whether an object is

considered in the CKNN query process or not by calculating
the minimal distance between this object and query point
within the time interval [t0,tn], denoted as dq,o

min
. With the

chosen time instants of [t0,tn], we can calculate the minimal
distance between the object and query point at a chosen time
instant tj, denoted as dq,o(tj), using the similar method
presented in Section 3.1. By calculating the minimal distances
at all chosen time instants, the minimal one is chosen to be
the dq,o

min
, as shown in Eq. (5.1.3):

dmin
q,o ¼minfdq,oðtjÞgð0r jrnÞ ð5:1:3Þ

Algorithm 1 presents the pruning phase on the whole.
Firstly, for the K nearest objects to the query point at the
start time t0, the distance Dq,o

max
is calculated with the chosen

time instants from the given time interval [t0,tn]. Secondly,
an additional distance Dadd

max
is calculated based on the

boundary point Pbound, which is determined by the distance
Dq,o
max

. Then, the pruning distance dpruning is calculated as
dpruning¼Dq,o

max
þDadd

max
. Finally, whether an object o needs to

be pruned or not is determined by comparing its minimal
distance dq,o

min
within the time interval [t0,tn] with the

pruning distance dpruning. If dq,o
min

rdpruning, the object can be
a candidate for the CKNN query, otherwise, the object will
be pruned.

Algorithm 1. Pruning Phase
Input: M moving objects near to query point q within the time

interval [t0, tn], K moving objects (denoted as Oi) nearest to the q at

the start time t0(KrM) in a road network

Output: A set Ocandidate, including the moving objects, which can be

the candidates for the CKNN query within [t0, tn]
1.
 For each object Oi and query point q within [t0,tn]
calculate time instant reaching an road intersection with

maximal velocity
2.
 Choose the minimal time instant as t1, dividing [t0,tn] to [t0,t1],

[t1,tn]
3.
 For [t1,tn], repeat process 1, then choose time instant t2, dividing

[t1,tn] to [t1,t2] and [t2,tn]
4.
 Repeat process 1, 2 and 3, until the chosen time instant4tn, the

division time subintervals are: [t0,t1],

[t1,t2],y[tj�1,tj],y[tn�1,tn]. The boundary value of subinterval is

denoted as tj
5.
 For each object Oi
calculate maximal distance Dq,oi
ðtjÞ (1r irK,0r jrn)

max

6.
 Choose the maximal one to be the Dq,o , Dmax

q,o ¼maxfDq,oi
ðtjÞg
7.
 For each possible moving direction of q
max
q Moves the distance Dq,o ; mark the terminate point on the

edge as Pbound;
8.
 The number of edges with Pbound is denoted as m;
9.
 The maximal speed limit of edge with Pbound is denoted as SLx

(1rxrm);
10.
 For each edge with Pbound
Calculate SLx(tn�t0);
max
11.
 Choose the maximal one to be Dadd ¼max{SLx(tn�t0)};
max max
12.
 Determine the pruning distance: dpruning¼Do,q þDadd ;
13.
 For an object o of M objects, within [t0, tn]:
Calculate: dq,o(tj) (0r jrn)
min
dq,o ¼min{dq,o(tj)} (0r jrn)
min
If (dq,o rdpruning) then insert o into the set Ocandidate
Else prune o
We take an example to illustrate the pruning phase. As
illustrated in Fig. 5(a), there are four moving objects near
query point q with uncertain velocity within the time interval
[t0, t3] in a road network, denoted as o1, o2, o3, and o4. Our
task is to process continuously 2NN query over q within [t0,
t3]. At the start time t0, o1 and o3 are 2 nearest objects to q. In
the pruning phase, we need to scale down the object
candidates, which will be considered in the 2NN query
process. Firstly, the time interval [t0, t3] is divided into three
time subintervals: [t0, t1], [t1, t2] and [t2, t3] using our
proposed time division method. Secondly, we can calculate
the maximal distances between o1, o3 and q at time instants:
t0, t1, t2, and t3, respectively. These maximal distances are
represented as Dq,o1

ðtÞ, Dq,o3
ðtÞ in Fig. 5(b). Then we can

figure out that the maximal one of these maximal distances
is Dq,o1

ðt3Þ, which can be the Dq,o
max

. Thirdly, query point q

moves distance Dq,o
max

via possible directions to obtain bound-
ary points Pbound. As shown in Fig. 5(a), there are four
boundary points on the edges. Each boundary point is
marked as a short line on the edge, such as the short line
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Fig. 5. An example about the pruning phase: (a) objects in a road network and (b) distance functions in time–distance space.

t0 t3t1 t2 time

distance

Dq,o (t)

Dq,o (t)

Dq,o (t)

tR1 tR2 tR3 tR4
dq,o (t)

dq,o (t)

dq,o (t)

Fig. 6. Time subinterval division in distilling phase.
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on the edge [n4, n5]. For each edge with the boundary point,
we calculate the moving distance with the velocity of
maximal speed limit of this edge within [t0, t3]. The maximal
one of these calculated four distances is chosen to be Dadd

max
.

