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Abstract. In recent years, cross-modal methods have been extensively
studied in the multimedia literature. Many existing cross-modal meth-
ods rely on labeled training data which is difficult to collect. In this pa-
per we propose a cross-modal self-taught learning (CMSTL) algorithm
which is learned from unlabeled multi-modal data. CMSTL adopts a
two-stage self-taught scheme. In the multi-modal topic learning stage,
both intra-modal similarity and multi-modal correlation are preserved.
And different modalities have different weights to learn the mutli-modal
topics. In the projection stage, soft assignment is used to learn projection
functions. Experimental results on Wikipedia articles and NUS-WIDE
show the effectiveness of CMSTL in both cross-modal retrieval and image
hashing.

Keywords: cross-modal retrieval, image retrieval, image hashing, self-
taught learning.

1 Introduction

Over last decades, with the advance of computer network and multimedia tech-
nologies, we have witnessed a massive explosion of multimedia content on the
web. Large amounts of multi-modal data, such as images and texts, are gener-
ated, shared and accessed on social websites, e.g., Flickr,Wikipedia andYouTube.
Classical uni-modal approach [1] is not able to deal with these multi-modal data.

Cross-modal approach which analyzes the correlation of heterogeneous modal-
ities, has been extensively studied in the multimedia literature [2,3,4,5,6]. They
can solve the retrieval of heterogeneous data, e.g., using text query to retrieve
images. Since the cross-modal correlation is beneficial for bridging the ”semantic
gap”, the performance of uni-modal retrieval is likely to be improved by cross-
modal approach [3,7]. In many previous studies on cross-modal retrieval [3,4,5],
class labels are used to construct the cross-modal correlation. If an image and a
text belong to the same class, then they are considered as relevant. However, la-
beling the training data is usually labor intensive and expensive, which makes the
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labeled data difficult to be collected. Another disadvantage of using class labels for
cross-modal learning is that classes may be limited in some domain. For example,
’apple’ may not be connected to ’computer’ if labeled data is about fruit.

In this paper we propose a novel method: cross-modal self-taught learning
(CMSTL) for cross-modal image retrieval. Unlike previous methods which ana-
lyze cross-modal correlation according to class labels, CMSTL analyzes the latent
correlation according to the co-occurrence of heterogenous data. CMSTL does
not require any labeled training data, it only needs multi-modal documents for
training. Multi-modal data are usually tend to co-occur in the same documents
on many social websites. Therefore, CMSTL is more practical than previous
methods in the real world.

CMSTL adopts the two-stage self-taught scheme [8]. Since self-taught scheme
have two stages: unsupervised learning and supervised learning, methods based
on this scheme can both benefit from effective unsupervised and supervised ap-
proaches. In the first stage, an effective hierarchical multi-modal approach is
proposed to generate latent topic. Intra-modal topics of each modality are first
generated from intra-modal similarity. Then they are all combined to a uni-
form multi-modal topic space. These two generations are combined in a joint
objective function from which the final multi-modal topics can be optimized. In
the generation of multi-modal topics, different modalities have different weights.
It makes our method more adaptive than traditional methods which treat all
modalities equally. In the second stage, a soft supervised projection is used, and
all modality are projected to the latent topic space via kernel least square regres-
sion (KLSR). We test our method on two real-world datasets: Wikipidia articles
[3] and NUS-WIDE [9]. The experimental results show the effectiveness of our
method in cross-modal retrieval. We further extend CMSTL to image hashing
and the results show that our cross-modal method improves uni-modal image
retrieval.

The rest of this paper is organized as follows. In section 2 we discuss the
related work. In section 3 we describe the framework of our CMSTL. Section 4
shows the experimental results of cross-modal retrieval and image hashing on
two datasets. Finally we conclude in Section 5.

