
Mining Class Temporal Speci¯cation Dynamically Based on

Extended Markov Model

Deng Chen*,†,¶, Rubing Huang‡,||, Binbin Qu*,**, Sheng Jiang*,††

and Jianping Ju§,‡‡

*School of Computer Science and Technology

Huazhong University of Science and Technology

1037 Luoyu Road, Wuhan, P. R. China
†Hubei Provincial Key Laboratory of Intelligent Robot

Wuhan Institute of Technology, Wuhan, P. R. China

‡School of Computer Science and Telecommunication Engineering

Jiangsu University, 301 Xuefu Road, Zhenjiang, P. R. China

§School of Mechanical Electronic and Information Engineering

Business College, Hubei University of Technology

634 Xiongchu Road, Wuhan, P. R. China
¶chendeng8899@hust.edu.cn

||rbhuang@ujs.edu.cn
**bbqu@hust.edu.cn
††jwt@hust.edu.cn
‡‡gjdxjjp@126.com

Received 10 October 2013
Revised 24 February 2014

Accepted 25 April 2014

Class temporal speci¯cation is a kind of important program speci¯cations especially for object-

oriented programs, which speci¯es that interface methods of a class should be called in a particular
sequence. Currently, most existing approachesmine this kind of speci¯cations based on ¯nite state

automaton. Observed that ¯nite state automaton is a kind of deterministic models with inability

to tolerate noise. In this paper, we propose to mine class temporal speci¯cations relying on a

probabilistic model extending from Markov chain. To the best of our knowledge, this is the ¯rst
work of learning speci¯cations from object-oriented programs dynamically based on probabilistic

models. Di®erent from similar works, our technique does not require annotating programs. Ad-

ditionally, it learns speci¯cations in an onlinemode, which can re¯ne existingmodels continuously.
Above all, we talk about problems regarding noise and connectivity of mined models and a

strategy of computing thresholds is proposed to resolve them. To investigate our technique's

feasibility and e®ectiveness, we implemented our technique in a prototype tool ISpecMiner and

used it to conduct several experiments. Results of the experiments show that our technique can
deal with noise e®ectively and useful speci¯cations can be learned. Furthermore, our method of

computing thresholds provides a strong assurance for mined models to be connected.

Keywords: Program speci¯cation; class temporal speci¯cation; component interface; Markov

model; speci¯cation mining; program veri¯cation.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, No. 3 (2015) 573–604

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015500047

573

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218194015500047

1. Introduction

Class temporal speci¯cation plays an important role in program veri¯cation, evolu-

tion, understanding, etc. It is also referred to as component interface, object behavior

model and object usage model [1]. A class temporal speci¯cation imposes temporal

constraints regarding the order of calls of class interface methods. For example,

calling peek() on java.util.Stack without a preceding push() gives an

EmptyStackException, and calling next() on java.util.Iterator with-

out checking whether there is a next element with hasNext() can result in a

NoSuchElementException. Client programs that violate such speci¯cations do not

obtain the desired behavior and may even crash the program [2]. However, class

temporal speci¯cation is always implicit and undocumented. Even when available,

there is no guarantee of their consistence, completeness, and correctness. Automatic

speci¯cation mining [3–11] is a promising approach to resolve the problem.

Speci¯cation miner extracts common behaviors from client programs as speci¯-

cations. It ¯rst collects method call sequences from applications statically or dy-

namically. Next, it splits method call sequences into a set of object usage scenarios

(An Object Usage Scenario (OUS) is a method call sequence that contains calls to

one object. For notational convenience, let C be a class, O is an object of C, we use

ous(O) to denote an OUS of O, where each element is a method called upon O).

Finally, it reduces the problem of inferring speci¯cations from the set of OUSs to the

well known grammar inference problem [12] by regarding OUSs as sentences and

speci¯cations as languages. As a result, a speci¯cation is depicted using one or

multiple ¯nite state automata (FSA), where states represent states of involved

objects and transitions represent method calls. Each path from an initial state to a

¯nal state forms a valid OUS. Figure 1 shows an example of speci¯cation for class

java.io.FileOutputStream. The speci¯cation illustrates that, to use class

FileOutputStream, we should ¯rst initiate it through calling its constructor

method FileOutputString (String). Next, we can call method write(byte
[], int, int) multiple times to write data into the stream. Finally, method

close() should be called to close the stream.

One of the disadvantages of the above method is that FSA is a kind of deter-

ministic models with inability to tolerate noise. Noisy OUS is unavoidable, because

S2

FileOutputStream(String) close()

write(byte[], int, int)

S3S1

Fig. 1. FSA of class java.io.FileOutputStream. Each circle represents a state. Arrows denote
transitions labeled with method signatures beside them. The state with an arrow coming in from nowhere

is the initial state and that denoted graphically by a double circle is ¯nal state.

574 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

programs always contain bugs. Consider the Java program shown in Fig. 2, it con-

tains two bugs. The ¯rst one is that object fis has not been correctly initialized at

line 1. The second one is that FileOutputStream fos has not been closed after

line 7. From the program, we can extract two OUSs: ous(fis): <read, read,
close> and ous(fos): <FileOutputStream, write, write>, which have er-

roneous beginning and end method call respectively. These noisy OUSs with erro-

neous temporal relationships threaten accuracy of mined speci¯cations.

To overcome the drawbacks in FSA, Ammons et al. [13] proposed to mine tem-

poral speci¯cations among application programming interfaces (API) or abstract

data types (ADT) based on Probabilistic Finite State Automaton (PFSA). A PFSA

is a nondeterministic ¯nite automaton (NFA), in which each edge is labeled by an

abstract interaction and weighted by how often the edge is traversed while gener-

ating or accepting scenario strings. To mine temporal speci¯cations, ¯rst an o®-the-

shelf PFSA learner was used to analyze scenario strings and generated a PFSA. Next,

another component corer was employed to transform PFSA to NFA by discarding

rarely-used edges and weights. The NFA obtained was used for program veri¯cation

and manual inspection. As investigated, their approach is e®ective in tolerating

noise. However, it has the following limitations: (1) since they employ an o®-the-shelf

PFSA learner, method call sequences should be transformed to scenario strings that

can be accepted by the learner. It may be a nontrivial task for a long method call

sequence; (2) their approach requires annotating programs to extract interaction

scenarios, which reduces the practicality of the approach; and (3) results of trans-

forming PFSA to NFA largely depend on computation of thresholds. Unconnected

NFA may be generated with improper thresholds. For example, consider trans-

forming the PFSA shown in Fig. 3(a) with a threshold 0.2, an unconnected NFA

illustrated in Fig. 3(b) will be obtained. Obviously, the unconnected NFA is an

invalid speci¯cation and useless for program veri¯cation and understanding. How-

ever, details of the topic are omitted in their work.

Markov chain is one of the traditional approaches to handle sequential data and is

often used to model temporal patterns. It has a strong ability of tolerating noise.

Successful applications have been demonstrated in domains of speech recognition [14,

15], signature veri¯cation [16–18] and DNA analysis [19]. Observed that, we propose

to mine class temporal speci¯cations dynamically based on a probabilistic model

(1) FileInputStream fis = null;
(2) FileOutputStream fos = new FileOutputStream("filepath");
(3) byte[] buffer = new byte[1024];
(4) int count = 0;
(5) count = fis.read(buffer));
(6) fos.write(buffer, 0, count);
(5) count = fis.read(buffer));
(6) fos.write(buffer, 0, count);
(7) fis.close();

Fig. 2. Example of noisy OUSs caused by program bugs.