The Dadd
max

is added to the Dq,o
max

to become the dpruning. As
shown in Fig. 5(b), the distance dpruning is presented as a gray
dotted line. Finally, for each object of o1, o2, o3 and o4, we
calculate the minimal distance between the object and q

within [t0, t3], denoted as dqo1
ðtÞ, dq,o2

ðtÞ, dq,o3
ðtÞ and dq,o4

ðtÞ.
As shown in Fig. 4(b), the lines of dq,o1

ðtÞ, dq,o2
ðtÞ, dq,o3

ðtÞ are
below the gray dotted line, and the line of dq,o4

ðtÞ is above the
gray dotted line. Therefore, we can conclude that the objects
o1, o2, and o3 will be considered in the following 2NN query
process, and the object o4 is pruned. The object candidates
within [t0, t3] can be denoted as Ocandidate¼{o1, o2, o3}.
5.2. Distilling phase

With the pruning phase, we can prune the objects, which
cannot be the KNN query results. The obtained object
candidates are valid for the whole given time interval.
However, during a time subinterval of the given time interval,
some objects of the object candidates still can be excluded. In
order to make the process of KNN query more efficient, we
propose a candidate distilling method to distill the object
candidates within a time subinterval where the objects,
which cannot be the KNN are excluded. Since the KNN query
is to find K nearest object to the query point, we mainly use
the Kth smallest one of the maximal distances between the
object candidates Ocandidate from the pruning phase and the
query point as the excluding reference. During the given time
interval [t0, tn], the maximal distance between an object and
query point is the Kth smallest one within a time subinterval,
this object may be replaced by another object whose max-
imal distance to the query point is the Kth smallest one
within another time subinterval. Therefore, we firstly deter-
mine the time subinterval where the maximal distance
between one object and query point is the Kth smallest one
(denoted as Dq,o

k
(t)). Then, for each time subinterval, and each

object of Ocandidate except the object whose maximal distance
is Dq,o

k
(t), if the minimal distance between the object and

query point is larger than Dq,o
k

(t), this object will be excluded
from the Ocandidate for this time subinterval.
We still use the example shown in Fig. 5 to illustrate
the basic idea of distilling phase. As our task is to process
the 2NN query over query point q, we mainly find the 2nd
maximal distance between the objects of Ocandidate (i.e.{o1,
o2, o3}) and q as the exclude reference within the time
interval [t0, t3]. During the time subinterval [t0, t1], the 2nd

maximal distance between o1, o2, o3 and query point q is
changed from the maximal distance between o3 and q

(denoted as Dq,o3
ðtÞ) to the maximal distance between o1

and q (denoted as Dq,o1
ðtÞ). The change time instant is

denoted as tR1, which indicates that the 2nd maximal
distance is changed from Dq,o3

ðtÞ to Dq,o1
ðtÞ. The tR1 can

be obtained from the intersection point of line Dq,o1
ðtÞ

with line Dq,o3
ðtÞ within [t0, t1]. The change time instant

tR2, tR3, and tR4 can be obtained similarly, shown as in
Fig. 6. The lines indicating the 2nd maximal distance are
all marked with trick black polyline within [t0, t3]. During
the time subinterval [t0, tR1], as the line dq,o2

ðtÞ is above
line Dq,o3

ðtÞ, which means that the minimal distance
between o2 and q is larger than Dq,o

k
(t), the object o2 is

excluded from Ocandidate. The distilling result is recorded as
a tuple /{o1, o3}, [t0, tR1]S, where the maximal distance
between o3 and q is the 2nd maximal distance. However,
o1 or o3 which is nearer to q has not been determined.
During the time subinterval [tR1, t1], the 2nd maximal
distance is Dq,o1

ðtÞ. As the line dq,o2
ðtÞ is above line Dq,o1

ðtÞ,
o2 is excluded from the Ocandidate. Then the distilling result
is recorded as a tuple /{o3, o1}, [tR1, t1]S, where the
maximal distance between o1 and q is the 2nd maximal
distance. For the time subinterval [tR4, t3], the 2nd
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maximal distance is Dq,o2
ðtÞ, as line dq,o1

ðtÞ and line dq,o3
ðtÞ

are all below the line Dq,o2
ðtÞ, no object will be excluded.

Then the distilling result is /{o1, o3, o2}, [tR4, t3]S. With
the distilling phase, we can obtain a new object candidate
set, Ocandidate¼{/{o1, o3}, [t0,tR1]S, /{o3, o1}, [tR1, t1]S,
/{o3, o1}, [t1, tR2]S, /{o1, o3}, [tR2, t2]S, /{o1, o3}, [t2, tR3]S,
/{o2, o3, o1}, [tR3, tR4]S, /{o1, o3, o2}, [tR4, t3]S}.