2 Related Work

In recent years, many efforts have been devoted to the cross-modal multimedia
retrieval. Most cross-modal methods focus on learning an uniform space where
different modalities are correlated. One type of methods analyze latent correla-
tion, which is based on the co-occurrence of multi-modal data, to construct the
uniform space. In [2], multimedia correlation space (MMCS) is constructed from
multi-modal data. However, its main limitation is the lack of out-of-sample gen-
eralization. New queries must be first mapped to their nearest neighbors in the
training set. [10] uses canonical correlation analysis (CCA) and cross-modal fac-
tor analysis (CFA) in the context of audio-image retrieval. Both CCA and CFA
learn a latent space where two modalities are correlated. Kernel CCA (KCCA)
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is proposed in [11] to extract translation invariant semantics of text documents
written in multiple languages. [12] also uses KCCA to model correlation between
web images and corresponding text captions.

Another type of cross-modal methods learn the cross-modal correlation space
from class labels. In [3], both images and texts are represented by the poste-
riors of class labels. Logistic regression is used to project documents into the
probabilistic space of class. In [4], a semantic generation model is proposed for
cross-modal retrieval, the correlation of different modalities is described by their
generation from semantic labels. In [13], a joint graph regularized heterogeneous
metric learning (JGRHML) algorithm is proposed to improve the semantic met-
ric, which is learned through label propagation. [5] proposes the latent seman-
tic cross-modal ranking (LSCMR) to discriminatively learn a latent low-rank
embedding space by structural large margin learning. LSCMR is trained from
supervised ranking examples, which are determined by the class labels shared
among documents. These methods have the limitation that their performance
depends on the class labels. If the class labels are not sufficient to describe the
cross-modal correlation well, their performance may be affected.

Recently some methods are proposed to solve the problem of large-scale mul-
timedia retrieval, including cross-modal retrieval. Spectral hashing [14] and self-
taught hashing [8] are two representative methods for large-scale uni-modal re-
trieval. Spectral Hashing uses a subset of thresholded eigen-vectors of the graph
Laplacian as hashing codes. Self-taught hashing adopts the self-taught scheme
which is similar to our methods, the difference is that it uses hard assignment
to obtain the binary codes, which may cause the loss of semantic information.
Cross-modality similarity-sensitive hashing (CMSSH) [15] uses the supervised
similarity learning method boosting to embed data into the hamming space.
Multimodal latent binary embedding (MLBE) learns the hashing codes in a
probabilistic framework. Both CMSSH and MLBE rely on training data labeled
by classes, and they cannot work while the labels are missing. Cross-view hash-
ing (CVH) [16] requires predefined cross-modal similarities of the training data.
But if the cross-modal similarity matrix is set to identity matrix, CVH can be
learned from unlabeled multi-modal data.

3 The Description of Our Framework

In this sectionwe describe the framework of cross-modal self-taught learning (CM-
STL), which contains two learning stages: multi-modal topic learning (MMTL)
and projection function learning. MMTL learns latent topics from multi-modal
training data, then projection function is learned to represent test data from each
modality by these topics.

3.1 Learning Multi-modal Latent Topics

MMTL learns latent topics which can correlate different modalities, from unla-
beled multi-modal training data. Suppose there are N multi-modal documents
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D1, . . . , DN . Each documentDn containsM modalities, andDn =
{
x1
n, . . . , x

M
n

}
,

where xm
n is the feature of m-th modality. In our experiments, we only consider

two modalities: image and text, thus M = 2 and Dn is an image-text pair in fact.
But our methods can also be applied to more modalities (M > 2).