Mining Class Temporal Speci¯cation Based on Markov Model 575

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

extending from Markov chain. Compared with similar works, our technique has the

following characteristics: (1) it learns program speci¯cations in an online mode. Most

existing dynamic program speci¯cation mining tools, such as Daikon [20] and

ADABU [21], work in a two-step mode that a tracer component is ¯rst used to collect

program execution traces in a data ¯le and then an invariant detector or speci¯cation

learner is employed to synthesize program speci¯cations from the ¯le. Problems in

this approach are that speci¯cations mined from di®erent trace ¯les will overwrite

each other rather than integration and mined program speci¯cations are biased to

the trace ¯le. We mitigate the problems by re¯ning program speci¯cations contin-

uously using program execution traces collected from di®erent applications; (2)

rather than annotating programs, our technique can extract interaction scenarios

directly in a more elegant way; (3) we transform probabilistic models into deter-

ministic models based on computed thresholds, which can guarantee that the gen-

erated models are connected; and (4) although we focus on class temporal

speci¯cations in this work, our technique can be generalized to libraries and frame-

works, where the sequence of calls to di®erent classes matters the most.

To investigate our technique's feasibility and e®ectiveness, we implemented our

technique in a prototype tool ISpecMiner and used it to conduct several experi-

ments. Results of the experiments show that our technique can deal with noise

e®ectively and mine useful speci¯cations. Furthermore, the proposed method of

computing thresholds is e®ective in obtaining connected models.

The contributions of this paper are:

. A probabilistic model extending from Markov chain is proposed to describe class

temporal speci¯cations.

. An algorithm is contrived to learn class temporal speci¯cations in an online mode.

. A strategy of computing thresholds used to transform probabilistic models into

deterministic models is introduced.

. A prototype tool ISpecMiner that implements our technique is presented.

. Several experiments are conducted using ISpecMiner.

q0

q2

q3

q5q1 q4

1

0.1

0.9

1

1

0.1

0.9

T=0.2

(a)

q0

q2

q3

q5q1 q4

(b)

Fig. 3. Example of transforming PFSA to NFA with an improper threshold, which results in an uncon-

nected model. (a) PFSA; (b) NFA transformed from the PFSA. Edge labels are omitted. The dashed-line
arrows represent the discarded transitions.

576 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

The rest of this paper is organized as follows: Section 2 introduces the extended

Markov model. Section 3 presents our online learning algorithm. Section 4 introduces

the class interface model, which is used for program veri¯cation and manual in-

spection. Section 5 discusses our technique of transforming probabilistic models into

deterministic models. Section 6 demonstrates results of our experiments. Sections 7

and 8 discuss the related work and present our conclusions.

2. Markov Chain with Final Probability

In this section, we introduce the Markov chain with ¯nal probability (MCF), which is

utilized to model class temporal speci¯cations in this work. We ¯rst present the

de¯nition of Markov chain and its application in modeling class temporal speci¯ca-

tions, and then introduce the extended model with ¯nal probability, ¯nally discuss

advantages of our model.

2.1. Markov chain

Markov chain is a tool to study a speci¯c type of chance process, in which, the

outcome of a given experiment can a®ect the outcome of the next experiment. It is

often used to handle sequential data and model temporal patterns. The formal

de¯nition of Markov chain is presented as follows.

De¯nition 1 (Markov Chain). AMarkov chain M is a 3-tuple (Q, � , �), where Q

is a set of states, � : Q�Q ! ½0; 1� is the transition probability function, which is

always described using a transition matrix P, �: Q ! ½0; 1� is the probability

distribution over initial states. The functions � and � must satisfy the requirements:

8 q 2 Q;
P

q 02Q�ðq; q 0Þ ¼ 1 and
P

q2Q�ðqÞ ¼ 1.

In words, a Markov chain consists of a set of states Q ¼ fq1; q2; . . . ; qrg, r 2 N. An

initial state qs (1 � s � r) is designated with an initial probability �ðqsÞ. A chance

process starts from qs and moves successively from a state qi to qj (1 � i � r,

1 � j � r, qi and qj may refer to a same state that is a state can move back to itself)

with a transition probability �ðqi; qjÞ.
It is a straightforward task to model class temporal speci¯cation using Markov

chain by regarding states as methods and transitions as temporal relationships

among methods. Take the speci¯cation of class FileOutputStream shown in

Fig. 1 as an example, it can be described using a Markov chain illustrated in Fig. 4.

From the model, we can see that a method call sequence (OUS) of class

FileOutputStream must start from state FileOutputStream(String), then
traverses to state write(byte[], int, int) or close() with a probability of

0.9 and 0.1 respectively, ¯nally ends in state close().

2.2. Markov chain with ¯nal probability

Although Markov chain is able to model class temporal speci¯cations, it is not

appropriate for our purpose in some respects. One of the critical drawbacks is that we

Mining Class Temporal Speci¯cation Based on Markov Model 577

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

have no idea of which states an OUS should end in (we call this kind of state ¯nal

state). Take the Markov chain shown in Fig. 4 as an example, we cannot tell whether

state FileOutputStream(String) and write(byte[], int, int) are ¯nal

states. However, ¯nal state is indispensable for us to detect many kinds of errors. For

example, we can detect resource leak error according to whether the ¯nal method of

an OUS of FileOutputStream is method close(). In order to resolve the

problem, we attach a property to each state of a Markov chain to indicate probability

of the state to be a ¯nal state. Formally, we give the de¯nition of this kind of

extended Markov chain as follows.

De¯nition 2 (Markov Chain with Final Probability). A Markov Chain with

Final Probability (MCF) M is a 4-tuple (Q, � , �, �), where Q is a set of states, � :

Q�Q ! ½0; 1� is the transition probability function, which is always described using

a transition matrix P , � : Q ! ½0; 1� is the probability distribution over initial states.

� : Q ! ½0; 1� is the probability distribution over ¯nal states. The functions �, � and

� must satisfy the requirements: 8 q 2 Q,
P

q2Q�ðqÞ ¼ 1,
P

q2Q�ðqÞ ¼ 1 andP
q 02Q�ðq; q 0Þ � 1.

As shown in the de¯nition, MCF preserves most of characteristics of Markov

chain, except violation of the requirement: 8 q 2 Q,
P

q 02Q�ðq; q 0Þ ¼ 1, because of

introduction of ¯nal states. Using MCF, class temporal speci¯cation can be modeled

in a similar manner as that of Markov chain by regarding states as methods and

transitions as temporal relationships among methods. Take the speci¯cation of

FileOutputStream shown in Fig. 1 as an example, it can be described using a

MCF illustrated in Fig. 5. From the MCF, we can see that an OUS of class

FileOutputStream must start from state FileOutputStream(String) and

may end in state FileOutputStream(String), write(byte[], int, int)
and close() with a probability of 0.01, 0.01 and 0.98 respectively.

De¯nition 3 (Connectivity of MCF). Given a MCF M : (Q, � , �, �), a state

q 2 Q is called connected if q is included in a path ofM from an initial state (a state q

which satis¯es �ðqÞ > 0Þ to a ¯nal state (a state q which satis¯es �ðqÞ > 0Þ.

FileOutputStream(String)

InitPro = 1
write(byte[], int, int) close()

0.9

0.1

0.6

0.4

Fig. 4. Markov chain of class FileOutputStream. Rounded rectangles are states labeled with method

signatures above the line. Arrows are transitions with transition probabilities labeled beside them.

InitPro is the probability of a state to be initial states. Actually, all the states have property InitPro,
we omit ones whose value is zero.

578 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Otherwise, it is called unconnected. A MCF is said to be connected if every state in

the MCF is connected, or it is unconnected.

It must be noted that the connectivity of MCF is similar to that of graph.