In the following, we explain the distilling phase in detail.
For the CKNN query within the given time interval [t0, tn],
using our proposed pruning method, we can scale down the
object candidates to Ocandidate¼{o1, o2yoiyom} (mZK).
Referring to the time subinterval division in the pruning
phase, the given time interval [t0, tn] is firstly divided into
[t0,t1], [t1,t2],y[tj�1,tj],y[tn�1,tn]. For each subinterval, as
the direction of moving object is certain, the linear equation
of distance with time can be determined. For example, the
maximal distance between oi and q, Dq,oi

ðtÞðtj�1rtrtj), can

be expressed as a linear equation with time. For each time
subinterval [tj�1,tj], we investigate to find time instants to
divide the subinterval further, so as to distill the object
candidates. At the start time t0, we calculate the maximal
distances between all the objects of Ocandidate and q, if the Kth

smallest one is the maximal distance between oi and q, then
we use Dq,oi

ðtÞ as the reference to find the division time

instant within [t0,t1], Dk
q,oðtÞ ¼Dq,oi

ðtÞ. For each object

(denoted as oj) of Ocandidate except oi, we calculate the time
instant when the Dq,oj

ðtÞ ¼Dq,oi
ðtÞðt0otot1Þ. If existing

such a time instant t, this time instant is denoted as Tj¼t.
If we obtain more than one such time instant, the smallest
one is chosen as the division time instant (denoted as TR1

0
). If

the smallest time instant is Tx, then TR1
0
¼Tx, and the

maximal distance between ox and q will be Dq,o
k

(t),

Dk
q,oðtÞ ¼Dq,ox ðtÞ. For the time subinterval [TR1

0
, t1], the tuple

/ox, TR1
0
S is also recorded. For the time subinterval [TR1

0
, t1],

we repeat such process to find the division time instants,
which can be denoted as TR2

0
, TR3

0
yTRi

0
, until no such time

distant can be found. For each division time instant, such as
TRi

0
, the corresponding object ox whose maximal distance to

q is Dq,o
k

(t) during the divided time subinterval [TRi
0

, t1] is also
recorded as /ox, TRi

0
S. For the time subinterval [tj�1, tj], we

can find the division time instants using the same method,
denoted as TR1

j�1
, TR2

j�1
yTRi

j�1
. After determining the division

time instants, we can obtain time subintervals for the given
time interval [t0, tn], which could be [t0, TR1

0
]y [TRi

0
, t1]y

[TRi�1
j�1

, TRi
j�1

]y, [TRi
n�1

, tn]. For each time subinterval, we
compare the minimal distances between the objects of
Ocandidate and q with the Dq,o

k
(t) to distill the object candi-

dates, while the distilled objects are recorded in an object
candidate set, denoted as Oi

j
. Finally, we can obtain a new

object candidate set, expressed as Ocandidate¼{/O0
0
, [t0,

TR1
0

]Sy/Oi
0
, [TRi

0
, t1]S,y/Oi�1

j�1
, [TRi�1

j�1
, TRi

j�1
]S,y/Oi

n�1
,

[TRi
n�1

, tn]S}.

Algorithm 2. Distilling Phase
Input: The output from pruning Phase: Ocandidate, time subinterval

division [t0,t1], [t1,t2],y[tj�1,tj],y[tn�1,tn]

Output: A set Ocandidate, including the moving objects, which can be

the candidates for CKNN query within the time subinterval of

[t0,tn]
1.
 For each object o in Ocandidate
Calculate the maximal distance at the start time t0: Dq,o(t0)
2.
 If the Kth smallest one is the maximal distance between oi and q

by comparing the calculated maximal distances
Dk
q,oðtÞ ¼Dq,oi

ðtÞ
3.
 For the time subinterval [t0,t1], for each object oj in Ocandidate�{oi}
Find the time instant t, Dq,oj
ðtÞ ¼Dk

q,oðtÞ
If t exists, Tj¼t;
4.
 Comparing all the Tj(0o jrm�1)
If smallest one Tx¼min(Tj)
0 0
then is the division time instant, TR1¼Tx,/ox, TR1S is also

recorded
5.
 For the time subinterval [TR1

0
, t1], Dk

q,oðtÞ ¼Dq,ox ðtÞ
0 0 0
Repeat 3, 4 to obtain the division time instants TR2, TR3,yTRi
6.
 For the time subinterval [tj�1,tj]
j�1
Repeat 3.4,5 to obtain the division time instants TR1 ,

TR2

j�1
,yTRi

j�1
;

0 0

7.
 Time subintervals can be obtained: [t0, TR1]y[TRi, t1], [t1,

TR1

1
]y[TRi�1

j�1
, TRi

j�1
]y, [TRi

n�1
, tn]

j�1 j�1 j�1

8.
 For each time subinterval [TRi�1, TRi ] and /ox, TRi�1S, then

Dk
q,oðtÞ ¼Dq,ox ðtÞ
For each object oj in Ocandidate�{ox}
if dq,oj
ðtÞoDk

q,oðtÞ
j�1
then insert oj in Oi�1
0

9.
 An object candidate set is obtained, expressed as Ocandidate¼{/O0,

[t0, TR1

0
]Sy/Oi

0
, [TRi

0
, t1]S,y/Oi�1

j�1
, [TRi�1

j�1
, TRi

j�1
]S,y/Oi

n�1
,

[TRi

n�1
, tn]S}
5.3. Possibility-ranking phase

With the distilling phase, we determine the time sub-
intervals of given time interval to distill the object candidates
for the CKNN query process. For each time subinterval,
though the object candidates are determined, the K objects
nearest to q has not been obtained, and which object in these
K objects is nearer to q has not been determined as well. In
the possibility-ranking phase, we propose methods to tackle
these two issues to obtain the CKNN query results.