For each modality, we construct its intra-modal similarity graph Am, which
is defined as:

Am
ij =

{
simm(xm

i , xm
j ), xm

i and xm
j are k nearest neighbors

0, otherwise
(1)

where simm(xm
i , xm

j ) is the similarity of xm
i and xm

j .
To learn the latent topics from multi-modal documents, we first generate

intra-modal topic matrix Fm ∈ R
N×Tm for each modality. Tm is the number of

intra-modal topics. Fm can preserve the latent information of the m-th modal
features, it is obtained by minimizing the following Graph Laplacian regularizer:

Tm∑

k=1

N∑

i=1

N∑

j=1

Am
ij

(
fm
ik

dmii
− fm

jk

dmjj

)

= Tr
(
FT
mLmFm

)
(2)

where fm
ik is an element of Fm, and dmii is the sum of i-th row of Am. Lm =

I −D
−1/2
m AmD

−1/2
m , I is the identity matrix, Dm is the diagonal matrix and its

diagonal element is dmii . Tr(·) denotes the trace operator.

After we obtain intra-modal latent semantic matrices Fm|Mm=1, we use them
to generate the multi-modal latent topic matrices F ∈ R

N×T . T is the number
of multi-modal topics. F combines the latent information of all modalities, and
each Fm generates the final F by minimizing the following function:

‖F − FmWm‖2F (3)

where ‖·‖2F denotes the Frobenius norm. Wm ∈ R
Tm×T is the weight matrix for

the generation of F .
In sum, the multi-modal topic matrix F is hierarchically generated. At first,

intra-modal topic matrices Fm|Mm=1 are generated by intra-modal similarity.

Then multi-modal topic matrix F is generated from all Fm|Mm=1.
We optimize the hierarchical generation in a joint framework. By combining

(2) and (3), we arrive at the following objective function:

min
F

M∑

m=1

(
Tr

(
FT
mLmFm

)
+ α2

m ‖F − FmWm‖2F
)

s.t. FT
mFm = I, m = 1, . . . ,M

FTF = I
M∑

m=1
αm = 1 (4)

where αm is the weight parameter, it represents the importance ofm-th modality
for the generation of F , and we can easily find that (4) is convex respect to αm.



Cross-Modal Self-Taught Learning for Image Retrieval 261

By setting the derivative of (4) w.r.t. Wm to zero, we have:

Wm = FT
mF (5)

Substituting Wm in (4), the objective function becomes:

M∑

m=1

(
Tr

(
FT
mLmFm

)
+ α2

mTr
(
I − FTFmFT

mF
))

(6)

We adopt an alternating optimization to solve (6). More specifically, we al-
ternatively update F , Fm and αm to optimize the objective function.

1) Optimizing F : We fix Fm and αm, then (6) can be reformulated as:

max
F

Tr

(
FT

M∑

m=1

(
α2
mFmFT

m

)
F

)

s.t. FTF = I (7)

It is obviously that (7) is an eigenvalue problem, and we can obtain F by eigen-

decomposition of
∑M

m=1

(
α2
mFmFT

m

)
.

2) Optimizing Fm: We fix F and αm. According to the trace property:
Tr

(
FTFmFT

mF
)
= Tr

(
FT
mFFTFm

)
, (6) can be transformed to:

min
Fm

Tr
(
FT
mCmFm

)

s.t. FT
mFm = I (8)

where

Cm = Lm − α2
mFTF (9)

We can also find that Fm is learned by solving the eigenvalue problem of (8),
3) Optimizing αm: F and Fm are fixed, by using Lagrange multiplier, we can

obtain:

αm =
1
/
Tr

(
I − FTFmFT

mF
)

∑M
i=1 1

/
Tr

(
I − FTFiFT

i F
) (10)

The whole alternating optimization process is illustrated in Algorithm 1. In
the implementation of this algorithm, we initialize Fm by solving the eigenvalue
problem of (2), and αm|Mm=1 are set to the same. Since the objective function
is lower bounded by 0 and it will keep decreasing in each step, its convergence
is guaranteed. One advantage of our topic learning is that the importance of
different modality for generating the latent topic is different, while previous cross-
modal methods such as CCA treat all modalities equally. Thus our topic learning
methods is more adaptive. Another advantage is that the hierarchical generation
preserves not only intra-modal similarity, but also multi-modal correlation which
is seldom considered in previous methods.
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Algorithm 1. The learning process of MMLSA