However, they are di®erent in many aspects. Take the MCFs shown in (a) and (b) of

Fig. 6 as an example, both of them are weak connected graphs but not connected

MCFs. As we investigated, four di®erent kinds of unconnected states may exist in

MCFs, which are illustrated in Fig. 6.

m2

m2

I F

(a)

m2

m2

I F

(b)

m2

m2

I F

(c)

m2m2

I F

(d)

Fig. 6. Di®erent types of unconnected states (¯lled with grey color) in MCF. (a) Unconnected state

without incoming transitions, (b) unconnected state without outgoing transitions, (c) unconnected state

without incoming nor outgoing transitions, (d) unconnected state with both incoming and outgoing
transitions. I and F denote an initial and ¯nal state respectively and all the other states are neither initial

nor ¯nal states. For simplicity, probabilities are omitted.

write(byte[], int, int)

FinalPro = 0.01

close()

FinalPro = 0.98

0.9

0.08

0.6

0.38
InitPro = 1

FinalPro = 0.01

FileOutputStream(String)

Fig. 5. Markov chain with ¯nal probability of class FileOutputStream. Rounded rectangles are states

labeled with method signatures above the line. Arrows are transitions with transition probability labeled
beside them. InitPro is the probability of a state to be initial states. FinalPro is the probability of a

state to be ¯nal states. Actually, all the states should have properties of InitPro and FinalPro, we
omit ones whose value is zero. It must be noted that, given a state q, the sum of its outgoing transition
probabilities and ¯nal probability is di®erent than one. As a matter of fact, it can be less than, equal to

and greater than one.

Mining Class Temporal Speci¯cation Based on Markov Model 579

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

2.3. Advantages of MCF

Currently, existing techniques always use FSA and PFSA to model class temporal

speci¯cation. Compared with those models, our model has the following advantages:

(1) Like any probabilistic models, MCF has inherent ability of tolerating noise.

Generally, three kinds of noises may exist in OUSs, namely, initial noise, se-

quential noise and ¯nal noise. An OUS with initial and ¯nal noise has erroneous

beginning and end method call respectively. For instance, ous(fis): <read,
read, close> and ous(fos): <FileOutputStream, write, write>
extracted from the buggy program shown in Fig. 2 contain initial and ¯nal noise

respectively (the correct beginning and end method call should be FileIn-
putStream() and close()). These two kinds of noises widely exist in

mining speci¯cations, especially when dynamic analysis approaches are

employed, in which, speci¯cations are synthesized from program execution

traces. The problem is that incomplete traces with an incorrect end method call

are always generated due to accidental interruptions of running applications.

The sequential noise interferes with temporal properties between pairs of

method calls. For example, we should ¯rst write data to a ¯le, and then close

FileOutputStream. If an OUS includes a method pair <close, write>,

sequential noise occurs. MCF consists of three kinds of probabilities: transition

probability (�), initial probability (�) and ¯nal probability (�), which can tol-

erate sequential, initial and ¯nal noise respectively.

(2) Since MCF extends from Markov chain, multiple applications can be exploited

based on fundamentals of that. For instance, we can predict the most probable

method following a method M after n steps based on the multi-step transition

probability. In addition, given an OUS, we can ¯nd the most likely path in

Markov chain relying on Viterbi algorithm [22]. Although, little bene¯t for the

domain of speci¯cation mining has been found from these applications, it pro-

vides MCF the additional abilities that most of existing models cannot provide.

Just as Markov chain, MCF has di®erent types, such as ¯rst-order and multiple-

order MCF, discrete and continuous MCF, etc. In this paper, we concentrate on the

¯rst-order, discrete MCF and use it to model class temporal speci¯cations.

3. MCF Online Learning Algorithm

Most existing dynamic speci¯cation mining tools work in two steps: (1) collecting

program execution traces in a data ¯le; (2) learning speci¯cations from the trace ¯le.

This approach learns a model for each trace ¯le. The problem is mined models may be

biased to the input trace ¯le. In this section, we present our online algorithm of

learning MCFs from OUSs. Di®erent from similar works, our algorithm does not save

program execution traces in any ¯le. It receives a method call of an OUS and then

580 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

updates existing models or creates a new one. Since our algorithm evolves models

continuously, more universal program speci¯cations can be achieved.

Our learning algorithm is based on method events. A method event packages all

the necessary information regarding a method call. Its format is given as follows:

ClassIdentifier : ObjectIdentifier : MethodIdentifier

where ClassIdenti¯er, ObjectIdenti¯er and MethodIdenti¯er are used to uniquely

identify classes, objects and methods respectively. In this work, we utilize the full

quali¯ed name of classes, hash code computed according to memory address of

objects and method signature as identi¯ers of classes, objects and methods respec-

tively. Figure 7 illustrates an OUS consisting of four method events. As we can see,

method events in an OUS have the same ClassIdenti¯er and ObjectIdenti¯er. Con-

sequently, we can extract OUSs from method events by categorizing them according

to ClassIdenti¯er and ObjectIdenti¯er conveniently. For notational convenience, let

u be an OUS and e is a method event contained in u, we use classid(eÞ, objid(e) and
methodid(e) to denote the ClassIdenti¯er, ObjectIdenti¯er and MethodIdenti¯er of e

respectively. In addition, we call objid(e) the identi¯er of u.

LetM be a MCF, q is a state, tij is a transition from state i to j, R is the repository

of method events provided for learning. Our technique represents M using a

weighted directed graph GM , where nodes and edges denote states and transitions

respectively. In addition, the following properties are attached to GM .

. ouscount(M) denotes the number of OUSs, which have been used to learn M .

. emgcount(q) denotes the total occurrence number of state (or method) q in R.

. initcount(q) denotes the count of q to be beginning method in all the OUSs of R.

. ¯nalcount(q) denotes the count of q to be end method in all the OUSs of R.

. emgcount(tijÞ denotes the total occurrence number of method pair (i, j) in all the

OUSs of R.

In order to learn MCF, our technique ¯rst instruments Java applications and

collects method events. For each method event e, MCF learner distinguishes whether

the corresponding MCF classid(e) exists. If the MCF does not exist, an empty MCF

will be created or the existing one is obtained. After that, we update the above

properties regarding the MCF and recompute probabilities � , � and �. To update

properties related to transitions, we record the previous method event of all the

OUSs in a hash table H, where the key and value are the object identi¯er of OUSs

java.io.FileOutputStream : 36254132 : FileOutputStream(String)

java.io.FileOutputStream : 36254132 : void write(byte[], int, int)

java.io.FileOutputStream : 36254132 : void write(byte[], int, int)

java.io.FileOutputStream : 36254132 : void close()

Fig. 7. Example of an OUS consisting of method events.

Mining Class Temporal Speci¯cation Based on Markov Model 581

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

and previous method event respectively. In terms of the hash table, transitions can be

obtained using (H[objid(e)], e), where H[k] returns the value in H with key k. The

outline of our online learning algorithm is presented in Algorithm 1. From the al-

gorithm, we can see that, �ðp; qÞ is the ratio between count of transition (p, q) and

Algorithm 1 MCF Online Learning Algorithm
Input: RM : the repository of MCFs, H : hash table of previous method events, e:
a method event.
Output: the updated repository of MCFs RM .
Methords:
1) if RM not contains MCF classid(e) then
2) Add an empty model M to RM .
3) else
4) Get existing MCF classid(e) from RM as M .
5) end if
6) if M not contains state methodid(e) then
7) Add state q labeled with methodid(e) to M .
8) else
9) Get state methodid(e) from M as q.
10) end if
11) emgcount(q) ← emgcount(q) + 1.
12) if e is the beginning method call of an OUS then
13) initcount(q) ← initcount(q) + 1.
14) ouscount(M) ← ouscount(M) + 1.
15) end if
16) if e is the end method call of an OUS then
17) finalcount(q) ← finalcount(q) + 1.
18) end if
19) Get previous method event e of OUS objid(e) from H .
20) Get state methodid(e) from M as p.
21) if M not contains transition (p, q) then
22) Add transition (p, q) to M .
23) else
24) Get transition (p, q) from M .
25) end if
26) Add entry <objid(q),q> to H.
27) emgcount(p, q) ← emgcount(p, q) + 1.
28) τ(p, q) ← emgcount(p, q) / emgcount(p).
29) π(q) ← initcount(q) / ouscount(M).
30) γ(q) ← finalcount(q) / ouscount(M).