As the velocity of moving object is uncertain, it is difficult
to calculate the distance between the object and query point
at each time instant. For each object oi in the object candidate
set within the division time subinterval, we can calculate the
minimal distance (denoted as di) and maximal distance
(denoted as Di) between oi and q. The distance between oi

and q at any time instant within the time subinterval should
be within the distance interval [di, Di]. Since the users pay
more attentions on which objects are the KNN within a time
interval, the possibility of oi, which could be one nearest
object to q within a division time subinterval, can be
calculated by comparing the distance interval [di, Di] with
the distance intervals of other objects. Firstly, we compare
the distance intervals of two moving objects, denoted as o1

and o2. The distance interval of o1 is denoted as [d1, D1], and
the distance interval of o2 is denoted as [d2, D2]. The relative
positions of [d1, D1] and [d2, D2] can be different, which may
result in that o1 or o2 is nearer to the query point.

As shown in Fig. 7(a), D1od2, it is clear that the distance
between o1 to q is definitely less than the distance between
o2 to q. We can conclude that o1 is nearer to q than o2.
Similarly, as shown in Fig. 7(e), since D2od1, which
indicates that the distance between o2 to q is definitely less
than the distance between o1 to q, we can conclude that o2

is nearer to q than o1. For these two cases, it is explicit to
determine o1 or o2 is nearer to q. However, as shown in
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Fig. 7. Different relative positions of distance intervals of two moving objects.
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Fig. 7(b)–(d), since two distance intervals [d1,D1] and [d2,D2]
intersect, it is difficult to determine which object is nearer to
the query point precisely. According to the relative position
of [d1,D1] and [d2,D2], we can calculate the possibility about
o1 is nearer to q than o2, and the possibility about o2 is
nearer to q than o1 as well, by using the vague set theory.
The symbol o1!o2 denotes that o1 is nearer to q than o2,
and p(o1!o2) denotes the possibility about o1 is nearer to q

than o2. Definition 5.3.1 demonstrates how to determine
which object is nearer to q according to the possibility value.

Definition 5.3.1. Given two objects o1 and o2, which are
in the object candidate set within the division time
subinterval, if p(o1!o2)40.5, o1 is nearer to the query
point q than o2. If p(o1!o2)¼0.5 that o1 or o2 is nearer to
q is randomly determined.

According to the vague set theory, the possibility about o1

or o2 is nearer to q should satisfy the following properties.

Property 5.3. Given two objects o1 and o2 and their

corresponding distance intervals [d1, D1] and [d2, D2]:
(1)
(1

(2

(3

(4
0rp(o1oo2)r1;
) As 0rMax (0, (D1�d1þD2�d2)-Max (0, D1�d2) rD1�d1þD2�d

Then 0rp(o1!o2)r1;

) As p(o1!o2)þp(o2!o1)¼(Max(0,(D1�d1þD2�d2)�Max(0,D1�d2

a. if D1�d2Z0 and D2�d1Z0

Then p(o1!o2)þp(o2!o1)¼(D2�d

b. if D1�d2/0 and D2�d1S0

Then p(o1!o2)þp(o2!o1)¼(D2�d

c. if D1�d240 and D2�d1o0

Then p(o1!o2)þp(o2!o1)¼(Max(

Especially, if o2 is o1, then pðo1!o

) Sufficiency: if D2�d1ZD1�d2 then p(o1!o2)Z0.5

a. if D1�d2Z0, pðo1!o2Þ ¼
D2�d1

D1�d2 þD2�

b. if D1�d2o0, pðo1!o2Þ ¼
D1�d1 þD2�

D1�d1 þD2�

Necessity: if p(o1!o2)Z0.5 then D2�d1ZD1�d2

a. if D1�d2Z0,pðo1!o2Þ ¼
D2�d1

D1�d2 þD2�

then D2�d1Z(D2�d1þD1�d2)/2

so D2�d1ZD1�d2;

b. if D1�d2o0, pðo1!o2Þ ¼
D2�d1

D1�d2 þD2�

then D2�d1Z0,

so D2�d1ZD1�d2.