Input:
Am|Mm=1

Output:
F

1: Compute Lm|Mm=1;

2: Initialize Fm|Mm=1 and αm|Mm=1;
3: while t < T do
4: Update F by solving the eigenvalue problem of (7);
5: Update Fm|Mm=1 by solving the eigenvalue problem of (8);

6: Update αm|Mm=1 according to (10);
7: t=t+1;
8: end while

3.2 Learning Projection Functions

Heterogenous data in training documents are correlated by multi-modal topics.
However, for new data out of the training set, we still have to learn the explicit
projection from each modality to the topic space. In the previous self-taught
scheme [8], F is converted into binary codes via thresholding, and then binary
topics can be treated as class labels. At last, classifiers which project documents
into the latent topic space, are trained via some classification methods, such
as support vector machine (SVM). However, using binary codes may lose some
semantic information. Generally, it’s better to use a soft assignment for latent
topics.

In this paper we use a probabilistic soft assignment to learn the projection
functions. Previous methods [3,17] have shown the effectiveness of image retrieval
in probabilistic space. Therefore, the probabilistic representation for latent topics
should be better than binary codes. To obtain a probabilistic space, we use Gaus-

sian mixture on F to learn S probabilistic topics, and predict Y =
[
yT1 , . . . , y

T
N

]T

. yn is the posterior vector of fn and it is predicted by the Gaussian mixture
model.

Y is the final topic representation for training documents, we can use super-
vised methods to learn the function to project new documents into this topic
space. Since Y is not binary, classification methods cannot work in this condi-
tion, and we use kernel least square regression (KLSR) instead. The objective
function of KLSR is described as follows:

min
Pm

‖KmPm − Y ‖2F + λTr
(
PT
mKmPm

)
(11)

where Km is the kernel function of the m-th modal training features. Pm is the
projection weight for the m-th modality. λ > 0 is the regularization parameter.
By setting the derivative of (11) w.r.t Pm to zero, we can easily get the weight
matrix:

Pm = (Km + λI)
−1

Y (12)
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In order to effectively compute the inverse. We perform singular singular value
decomposition (SVD) to obtain a pseudo-inverse of Km + λI = UmΛVm

T , which

is computed by (Km + λI)−1 = VmΛ̄UT
m, where Λ̄ is defined as:

Λ̄ii =

{
0, if Λii < ε
Λ−1
ii , otherwise

(13)

where ε = 1 is a threshold. Then the weight matrix is computed by:

Pm = VmΛ̄UT
mY (14)

Algorithm 2. The process of cross-modal self-taught learning

Input:
Am|Mm=1,Km|Mm=1

Output:
Pm|Mm=1

1: Compute F according Algorithm (1);
2: Train the Gaussian Mixture Model and predict the posterior matrix Y on F ;
3: for each modality m do
4: Do the SVD: Km + λI = UmΛVm

T ;
5: Compute Λ̄ according to (13);
6: Compute Pm according to (14) ;
7: end for

The self-taught learning process is described in Algorithm 2. Given a new
document from the m-th modality, we first compute its kernel vector k, then
we can compute its topic representation according to y = kPm. Note that some
elements in y may not between 0 and 1, thus we have to normalize y to make
it be a probabilistic vector. Softmax function is used to normalize y, for each
element yi in y, it is normalized by:

ȳi =
exp(yi)

S∑

j=1

exp(yj)

(15)

Finally, we use the normalized vector ȳ = [ȳ1, . . . , ȳT ] to represent new document
for retrieval.

4 Experiments

4.1 Datasets and Features

In this paper, two real world multi-modal image datasets: Wikipedia articles [3]
and NUS-WIDE [9] are used for evaluation. These two datasets are both split
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to training set and test set. All methods are only learned from training set, and
their performance is evaluated on test set.