582 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

that of state p in all the OUSs used for learning. �ðqÞ is the ratio between number of

OUSs beginning with state q and the total number of OUSs. �ðqÞ is the ratio between
number of OUSs ending with state q and the total number of OUSs. As an example,

we use the OUS shown in Fig. 7 for learning and achieve the following results (For

simplicity, we use method names to denote methods and p ! q denotes a transition

from state p to q).

ouscount 1 emgcount(write ! write) 1

emgcount(FileOutputStream) 1 emgcount(write ! close) 1

initcount(FileOutputStream) 1 � (FileOutputStream) 1.0

¯nalcount(FileOutputStream) 0 � (write) 0
emgcount(write) 2 � (close) 0

initcount(write) 0 � (FileOutputStream) 0

¯nalcount(write) 0 � (write) 0

emgcount(close) 1 � (close) 1.0
initcount(close) 0 � (FileOutputStream ! write) 1.0

¯nalcount(close) 1 � (write ! write) 0.5

emgcount(FileOutputStream ! write) 1 � (write ! close) 0.5

It must be noted that all the properties can be extracted from OUSs directly and

our algorithm is straightforward.

4. Class Interface Model

MCF is a kind of probabilistic model, including frequent behaviors and infrequent

behaviors. In order to validate programs, we should prune away infrequent behaviors

(noise) in the model. In this section, we introduce the class interface model, which is a

deterministic model transformed from MCF.

A Class Interface Model (CIM) is like a FSA, which is composed of a set of states

and transitions. Each state represents a method, and transition represents the

temporal relationship between pairs of methods. The di®erence between CIM and

FSA is that a CIM may have multiple initial states. As a matter of fact, we can

transform a CIM to FSA by adding a common pseudo initial state and then con-

necting the state to all the initial states of the CIM. The formal de¯nition of CIM is

presented as follows.

De¯nition 4 (Class InterfaceModel). AClass Interface Model (CIM) M of class

C is a 4-tuple (M , �, S, F), whereM is the set of interface methods of C, � � M �M

is a binary relation on M, S � M is the set of beginning methods, F � M is the set of

end methods. Let p, q 2 M be two methods, if they have the relation � (denoted as

�ðp; qÞ), it means that method p should be called preceding q.

A CIM of class C speci¯es that each OUS of it must start from a method in S and

then moves successively from a method mi to mj, where �ðmi;mjÞ, ¯nally ends in a

method of F . Any violations of the above rules are taken as errors. Figure 8 presents

a CIM of class FileOutputStream, which is transformed from the MCF illustrated

in Fig. 5.

Mining Class Temporal Speci¯cation Based on Markov Model 583

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

De¯nition 5 (Connectivity of CIM). Given a CIM C: (M , �, S, F), a method

m 2 M is called connected ifm is included in a path of C from a beginning method to

an end method. Otherwise, it is called unconnected. A CIM is said to be connected if

every method in the CIM is connected, or it is unconnected.

5. Transforming MCF to CIM

In this section, we introduce our method of transforming MCF to CIM. We ¯rst

provide an intuitive description of the technique and then discuss its main char-

acteristics in detail.

5.1. General approach

In order to obtain CIM, we should prune away infrequent behaviors in MCF and

discard probabilities attached with states and transitions. A general approach is

¯ltering behaviors based on a threshold. What should be noted is that three kinds of

behaviors need to be handled: initial states, ¯nal states and transitions. Therefore,

we use three distinct probabilistic thresholds initial threshold (Ti), ¯nal threshold

(Tf) and transition threshold (TtÞ to ¯lter them respectively (in the remainder of this

paper, we call this group of thresholds Threshold Vector (TV), and denote it as (Ti,

Tf , TtÞ). Using the threshold vector, we transform a MCF � : ðQ; � ; �; �Þ into CIM �:

ðM ; �;S;F Þ according to the following rules, where the 4-tuple ðQ; � ; �; �Þ and ðM ;

�;S;F Þ are de¯ned in De¯nitions 2 and 4 respectively.

(1) 8 q 2 Q; add �ðqÞ to M , where � : Q ! M is a function that maps a state in

MCF to a method in CIM with method names the same as state labels.

(2) 8 q 2 Q; if �ðqÞ � Ti, add �ðqÞ to S.

(3) 8 q 2 Q; if �ðqÞ � Tf , add �ðqÞ to F .

(4) 8 i 2 Q; j 2 Q; if �ði; jÞ � Tt, we have �ði; jÞ.
More speci¯cally, we ¯rst map each state in MCF to a method in CIM with

method names the same as state labels. Next, we transform states with an initial

FileOutputStream(String) write(byte[], int, int) close()

Fig. 8. CIM of class FileOutputStream. Each ellipse represents an interface method of class

FileOutputStream. Arrows denote temporal relationships between pairs of methods. The methods with
an arrow coming in from nowhere are beginning methods and those denoted graphically by a double ellipse

are end methods. The dashed-line arrows represent the discarded transitions of MCF.

584 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

probability exceeding the threshold Ti and that with a ¯nal probability exceeding the

threshold Tf into beginning and end methods respectively. Finally, we add transi-

tions with a transition probability exceeding the threshold Tt to CIM.

Two special cases should be considered are as follows:

(1) 9 q 2 Q; 8 q 0 2 Q ^ q 0 6¼ q; 0 < �ðqÞ < Ti; �ðq 0; qÞ ¼ 0, that is, an initial state

without incoming transitions and satisfying the condition �ðqÞ < Ti.

(2) 9 q 2 Q; 8 q 0 2 Q ^ q 0 6¼ q; 0 < �ðqÞ < Tf ; �ðq; q 0Þ ¼ 0, that is, a ¯nal state with-

out outgoing transitions and satisfying the condition �ðqÞ < Tf .

According to the above rules, these two kinds of states cannot be transformed into

beginning and end methods respectively. However, this will cause unconnected CIMs

similar to those shown in Figs. 6(a) and 6(b). To resolve the problem, we apply the

following rules to deal with the above case (1) and (2) respectively.

(1) 8 q 2 Q; q 0 2 Q ^ q 0 6¼ q; if �ðq 0; qÞ ¼ 0, add �ðqÞ to S.

(2) 8 q 2 Q; q 0 2 Q ^ q 0 6¼ q; if �ðq; q 0Þ ¼ 0, add �ðqÞ to F .

The above rules state that, if a state in a MCF does not have incoming or outgoing

transitions, then it must be a beginning or end method of transformed CIM despite

its initial or ¯nal probability lower than the initial or ¯nal threshold. Our solution is

based on the assumption that a method must be a beginning or end method if it

occurs at the ¯rst or last position in all the OUSs including it.

As an example, we transform MCF illustrated in Fig. 5 into a CIM shown in Fig. 8

using threshold vector (0.2, 0.2, 0.2). As we can see, in the MCF before transformed,

three possible ¯nal states exist: FileOutputStream(String), write(byte[],
int, int) and close() with a probability of 0.01, 0.01, and 0.98 respectively.