) if P(o1!o2)Z0.5, then D2�d1ZD1�d2 according to property (3)

if P(o2!o3)Z0.5, then D3�d2ZD2�d3 according to property (3)

thus D2�d1þD3�d2ZD1�d2þD2�d3

then D3�d1ZD1�d3

therefore, P(o1!o3)Z0.5, according to property (3).
(2)
2,

)þM

1þD

1þD

0, D2

1Þ ¼

d1
Z

d2

d2
¼

d1
Z

d1
Z

p(o1!o2)þp(o2!o1)¼1, p(o1!o1)¼0.5;
(3)
 p(o1!o2)Z0.5 if and only if D2�d1ZD1�d2 and

(4)
 If p(o1!o2)Z0.5 and p(o2!o3)Z0.5, then

p(o1!o3)Z0.5.
The possibility p(o1!o2) can be calculated based on the
proportion of intersection segment between two distance
intervals [d1, D1] and [d2, D2] in the whole distance
intervals, as shown in Definition 5.3.2.

Definition 5.3.2. Given two objects o1 and o2 and their
corresponding distance interval [d1, D1] and [d2, D2], the
possibility about o1 is nearer to the query point q than o2

can be calculated as Eq. (4.3.1):

pðo1!o2Þ ¼
Maxð0,ðD1�d1þD2�d2Þ�Maxð0,D1�d2ÞÞ

D1�d1þD2�d2

ð5:3:1Þ

For Eq. (5.3.1), we formally verify that all the properties
in Property 5.3 can be satisfied. The proof for each
property is presented as below:

Proof of Property 5.3.
ax(0,(D1�d1þD2�d2)�Max(0,D2�d1))/(D1�d1þD2�d2)

1�d2)/(D1�d1þD2�d2)¼1;

1�d2þMax(0, D1�d2))/(D1�d1þD2�d2)¼1;

�d1)þD2�d1þD1�d2)/(D1�d1þD2�d2)¼1;
D1�d1

2ðD1�d1 Þ
¼ 0:5;

D2�d1

2ðD2�dÞZ0:5;

1Z0:5;

0:5

0:5
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For five different cases shown in Fig. 6, we can calculate
p(o1!o2) using Eq. (5.3.1). For the case in Fig. 7(a),
p(o1!o2)¼1, the case in Fig. 7(e), p(o1!o2)¼0, no matter
the values of two distance intervals. For the case in
Fig. 7(b), assume that [d1, D1]¼[3.7] and [d2, D2]¼[4.5,
9.5], we can obtain p(o1!o2)¼0.72, which means that o1

is nearer to query q than o2. For the case in Fig. 7(c),
assume that [d1, D1]¼[4, 15] and [d2, D2]¼[4.5, 9.5], we
can obtain p(o1!o2)¼0.34, which indicates that o2 is
nearer to query q than o1. For the case in Fig. 7(d), assume
that [d1, D1]¼[8, 11] and [d2, D2]¼[4.5, 9.5], we can
obtain p(o1!o2)¼0.79, which means that o1 is nearer to
query q than o2.

With Eq. (5.3.1), for each object (denoted as oi) in the
object candidate set within a division time subinterval,
we can calculate the possibility that oi is nearer to the
query point than another object (denoted as oj) in the
object candidate set, denoted as pij¼p(oi!oj). If there are
m objects in the object candidate set, we can determine
the possibility about oi being one nearest neighbor to the
query point (denoted as Pi) by calculating the portion of
the sum of possibility oi to any other object in the sum of
all of the possibility about any two objects in the object
candidate set, as shown in Definition 5.3.3. Since
pji¼1�pij, then pijþpji¼1, the sum of all of the possibility
about any two objects in m objects is

Pm
i ¼ 1Pm

j ¼ 1 pij ¼m2=2.

Definition 5.3.3. For the object oi in the object candidate
set within a division time subinterval, the possibility
about oi is one nearest neighbor to the query point q

can be calculated as Eq. (5.3.2):

Pi ¼

Pm
j ¼ 1 pijPm

i ¼ 1

Pm
j ¼ 1 pij

¼
2
Pm

j ¼ 1 pij

m2
ð5:3:2Þ

We still use the example shown in Fig. 6 to illustrate
how to calculate the possibility for the object, which can
be one nearest neighbor to the query point. Referring to
the distilling phase, we can obtain the object candidate
set as {o2, o3, o1} within the division time subinterval [tR3,
tR4]. Using Eq. (5.3.1), we calculate the possibility about
one object of {o2, o3, o1} is nearer to q than another object
in {o2, o3, o1}, denoted as p11¼0.5, p12¼0.37, p13¼0.67,
p21¼0.63, p22¼0.5, p23¼0.95, p31¼0.33, p32¼0.05,
p33¼0.5. According to Eq. (5.3.2), we calculate the possi-
bility for o1, o2 and o3, respectively. While P1¼2(0.5þ
0.37þ0.67)/9¼0.34, similarly, P2¼0.46 and P3¼0.2. By
sorting these possibilities in descending order, it is (0.46,
0.34, 0.2). We can conclude that the 2NN query result
within [tR3,tR4] is /[tR3,tR4],{(o2,0.46),(o1,0.34)}S, which
indicates that the possibilities of o2 and o1, which are
two nearest neighbors are higher than the possibility of
o3, which can be the nearest neighbor to the query point.
The possibility-ranking phase algorithm is presented
as below:

Algorithm 3. Possibility-ranking Phase
Input: The output from distilling Phase:
Ocandidate¼{/O0

0
, [t0, TR1

0
]S,y/Oi

0
, [TRi

0
, t1]S,y/Oi�1

j�1
, [TRi�1

j�1
,

TRi

j�1
]S,y/Oi

n�1
, [TRi

n�1
, tn]S}
Output: KNN query results, including the K objects with possibility

for time subinterval
j�1 j�1 j�1
1.
 For each object oi in Oi�1 within [TRi�1, TRi ]
Calculate the distance interval [di, Di]
j�1 j�1 j�1
2.
 For any two object oi and oj in Oi�1 within [TRi�1, TRi ]
Calculate p(oi!oj) using Eq. (5.3.1)
pij¼p(oi!oj)
j�1 j�1 j�1
3.
 For each object oi in Oi�1 within [TRi�1, TRi ]
Calculate Pi using Eq. (5.3.2)
Pi is recorded in (oi, Pi)
4.
 Sorting the calculated Pi in descending order
j�1 j�1
The first K objects are the query result for [TRi�1, TRi ]
6. Performance evaluations

In this section, we present the results of several experi-
ments to analyze the performance of the proposed PVKNN
algorithm. Firstly, the performance of PVKNN algorithm is
analyzed by measuring the CPU time of processing a CKNN
query. Several important effective aspects of CKNN queries
on performance of PVKNN algorithm are evaluated, which
are the density of moving objects, the value of K, and the
velocity interval of each moving object. Secondly, the
precision and false negative ratio of PVKNN algorithm are
evaluated by measuring the percentage of obtaining real
KNNs and missing KNNs, respectively. Thirdly, the perfor-
mance of PVKNN algorithm is compared with another CKNN
query approach mainly on the factor of precision. Especially,
the TPRuv-tree is used as the underlying index in these two
approaches to improve the search performance. Finally, the
update cost of TPRuv-tree is estimated with different num-
bers of moving objects and data updates.

6.1. Experimental data sets

All the experiments are conducted on an Intel Pen-
tium(R) Dual CPU 1.86 GHz with 2 GB RAM running Win-
dows XP Professional. The page size is set to 4KB. The
algorithm is implemented using Microsoft Visual Studio Cþþ
and the STL library. One synthetic data set is used in our
simulation, which consists of 20,000 nodes. A real network
road network of Oldenburg in Germany is used in the
experiments, as shown in Fig. 8 (http://www.census.gov/
geo/www/tiger/), which consists of 6,105 nodes. In order to
demonstrate the scalability of the proposed PVKNN algo-
rithm, the experiments are also conducted on a larger real
road network, which is the network of San Francisco Bay
Area (BAY) in US (http://www.dis.uniroma1.it/~challenge9/
download.shtml), which consists of 321,270 nodes. A net-
worK-based Generator of Moving Objects [36] is used to

http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/
http://www.dis.uniroma1.it/&sim;challenge9/download.shtml
http://www.dis.uniroma1.it/&sim;challenge9/download.shtml


Fig. 8. Road network of Oldenburg city.

Table 2
Parameter setting in the experiments.

Parameters Value

Number of query objects 1k

Number of moving objects 10k, 20k,y,100k

Density of moving objects 10%, 15%, 20%, 25%

Number of data updates 100k,y,500k,y,1000k

Number of K 1, 5, 10, 20

Multiple of minimal velocity of

moving objects

1, 2, 5, 10

Dataset Synthetic dataset, Oldenburg

dataset, San Francisco Bay Area

(BAY) dataset
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generate the moving objects and query objects, whose
start locations are uniformly spread over a road network
with different densities from 10% to 25% (density will be
explained in Section 6.2).

The minimal velocity of a moving object can be
randomly set between 0 and 4 m per time unit. The
maximal velocity is designed to be a multiple of the
minimal velocity, and the value of multiple is randomly
chosen from 1 to 10. The moving velocity interval and
direction of each object would change when it reaches a
road intersection. For the query objects, the setting
method of moving velocity interval is similar to that of
the moving objects. The CKNN query may vary in the
value of K, such as 1.5,10 and 20, and we set the default
value of K as 10 and set the default length of query time
interval as 100 time units. Table 2 presents the setting of
parameters used in the experiments. The values in bold
face are used as the default values of corresponding
parameters in our experiments.