Wikipedia dataset was assembled from the ”Wikipedia feature articles”. It
contains 2,866 multi-modal documents (image-text pairs), and each of them is
labeled with exactly one of 10 semantic concepts which can be used as the ground
truth. Documents share the same concept are regarded as relevant. 2,173 of the
image-text pairs in Wikipedia dataset are chosen as training set, and the rest
693 are used as test set. 10-D LDA features are extracted for texts, and images
are represented by 128-D SIFT BoVWs 1.

NUS-WIDE dataset contains 269,648 multi-modal documents, each multi-
modal documents is also an image-text pair and text in NUS-WIDE refers to
the associated social tags. Each image-text pairs are labeled by 81 concepts that
can be used for evaluation. We prune the original NUS-WIDE to form a new
dataset consisting of 203,597 image-text pairs by keeping the images that have
at least one tag and one concept. Then this dataset is split to 5,090 training set
and 198,507 test set. 1000-D binary features are used for tags, and 500-D SIFT
BoVWs are used for images 2.

4.2 Results of Cross-Modal Retrieval

In this subsection we compare our method with several representative methods
for cross-modal retrieval. CFA[10], CCA[18], and KCCA[12] are used for compar-
ison. We also show the performance of a baseline method MMLT+SVM, where
the latent topics is first learned by Algorithm 1, and then the self-taught scheme
described in [8] is used to learn projection functions for each modality respec-

tively. In our methods, the topic dimension of Fm|Mm=1, F , and Y are all set to
the same, they are set to 8 on Wikipedia dataset and 32 on NUS-WIDE dataset.
In the computing of intra-modal similarity matrices Am|Mm=1, histogram inter-
section distance is used for both image and text features. The nearest neighbors
for Am|Mm=1 is set to 500 on Wikipedia dataset, and 1000 on NUS-WIDE dataset.
In all kernel based methods, the histogram intersection kernel which is same to
histogram intersection distance, is used for both image and text features. The
dimension of latent space in all methods are set to the same, 8 in Wikipedia
dataset and 32 in NUS-WIDE dataset. Normalize correlation (NC) distance [3]
are used for all methods in cross-modal retrieval.

We adopt the non-interpolated mean average precision (MAP) to evaluate the
performance of cross-modal retrieval. Given a query and the rank list of retrieval
set, the average precision (AP) is defined as:

AP =
1

R

N∑

i=1

pre(i)rel(i) (16)

1 All features can be downloaded from http://www.svcl.ucsd.edu/projects/

crossmodal/
2 All features can be downloaded from http://lms.comp.nus.edu.sg/research/

NUS-WIDE.htm

http://www.svcl.ucsd.edu/projects/crossmodal/
http://www.svcl.ucsd.edu/projects/crossmodal/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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(b) Text query (Wikipedia)
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(c) Image query (NUS-WIDE)
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(d) Text query (NUS-WIDE)

Fig. 1. The PR curves of cross-modal retrieval on two datasets

where N is the size of retrieval set. R is the number of relevant documents in
the retrieved set, pre(i) is the precision of top i retrieved documents. rel(i) = 1
if the i-th retrieved documents is relevant to query, otherwise rel(i) = 0. The
MAP score is the mean of AP scores from all the queries. Besides MAP, the
retrieval performance is also measure by Precision-Recall (PR) curve.

We evaluate two types of cross-modal retrieval on test set. In image query, im-
ages in test set are used as queries and texts in test set form retrieval set. In text
query, test texts are queries and test images form retrieval set. Table 1 shows
the MAP scores of cross-modal retrieval. It should be noted that the results of
SCM have been reported in [3], thus its results on NUS-WIDE is null. We can
find our CMSTL performs best on both two datasets. It performs even better
than SCM which is learned from labeled training data on Wikipedia dataset. In
usual methods learned from the training data labeled by ground truth should
obtain better performance. CMSTL performs better than KCCA, CCA and CFA
which treat all modalities equally, which confirms that it is worth weighting dif-
ferent modalities for the learning of latent topics. CMSTL also obtains higher
MAP scores than MMTL+SVM, which demonstrates the advantage of our soft
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Table 1. The comparison of MAP scores for cross-modal retrieval. The best results
are marked in bold.