The transformed CIM discards the former two ¯nal states because they are infre-

quent. In addition, the transition from state FileOutputStream(String) to

close() is also pruned away due to a lower probability than Tt.

5.2. Computing initial and ¯nal thresholds

It must be noted that results of transforming MCF to CIM largely depend upon

threshold vector. As a matter of fact, it is a common concern of all approaches based

on statistical analysis. If thresholds are set too high, useful information will be dis-

carded mistakenly. If thresholds are set too low, noise will remain. Even worse for our

work, improper threshold vector will cause unconnected CIM. In the remainder of

this section, we discuss the problem and propose an algorithm to compute thresholds.

Di®erent from many statistical approaches that set thresholds empirically to ¯xed

values, our probabilistic thresholds are computed from MCFs that di®erent MCFs

have their own thresholds. Assume q to be a common state contained in a set of

MCFs fMCF1, MCF2; . . . ;MCFng, where MCFn denotes a MCF with n states. It is

obvious that �ðqÞ of MCFn is most probably smaller than that of MCF1, when n � 1.

Mining Class Temporal Speci¯cation Based on Markov Model 585

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

However, we cannot make the conclusion that q is an initial state in MCF1 but not in

MCFn. The problem here is that we should not ¯lter the initial states according to a

same criterion for di®erent MCFs and similar conclusions can be achieved as to ¯nal

states and transitions.

We compute initial and ¯nal thresholds based on a heuristic that the probability of

an infrequent behaviormust be lower than the average probability. GivenMCFn, q is a

state of it, themean of initial and ¯nal probability of q is 1=n. Inspired by the heuristic,

we introduce two threshold factors TFi and TFf which satisfy the requirements:

TFi � 1, TFf � 1 and compute Ti and Tf based on the following equations:

Ti ¼ TFi=n ð1Þ
Tf ¼ TFf=n ð2Þ

Itmust be noted that themaximumvalues ofTi andTf are themeans of initial and ¯nal

probability respectively, which are achieved when the threshold factors TFi and TFf

are set to 1.

5.3. Computing transition threshold

The computation of transition threshold is more complicated than that of initial and

¯nal thresholds, because an improper Tt will cause the transformed CIM uncon-

nected. In this subsection, we ¯rst discuss the connectivity problem in transforma-

tion and then introduce our algorithm of computing transition threshold in detail.

5.3.1. Connectivity problem in transformation

Lemma 1. Assume M to be a MCF learned from a set of OUSs, M must be

connected.

Proof (Proof by Contradiction). Assume that M : ðQ; �; �; �Þ is an unconnected

MCF learned from a set of OUSs R. q 2 Q is an unconnected state which is labeled

with a method signature l. Since q is unconnected, for each s 2 R, if s includes l, then

s must be an OUS without beginning or end method, because every beginning and

end method corresponds to an initial and ¯nal state in MCFs respectively. However,

as we all know, an OUS is linear with both beginning and end method, which is a

contradiction.

Although the mined MCFs are proved to be connected, the connectivity property

may change when transformed to CIMs. Take the connected MCF illustrated in

Fig. 9(a) as an example, when carrying out transformation with a transition prob-

ability of 0.05, we obtain an unconnected CIM shown in Fig. 9(b). This is extremely a

bad case that we should avoid, because an unconnected CIM is incorrect and useless.

The reason for this is that useful transitions are discarded because of employment of

a transition threshold higher than what it should be, or in other words, there exists

an underlying maximum transition threshold and Tt should be lower than that.

586 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

De¯nition 6 (Maximum Connected Transition Threshold). Assume M to

be a connected MCF, C is the CIM transformed from M based on a transition

threshold Tt, the Maximum Connected Transition Threshold (MCTT) of M denoted

as MCTT (M) is an extreme of Tt, such that if Tt � MCTT ðMÞ, C is connected.

Otherwise C is unconnected.

5.3.2. Maximum-threshold connected spanning sub-PMCF

From Sec. 5.3.1, we realized that we can resolve the connectivity problem in trans-

formation using a transition threshold lower than the maximum connected transition

threshold. In this subsection, we introduce the concept of Maximum-threshold

Connected Spanning Sub-PMCF and demonstrate that the problem of computing

maximum connected transition threshold can be reduced to that of constructing

maximum-threshold connected spanning sub-PMCF.

De¯nition 7 (PseudoMCF). A Pseudo MCF (PMCF) M is a 4-tuple (Q, � , �, �)

similar to MCF. The di®erence is that PMCF may violate requirements of MCF:

8 q 2 Q;
P

q2Q�ðqÞ ¼ 1 and
P

q2Q�ðqÞ ¼ 1. Therefore, MCF is a special type of

PMCF. In addition, the connectivity de¯nition of MCF is also appropriate for

PMCF.

Property 1. Given a connected PMCF P: ðQ; �; �; �Þ, we have:

. 8 q 2 Q ^ �ðqÞ ¼ 0; 9 q 0 2 Q; such that �ðq 0; qÞ 6¼ 0

. 8 q 2 Q ^ �ðqÞ ¼ 0; 9 q 0 2 Q; such that �ðq; q 0Þ 6¼ 0

Proof. The property can be proved straightforwardly based on De¯nition 3 and we

omit the details.

De¯nition 8 (Sub-PMCF). Given a PMCF P: (Q, � , �, �), PMCF P 0: (Q 0, � 0, � 0,
� 0) is said to be a Sub-PMCF of P, if it satis¯es the following requirements:

. 8 q 2 Q 0; � 0ðqÞ ¼ �ðqÞ _ � 0ðqÞ ¼ 0

m3

m2

m1 m4

0.85

0.03

0.12

0.015

0.985

1
State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1

Probabilities of States:

(a) Connected MCF

m3

m2

m1 m4

(b) Unconnected CIM

Tt = 0.05

Fig. 9. Unconnected CIM will be obtained in transformation if an improper Tt is used. (a) MCF which is
required to be transformed. (b) Unconnected CIM which is generated by transforming the MCF using a

transition probability of 0.05. The transformation is performed with parameters TFi ¼ TFf ¼ 0:1. The

dashed lines represent the discarded transitions of MCF.

Mining Class Temporal Speci¯cation Based on Markov Model 587

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

. 8 q 2 Q 0; � 0ðqÞ ¼ �ðqÞ _ � 0ðqÞ ¼ 0

. 8i 2 Q 0; j 2 Q 0; � 0ði; jÞ ¼ �ði; jÞ _ � 0ði; jÞ ¼ 0

Additionally, we call P 0 a Spanning Sub-PMCF of P , if Q ¼ Q 0.
As an example, Fig. 10 presents two spanning sub-PMCF in (b) and (c) of the

PMCF in (a).

De¯nition 9 (Maximum-Threshold Connected Spanning Sub-PMCF).

Given a connected PMCF P: (Q, � , �, �), the Minimum Transition Probability

(MINTP) of P is de¯ned as follows: 8 i 2 Q; j 2 Q;MINTP ðP Þ ¼ minð�ði; jÞÞ. Let
Pm: ðQ; �m; �m; �mÞ be a connected spanning sub-PMCF of P. Pm is said to be the

Maximum-Threshold Connected Spanning Sub-PMCF of P, if for any connected

spanning sub-PMCF Pi: ðQ; � i; �i; �iÞ of P , we have MINTP ðPmÞ � MINTP ðPiÞ. In
addition, we call MINTP ðPmÞ the Maximum Spanning Transition Probability

(MAXSTP) of P which is denoted as MAXSTP(P).

Theorem 1 (MAXSTP is the MCTT). Given a connected MCF M: ðQ; � ; �; �Þ,
we have MCTT ðMÞ ¼ MAXSTP ðMÞ.
Proof. Proof is straightforward based on De¯nitions 6 and 9. We omit the

details.