6.2. Performance of the PVKNN algorithm

First of all, we analyze the performance of PVKNN
algorithm by measuring the running time (CPU time) of
processing a CKNN query, where three important effective
factors are chosen to demonstrate the performance of
PVKNN algorithm. These important factors are the density
of moving objects, the value of K, and the velocity interval
of each moving object. Here, we define the density of
moving objects as follows:

Density¼
the number of moving objects

the number ofedges in the road network

Fig. 9(a)–(c) gives the running time of PVKNN algorithm
in processing a CKNN query for the synthetic dataset, Old-
enburg dataset and BAY dataset, respectively, under various
densities of moving objects varying from 10% to 25%. The
experimental result shows that running time would increase
when the density of moving objects increases. Especially,
when the density of moving objects changes from 20% to
25%, the running time would increase more severely but still
smaller than 3.5 s. Next, we analyze the performance of the
PVKNN algorithm with different K varying from 1 to 20 for
the synthetic, the Oldenburg and BAY data sets, respectively.
As shown in Fig. 9(d)–(f), the running time would increase
when K is equal to 20, because it is more costly to determine
which object among all the object candidates is KNN as the
number of object candidates becomes larger with larger K.



Fig. 9. Performance of the PVKNN algorithm: (a) different density (Synthetic data), (b) different density (Oldenburg data), (c) different density (BAY),

(d) different K (synthetic data), (e) different K (Oldenburg data), (f) different K (BAY), (g) different velocity interval (synthetic data), (h) different velocity

interval (Oldenburg) and (i) different velocity interval (BAY).
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Fig. 9(g)–(i) illustrates the running time of PVKNN algorithm
for the synthetic, the Oldenburg and BAY data sets, respec-
tively, with different velocity intervals of moving objects. The
maximal velocity of the velocity interval is set as the multiple
of minimal velocity, and the value of multiple is set as 1, 2, 5
and 10 accordingly. When the value of multiple is 1, we can
use the PVKNN algorithm to efficiently processing CKNN
queries over moving objects with fixed velocity in road
network. When the value of multiple increases from 1 to 2
or from 2 to 5, the increase of running time is not so
significant. However, when the value of multiple increases
from 5 to 10, the running time increases relative significantly,
because the 10 multiple would make the velocity interval
quite larger to bring about larger pruning distance, which
means that quite more object candidates should be mon-
itored in the distilling phase and possibility-ranking phase of
our PVKNN algorithm.

In summary, the running time for the PVKNN algo-
rithm processing a CKNN query is short. With the increase
of the density of moving objects, the value of K, and the
value of multiple about the velocity interval, the running
time of the PVKNN approach increases slightly within an
acceptable range.

6.3. Precision of the PVKNN algorithm

In this subsection, the precision of the PVKNN
algorithm is measured by the percentage of real KNNs
are obtained, represented as #(VKNNobtain\KNNreal)/
#(VKNNobtain)�100%. The set of real KNNs, denoted as
KNNreal, can be found by calculating the exact distance
between each object and the query point. The set of
obtained KNNs, denoted as VKNNobtain, can be obtained
by the possibility-ranking phase of PVKNN algorithm
(note that only the K higher-possibility objects are
selected finally). The precision analysis can demonstrate
what percentage of real KNNs is obtained, meanwhile
what percentage of obtained KNNs is mistaken as the real
KNNs, which can be presented as false positive ratio and
calculated as (1—precision). However, the precision



Fig. 10. Precision of the PVKNN algorithm. (a) Synthetic data, (b) Oldenburg data and (c) BAY data.

Fig. 11. False negative ratio of PVKNN algorithm. (a) Synthetic data, (b) Oldenburg data and (c) BAY data.
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cannot measure what percentage of real KNNs is missed,
which can be presented as false negative ratio. The false
negative ratio is represented as (#(KNNreal)—#(VKNNob-

tain\KNNreal))/#(VKNNobtain)�100%, where KNNreal and
VKNNobtain can be acquired from the precision analysis
process as well.

Fig. 10(a)–(c) analyzes the precision of PVKNN algo-
rithm at different time instants for the synthetic, Old-
enburg and BAY data sets, respectively. The experimental
results show that when K increases, the precision of the
PVKNN algorithm increases slightly, because the possibi-
lity of obtaining the real KNNs in the set of VKNNobtain

increases with the increase of K. When time passes,
because there are more object candidates to be deter-
mined whether they are obtained as KNNs, then the set of
obtained object candidates would be larger, the precision
would decreases slightly. However, the precision could be
always about 85% in all cases, which demonstrate the
effectiveness of our proposed PVKNN algorithm. Besides
precision, as shown in Fig. 11(a)–(c), we evaluate the false
negative ratio of PVKNN algorithm for the synthetic,
Oldenburg and BAY data sets, respectively. When K

increases, the false negative ratio decrease slightly,
because the possibility of missing the real KNNs in the
set of VKNNobtain decreases with the increase of K. When
time passes, the false negative ratio decreases slightly,
because the set of obtained object candidates becomes
larger as the time passes. From the experimental results
of precision and false negative ratio, the high precision
and low false negative ratio make the PVKNN algorithm
be a valid method to process the CKNN query over moving
objects with uncertain velocity in the road network.
6.4. Comparison

In this subsection, we compare the PVKNN algorithm
with a CKNN approach [15], which can efficiently process
CKNN query over moving objects with fixed velocity in
terms of the precision. The precision of the CKNN algo-
rithm is represented as the proportion X/K, where X is the
number of the real KNNs retrieved by the refining phase
and K is the number of objects required to retrieve by
issuer. In the CKNN approach, when processing the mov-
ing objects with uncertain velocity, the average value of
maximal and minimal velocity of each moving object is
used as the fixed velocity of the moving object. Just for
fairness, we also apply our proposed index structure,
TPRuv-tree presented in Section 4, to the referred CKNN
approach. The TPRuv-tree can efficiently index moving
objects with uncertain velocity in road network by invol-
ving edge connection and moving objects information. In
the TPRuv-tree, for the CKNN approach, the maximal and
minimal velocities of each object are set as their
average value.