Datasets Wikipedia NUS-WIDE

Methods Image Query Text Query Mean Image Query Text Query Mean

SCM[3] 0.277 0.226 0.252 - - -

CFA 0.245 0.166 0.210 0.313 0.315 0.314

CCA 0.249 0.193 0.221 0.291 0.292 0.292

KCCA 0.262 0.196 0.229 0.326 0.320 0.323

MMLT+SVM 0.181 0.181 0.181 0.305 0.313 0.309

CMSTL 0.295 0.234 0.265 0.366 0.344 0.355

projection scheme. The PR curves on two datasets are shown in Figure 1, we
can see they are consistent with the MAP scores.

4.3 Results of Image Hashing

We have shown the superiority of CMSTL in cross-modal retrieval. In this subsec-
tion we show its performance on image hashing for large-scale retrieval. CMSTL
can be easily extended for image hashing by thresholding the probabilistic latent
vector ȳ. For the i-th topic, we obtain its threshhold θi by computing the mean
of all values of this topic in the retrieval set. If ȳi > θi, we set it to 1, otherwise
we set it to 0. Generally cross-modal correlation is benefit to image retrieval.
Thus CMSTL should be effective in image hashing.

We compare CMSTL based hashing (CMSTLH) to several representative
hashing methods, including laplacian co-hashing (LCH)[19], spectral hashing
(SH) [14] 3, self-taught hashing (STH) [8] 4, cross-view hashing (CVH) [16],
where CVH is a cross-modal hashing method. For all hashing methods, their
code length is set to 16 on Wikipedia and 32 on NUS-WDE, which are opti-
mal on two datasets respectively. We use MAP50 to measure the performance,
MAP50 is similar to MAP described in section 4.2, the difference is that MAP50
is compute by the top 50 relevant documents, it can be compute by setting
N = 50 in (16). The performance is also evaluated on test set. In each retrieval,
an image is used as query and other images in test set form retrieval set.

Table 2 shows the MAP scores on Wikipedia and NUS-WIDE. We can observe
that CMSTL obtains the highest MAP scores on both two datasets. Although
CVH is a cross-modal method, it does not always performs better than uni-modal
methods. These results confirm that our method is also suit to image hashing.
Since our methods is not specially designed for hashing, the improvement of
CMSTLH is not large. Figure 2 shows the PR curve of image hashing, the results
are consistent with Table 2.

3 http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
4 http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010_suppl.

html

http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010_suppl.html
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010_suppl.html
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Table 2. The comparison of MAP50 scores for image hashing. The best results are
marked in bold.

Datasets LCH SH STH CVH CMSTLH

Wikipedia 0.382 0.263 0.374 0.385 0.397

NUS-WIDE 0.545 0.353 0.542 0.511 0.569
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Fig. 2. The PR curves of image hashing on two datasets

5 Conclusion

In this paper we propose a cross-modal self-taught topic learning (CMSTL) al-
gorithm which contains two stages: multi-modal topic learning (MMTL) and
projection function learning. In MMTL, hierarchial generation is used to obtain
multi-modal topics. Different modalities have different weights in the genera-
tion process. Then MMTL optimizes the intra-modal similarity and multi-modal
correlation jointly. In projection learning stage, the soft assignment for topics is
used. Topic matrix is converted to a probabilistic form and KLSR is used to learn
the projections function. Experimental results on two real world image dataset
demonstrate the effectiveness of CMSTL in cross-modal retrieval. We further
extend CMSTL to image hashing and find that CMSTL can also improve the
hashing performance.
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