5.3.3. Judgement of connected PMCF

From Theorem 1, to obtain MCTT of a MCF, we should ¯rst ¯nd the maximum-

threshold connected spanning sub-PMCF of it. In this part, we present several

lemmas which are the basis of our solution to the problem.

(b) Spanning Sub-PMCF

m3

m2

m1 m4

0.03

0.985

1

Probabilities of States:

State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1

(a) PMCF

m3

m2

m1 m4

0.03

0.985

1

Probabilities of States:

0.015
State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1
0.12

m3

m2

m1 m4
0.12

0.015

0.985

1

Probabilities of States:

(c) Spanning Sub-PMCF

State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1

Fig. 10. Spanning Sub-PMCF. (a) PMCF. (b) and (c) are two spanning sub-PMCFs of (a). The dashed

lines represent the discarded transitions of PMCF.

588 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Lemma 2. Given a PMCF P : ðQ; � ; �; �Þ, if P satis¯es the following requirements, P

must be connected.

. 8 q 2 Q ^ �ðqÞ ¼ 0; q has at least one incoming transition

. 8 q 2 Q ^ �ðqÞ ¼ 0; q has at least one outgoing transition

. P contains no cycle

Proof (Proof by Contradiction). Assume P : ðQ; �; �; �Þ to be an unconnected

PMCF, which satis¯es the above requirements, q 2 Q is an unconnected state. Two

cases should be considered for a state to be unconnected.

(1) (q is unconnected with initial states that is there does not exist a path from an

initial state to q) According to the above requirements, there must exist a

transition tq1q, which starts from a state q1 and ends in q. Since q is unconnected

with initial states, q1 must be unreachable from initial states. We repeat the

above process by regarding q1 as q. Finally, a path H: � � � qn ! qn�1 � � � q2 !
q1 ! q with in¯nite length will be obtained. However, P has a ¯nite set of states,

thus H must contain cycles, which is a contradiction.

(2) (q is unconnected with ¯nal states, that is, there does not exist a path from q to a

¯nal state) Proof is similar to that of the ¯rst case. We omit the details.

It should be noted that q may be of di®erent types: (1) initial state, (2) ¯nal state

and (3) other types. Whatever type it is, the reason for it to be unconnected must fall

into the above categories. For example, if q is an unconnected ¯nal state, it must be

unconnected with initial states (¯rst case above). If q is an unconnected initial state,

it must be unconnected with ¯nal states (second case above).

De¯nition 10 (Benign Cycle). Given a PMCF P : ðQ; �; �; �Þ, C is a cycle in P ,

we call C a Benign Cycle, if C has at least one incoming and outgoing transition from

or to a external state of C (that is, there exist two transitions tij and tpq, where

i 62 C; j 2 C; p 2 C; q 62 C). We call a cycle Malign Cycle, if it is not a benign cycle.

Lemma 3. Given a PMCF P : ðQ; � ; �; �Þ, if P satis¯es the following requirements, P

must be connected.

. 8 q 2 Q ^ �ðqÞ ¼ 0, q has at least one incoming transition

. 8 q 2 Q ^ �ðqÞ ¼ 0, q has at least one outgoing transition

. All cycles in P are benign cycles

Proof. Contract each cycle in P into a pseudo-state and form a new PMCF P 0:
ðQ 0; � 0; � 0; � 0Þ. Because all cycles in P are benign cycles, the pseudo-states must have

at least one incoming and outgoing transition. According to Lemma 2, P 0 must be

connected. Therefore, 8 q 2 Q 0, q is connected, or in other words, 8 q 2 Q, if q is not

inside any cycles, q must be connected. Consequently, to prove the connectivity of P ,

what we need to do is demonstrate that all states inside cycles are connected. Let C

be a benign cycle in P , according to De¯nition 10, there must exist two transitions

Mining Class Temporal Speci¯cation Based on Markov Model 589

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

(q1, qc1) and (qc2, q2), where q1 62 C, qc1 2 C, qc2 2 C, q2 62 C. For each state q in C, q

must be included in a path from qc1 to qc2, because they are in a same cycle.

Combined with the transitions (q1, qc1) and (qc2, q2), we obtain a path

q1 ! qc1 ! � � � q � � � ! qc2 ! q2. On the other hand, since q1 and q2 are external

states of C, they must be connected. Based on the above analysis, q is connected.

Since all states in P are connected, we have P is connected.

5.3.4. Computing MAXSTP

Based on above analysis, we propose a Selection of Maximum Transition (SMT)

algorithm to construct the maximum-threshold connected spanning sub-PMCF. For

notational convenience, we ¯rst introduce several concepts. Given a PMCF P :

ðQ; �; �; �Þ, q 2 Q is a state of P , the Maximum Incoming Transition Probability

(MAXITP) and Maximum Outgoing Transition Probability (MAXOTP) of q are

de¯ned as follows:

MAXITP ðqÞ ¼ max
q 02Q

ð�ðq 0; qÞÞ ð3Þ
MAXOTP ðqÞ ¼ max

q 02Q
ð�ðq; q 0ÞÞ ð4Þ

The transition with MAXITP and MAXOTP are called Maximum Incoming

Transition (MAXIT) and Maximum Outgoing Transition (MAXOT) respectively.

Assume P to be connected, the maximum-threshold connected spanning sub-

PMCF of P can be constructed using the SMT algorithm, which works as follows:

(1) Discard all self-transitions (which start from and end in a same state) in P .

(2) 8 sq 2 Q; add MAXIT(qÞ to a set of transitions �.

(3) 8 q 2 Q; if q does not have an outgoing transition in �, add MAXOT(qÞ to �.

(4) If no malign cycles formed in �, go to step 5. Otherwise, for each malign cycle

C in �, we perform the following tasks: (1) if C does not have incoming transi-

tions, add transition tin to �; (2) if C does not have outgoing transitions,

add transition tout to �, where tin and tout satisfy the following equations:

�ðtinÞ ¼ maxq 0 62C^q2C ð�ðq 0; qÞÞ, �ðtoutÞ ¼ maxq2C^q 0 62C ð�ðq; q 0ÞÞ.
(5) PMCF Pm: ðQ; �m; �; �Þ is the maximum-threshold connected spanning sub-

PMCF of P , where 8 i 2 Q; j 2 Q, �m is de¯ned as follows:

�mði; jÞ ¼
�ði; jÞ tij 2 �

0 tij 62 �

�
ð5Þ

Theorem 2 (Validity of SMT Algorithm). The PMCF produced by SMT

algorithm is the maximum-threshold connected spanning sub-PMCF.

Proof. Given a PMCF P : ðQ; �; �; �Þ, apply SMT algorithm to P and obtain a

PMCF Pm: ðQm; �m; �m; �mÞ. According to the working principle of SMT algorithm,

590 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Pm must be a spanning sub-PMCF of P , because Q ¼ Qm and transitions of Pm is a

subset of P . In order to prove the validity of SMT algorithm, we should demonstrate

the connectivity and maximum properties of Pm respectively.

(1) (Connectivity property) From the steps of SMT algorithm, Pm is a PMCF

without malign cycles and all states in Pm apart from initial states have at least

one incoming transition and that except ¯nal states have at least one outgoing

transition. According to Lemma 3, Pm must be connected.