Fig. 12(a)–(c) compares the precision of PVKNN and
CKNN according to different query time interval lengths
(varying from 10 to 120 time units) with the synthetic,
Oldenburg and BAY data sets, respectively. From the
experimental results, we can see that the precision of
CKNN approach is about 80%, and the precision of the
PVKNN algorithm can be about 90% in all different query
interval lengths. The reason why the precision of the
PVKNN algorithm is higher than that of the CKNN
approach is that the velocity interval of each object in
PVKNN algorithm can describe the motion of moving
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object better, which can make the possibility of obtaining
the real KNNs higher. In addition, when time passes, the
precision of PVKNN algorithm would decreases slightly, as
discussed in Section 6.3. For the CKNN approach, when
time passes, the precision would also decrease, because
the pruning distance would become larger with time
passes, which brings about more object candidates to be
determined as real KNNs, and then the possibility of
retrieving real KNNs from larger object candidate set
decreases.

The number of K is another critical parameter affecting
the precision of processing CKNN queries. As shown in
Fig. 12(d)–(f), when K increases from 1 to 20, the precision
of the PVKNN algorithm increases slightly, as discussed in
Section 6.3. For the CKNN approach, the change of preci-
sion is not stable according to the increase of K, since the
possibility of retrieving the real KNNs is not so related with
the value of K. No matter how K changes, the precision of
the PVKNN algorithm is higher than that of the CKNN
approach, which indicates that the PVKNN algorithm is
Fig. 12. PVKNN algorithm versus CKNN algorithm (a) Query time (Synthetic dat

K (Synthetic data) (e) Number of K (Oldenburg data) and (f) Number of K (BAY

Fig. 13. Update cost over different number of moving objects.
quite suitable for the highly dynamic environments in
which objects change their velocities frequently.
6.5. Update cost

We estimate the update performance of the index
update TPRuv-Tree in terms of index update I/Os with
different number of moving objects and data updates using
the synthetic, Oldenburg, and BAY data sets, respectively.

Fig. 13(a)–(c) analyzes the index update I/Os with the
number of moving objects varying from 10 K to 100 K.
When the number of moving objects increases, the index
update I/Os would increases slightly. In the BAY dataset,
the index update I/Os is more than that of the Synthetic
and Oldenburg dataset, since the road network of BAY is
more complicated than Synthetic and Oldenburg. If the
road network is more complicated, when a moving object
reaches a road intersection, the TPRuv-Tree needs more I/Os
cost to delete the object information from an objset and
a), (b) Query time (Oldenburg data), (c) Query time (BAY), (d) Number of

).

(a) Synthetic data, (b) Oldenburg data and (c) BAY data.



Fig. 14. Update cost over query time. (a) Synthetic data, (b) Oldenburg data and (c) BAY data.
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insert it to another objset. As shown in Fig. 14(a)–(c), when
the number of data updates increases from 100 K to
1000 K, the changes of the index update I/Os are slim,
because the data updates only incurs the update of the objset

connecting to the access table of the leaf node of the TPRuv-
Tree without cost of node splitting and propagation of MBR
updates. Getting from the experiment results, we can con-
clude that the direct access table of TPRuv-Tree involving the
connected information of edges and objects has a great
contribution to improve the update performance.

7. Conclusions

In this paper, we studied the problem of processing
CKNN query over moving objects with uncertain velocity
in road networks within a given time interval. We
proposed a Distance Interval Model (DIM) to calculate
the distance interval for a moving object with uncertain
velocity and direction at a time instant, which involves
the minimal and maximal distances between a moving
object and the query point. With the calculation methods
of DIM, we developed the PVKNN algorithm to efficiently
process a CKNN query. The pruning phase of PVKNN
algorithm is used to pruning the objects, which are
impossible to be the query result within the given time
interval. Then, the distilling phase is designed to deter-
mine the division time subintervals of the given time
interval where the qualified object candidates are dis-
tilled, meanwhile the minimal and maximal distances
between the moving objects and the query point can be
represented as a linear function of time. Finally, the
possibility-ranking phase is presented to determine the
KNN query results with possibility for each division time
subinterval. Simulation experiments have demonstrated
the efficiency and effectiveness of the proposed approach.

There are several interesting avenues for future work.
One extension of this work is to process continuous range
monitoring of mobile objects in road networks and
reverse nearest-neighbor queries with the proposed
approach. Another extension is to further enhance the
precision of CKNN query results.
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