(2) (Maximum property, proof by contradiction) Assume that PMCF Pm 0 : ðQm 0 ;

�m 0 ; �m 0 ; �m 0 Þ is a connected spanning sub-PMCF of P and MINTP ðPm 0 Þ >
MINTP ðPmÞ. Let MINTP ðPm 0 Þ ¼ �m 0 ðq 01; q 02Þ, MINTP ðPmÞ ¼ �mðq1; q2Þ,
according to the working principle of SMT algorithm, transition (q1, q2) is either

the MAXIT of q2 or the MAXOT of q1. Assume that MAXITP ðq2Þ ¼ �mðq1; q2Þ
in P , because Pm 0 is connected, in terms of Property 1, there must exist a

transition ðq 0; q2Þ in Pm 0 and �mðq1; q2Þ � �m 0 ðq 0; q2Þ. Since MINTP ðPm 0 Þ >
MINTP ðPmÞ, we have MINTP ðPm 0 Þ > �m 0 ðq 0; q2Þ, which is a contradiction. A

similar contradiction will be achieved in the case of MAXOTP ðq1Þ ¼
�mðq1; q2Þ.
Our strategy of computing transition threshold can maintain connectivity of

transformed CIMs. However, it cannot deal with sequential noise. To resolve the

problem, we apply the heuristic used to deal with initial and ¯nal noise to sequential

noise, that is, the probability of an infrequent transition must be lower than the

average transition probability. Give a MCF M with n states, the average transition

probability is 1/n (which is obtained by assuming that a state has outgoing tran-

sitions with all the states). Based on the above analysis, we compute Tt of M as

follows:

TtðMÞ ¼ minðMCTT ðMÞ; 1=nÞ � TFt ð6Þ
where TFt is the threshold factor of transition probability, which should be assigned a

value between 0 and 1 (we call the threshold factor of transition probability com-

bined with that of initial and ¯nal probability Threshold Factor Vector (TFV), and

denote it as (TFi, TFf , TFtÞ). As we can see, transition threshold computed according

to the above equation can maintain connectivity of transformed CIMs as well as deal

with sequential noise.

5.3.5. Example of transformation using computed transition threshold

Take theMCFM shown inFig. 11(a) as an example,we apply SMTalgorithm to it step

by step. After the third step, the transition set � contains the following elements:

Start State End State Transition Probability

m3 m2 0.03

m1 m3 0.985

m2 m4 1

Mining Class Temporal Speci¯cation Based on Markov Model 591

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Since no cycle is formed in �, we obtain the maximum-threshold connected

spanning sub-PMCF P of M , which is presented in Fig. 11(b). In addition, we have

MCTT ðMÞ ¼ MINTP ðP Þ ¼ 0:03. On the other hand, the average transition prob-

ability ofM is 1/4¼ 0.25. Suppose we transform the MCF to CIM using a TFV: (0.8,

0.8, 0.8), according to Eqs. (1), (2) and (6), we have TV: (0.2, 0.2, 0.024). The CIM

transformed using the computed TV is shown in (c), which is connected.

6. Experiments

To evaluate our technique, we implemented our technique in a prototype tool

ISpecMiner and used it to conduct experiments. In this section, we ¯rst introduce

ISpecMiner. Next, we present subjects that we used in evaluation. Then, we

conduct several experiments and investigate the following issues.

. How to choose values of threshold factors (TFi, TFf , TFt)?

. How e®ective of our approach to deal with noise?

. Whether our approach can guarantee connectivity of generated CIMs?

. Whether our method can mine useful class temporal speci¯cations?

Finally, we discuss limitations of our approach.

6.1. Prototype tool ISpecMiner

ISpecMiner is a dynamic program speci¯cation mining tool developed based on

Java 1.6. It instruments bytecodes of Java classes at load-time leveraging Java

m3

m2

m1 m4

0.85

0.03

0.12

0.015

0.985

1
State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1

Probabilities of States:

(a) Connected MCF

T
t = 0.024

m3

m2

m1 m4

(c) Connected CIM

m3

m2

m1 m4

0.03

0.985

1

State InitPro FinalPro

m1 1 0

m2 0 0

m3 0 0

m4 0 1

Probabilities of States:

MINTP = 0.03

(b) The maximum spanning connected sub-PMCF

SMT

Fig. 11. Transforming MCF to connected CIM using computed transition threshold. (a) MCF required to
be transformed. (b) The maximum-threshold connected spanning sub-PMCF which is generated using

SMT algorithm. (c) Connected CIM transformed from the MCF shown in (a). The transformation is

performed with a TFV: (0.8, 0.8, 0.8). The dashed lines represent discarded transitions of MCF.

592 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

agent technique and then learns MCF models from program execution traces

generated by running the instrumented applications.

The composition of ISpecMiner is shown in Fig. 12. It consists of two main

components: tracer and miner. The tracer is a Java agent which receives class

bytecodes from JVM and then returns the instrumented bytecodes to JVM for

running. The code that tracer weaves into each method is an event writer.
Once an instrumented method is called, event writer will push a method event
into a queue. The queue of method events is a cache shared by the tracer and

miner (the tracer produces events and miner consumes events). Whenever it is

nonempty, the miner picks up a method event from the queue through the event
reader, and then passes it to the MCF learner for learning. If the method event
belongs to an existing MCF, the learner updates it or a new one is created. As we can

see, this architecture is very °exible. Especially that, the communication protocol

between the tracer and miner can be replaced freely by providing a new pair of

event writer and reader.
Instrumentation technique is crucial for dynamic program speci¯cation mining

tools. Many approaches and frameworks exist to instrument Java applications

statically or dynamically. We adopt Java agent technique combined with

Javassist to instrument Java classes at the bytecode level dynamically. Java
agent technique is a service provided in the JDK package of java.lang.in-
strument which allows a nearly complete control over classes of any given appli-

cation. Observed that Java agent does not provide facilities to manipulate class

bytecodes, we employ a bytecode manipulation tool Javassist [23–26]. Compared

with similar tools [27, 28], Javassist can provide the source level API, which

enables programmers to edit a class ¯le without knowledge of Java bytecodes.

Class Transformer

class byte code

instrumented class

Java HotSpot ™
Client VM

Test Case Generator

test case

MCF Learner

Queue of Method
Events

MCFs of Classes

method event

method event

MCF

Event Writer

Event Reader

Miner

Tracer

Target Application

Fig. 12. Composition of ISpecMiner.

Mining Class Temporal Speci¯cation Based on Markov Model 593

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Furthermore, code can be inserted into class ¯les in the form of Java source text and

Javassist will compile it on the °y.

In order to use ISpecMiner to mine speci¯cations from a Java application, we

should use the -javaagent command-line switch to start the application. Details

are presented as follows:

java� javaagent : agentpath ¼ mainclass apppath

where agentpath is the path of ISpecMiner, apppath is the path of target appli-

cation,mainclass should be designated with name of the main class in target appli-

cation. ISpecMiner is able to instrument most of Java classes (except for several

JDK classes due to some technical reasons), whose names are speci¯ed using regular

expressions in con¯guration. For each class, ISpecMiner generates two kinds of

models: MCF and CIM. MCFs are evolved continuously and CIMs are transformed

from the latest MCFs when necessary. ISpecMiner can be obtained at the URL

http://www.ispecminer.com.

6.2. Subjects

Applications that we used in our experiments are listed in Table 1. All of them are

Java applications. We select them based on the following criteria:

. Open source software. Though ISpecMiner is a dynamic speci¯cation mining

tool and source code is not necessary, it is helpful for us to ¯gure out problems

encountered in the mining process and validate results.

. Mature software. Mature software contains fewer bugs than the unstable one.

Thus, program execution traces with less noise can be collected, which is essential

for dynamic mining tools to learn precise speci¯cations. There exist many methods

to measure the maturity of software. We perform the task based on a heuristic: if

an application has been maintained for a long time and undergone a large number

of revisions, we believe it is mature.

. Applications of a large size. Large-scale software can provide abundant OUSs for

learning, which is the basis of mining useful program speci¯cations.

. Applications coming from various domains. Applications from various areas may

cover every usage detail of target classes, which is a strong assurance for mined

speci¯cations to be comprehensive and accurate.

6.3. Experiment 1: Transforming MCF to CIM with di®erent

values of TFV

In this work, we proposed a method to deal with noise by assuming that probability

of noise must be lower than the average probability. Theoretically, our method can

protect useful information from being discarded mistakenly. However, low values of

TFV will still result in noise. In this experiment, we used ISpecMiner to mine

MCFs from several real-world applications and then transform them to CIMs with a

group of di®erent values of TFV. Our purpose is to investigate how e®ective of our

594 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

approach to deal with noise and how to choose proper values of TFV, which can

eliminate noise utmostly.

Our experiment ¯rst learns MCFs from real-world applications using ISpec-
Miner. The subject applications that we used for mining are listed in Table 1. To

collect enough OUSs and avoid bias, we run each application ¯ve times with di®erent

manual input data. ISpecMiner was con¯gured to mine MCFs of 10 JDK classes.

The classes and number of OUSs collected for learning the MCFs are presented in

Table 2. We selected these classes based on the following considerations: (1) classes

that are used widely in various Java applications and well documented; (2) classes

that are familiar to us; (3) classes with distinguishing characteristics, such as the

usage of a class should end in a method call close(). Figure 13 illustrates several of
the mined MCFs (MCFs of all the classes, please refer to the website http://www.

ispecminer.com). After that, we transformed mined MCFs to CIMs using a set of

TFV spanning from 0.1 to 1.0 with a step of 0.1. For each TFV, we investigated the

average goodness of all the transformed CIMs. According to the distribution of

average goodness, an interval of TFV is obtained, which can lead to perfect CIMs.

We measured the goodness of a CIM using the sum of false positives and false

negatives. A false positive is a correct behavior (initial state, ¯nal state or transition),

which is discarded mistakenly in transformation. A false negative is an erroneous

behavior (noise) contained in transformed CIMs (which should be pruned away). A

Table 1. Applications used in experiments. # Revisions: number of revisions; Create Date: the date that

applications were created; Last Update Date: the date that applications were last updated. We use #
Revisions, Create Date and Last Update Date to approximately measure the maturity of software, that is,

we assume software to be mature if it has been maintained for a long time and undergone a large number of

revisions.

Subject Version Description # Revisions Create date

Last update

date

FreeMind 0.9 Mind-mapping software 6469 March, 2001 April, 2013

RapidMiner 5.3 Environment for ma-

chine learning and

data mining

867 August, 2004 April, 2013

SQuirreL SQL

Client

3.4 Java SQL client 3272 June, 2004 May, 2013

OpenProj 1.4 Project management
software

1498 January, 2008 October, 2012

Table 2. Mined MCFs of JDK classes. # OUSs: number of OUSs collected for learning the MCF of a

class.

Class #OUSs Class #OUSs

java.io.FileInputStream 303 java.io.FileOutputStream 236

java.io.FileReader 213 java.io.PushbackInputStream 30
java.io.InputStreamReader 291 java.io.BufferedReader 38

java.io.ByteArrayOutputStream 19 java.io.PrintWriter 174

java.io.BufferedWriter 27 java.util.Stack 268

Mining Class Temporal Speci¯cation Based on Markov Model 595

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

(a)

(b)

(c)

Fig. 13. Several of the mined MCFs. (a): MCF of class java.io.FileInputStream; (b): MCF of class

java.io.BufferedReader; (c) MCF of class java.io.FileOutputStream. Rounded rectangles
¯lled with gray color are ¯nal states.

596 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

proper value of TFV should generate perfect CIMs with fewer false positives and

negatives. In the experiment, we counted false positives and negatives manually

according to JDK documentation.

Results of the experiment are shown in Fig. 14. The pairs of plots (a), (b) and (c)

show distribution of average goodness with di®erent values of TFi, TFf and TFt

respectively. From (a), we can see that the average count of false negatives is zero

with any value of TFi. However, false positives are introduced with the growth of

TFi. In order to obtain perfect CIMs, a small value of TFi (lower than 0.4) should be

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

TFi

False positive False negative

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

TFi

Sum of false positive and negative

(a)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

False positive
False negative

TFi TFi

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

Sum of false positive and negative

(b)

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

False positive False negative

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ou

nt

Sum of false positive and negative negative

(c)

Fig. 14. Distribution of average goodness with di®erent values of TFV. The pairs of plots (a), (b) and (c)

show distribution of average goodness with di®erent values of TFi, TFf and TFt respectively. For each pair

of plots, the left one shows the distribution of average false positive and negative, and the right one shows
that of the sum of them. It must be noted that, the curves for average false positive and negative may

overlap with each other. Additionally, a list of false positives and negatives of all the classes can be

obtained at the URL http://www.ispecminer.com.

Mining Class Temporal Speci¯cation Based on Markov Model 597

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

used. The scenario with TFf is di®erent from that of TFi. As we can see from (b), the

average count of false positives remains zero with the growth of TFf , while low values

of TFf will result in false negatives. It indicates that a large value of TFf (greater

than 0.8) should be used in transformation. As to TFt, we can see from (c) that both

the average count of false positives and negatives remain zero with the growth of TFt.

Therefore, any value of TFt may generate perfect CIMs. The above results provide

guidance for us to set TFV to proper values. In addition, it demonstrates that our

method can deal with noise e®ectively. As we can see, the maximum average counts

of false positives and negatives are 0.4 and 0.7 respectively, which are trivial and

acceptable. Above all, if more OUSs are used for learning, better results can be even

achieved. Another ¯nding from the experiment is that our method can deal with

initial noise and transition noise better than ¯nal noise. The reason for this may be

that more ¯nal noise exists in MCFs, which are mainly caused by accidental inter-

ruption of running applications. Finally, we investigated the connectivity of all the

generated CIMs and found that all of them are connected. It indicates that our

strategy of computing thresholds can guarantee connectivity of mined models.

In conclusion, like any empirical evaluation, our experiment is limited in scope

and the results may not generalize. However, we mined MCFs from real-world

applications and investigated CIMs of 10 JDK classes, which were generated under a

set of TFV from 0.1 to 1.0. Therefore, although further evaluation is needed, we

believe that our results are promising. They show that our method can deal with

noise e®ectively and guarantee connectivity of mined models. In addition, results of

the experiment provide guidance for us to set TFV to proper values, with which,

perfect CIMs can be obtained.

6.4. Experiment 2: Inspecting mined class temporal speci¯cations

In this experiment, we examined the mined class temporal speci¯cations against JDK

documentations. Our purpose is to investigate how e®ective of our approach to

obtain useful speci¯cations. We ¯rst transformed the MCFs mined in the ¯rst ex-

periment to CIMs based on a TFV (0.2, 0.9, 0.5), which were computed according to

results of the ¯rst experiment. Then, we checked all the CIMs of 10 JDK classes

against documentations. Several of the CIMs are shown in Fig. 15.

Take the CIM of class java.io.FileInputStream shown in Fig. 15(a) as an

example. From the CIM, we can see that class FileInputStream has two begin-

ning methods and one end method respectively. In order to use the class, we should

¯rst call method FileInputStream(String) or FileInputStream(File).
Next, methods int read(byte[], int, int) or int read(byte[]) can be

called multiple times to read bytes from the input stream. Finally, method close()
should be used to close the stream and release resources. As we investigated, all the

above temporal relationships are consistent with documentations. What should be

noted is that, class FileInputStream possesses twelve public methods, while the

CIM only includes ¯ve of them. This issue of partial speci¯cations can be mitigated

598 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

by providing more OUSs for learning. We examined all the CIMs and obtained

similar results.

In conclusion, although we inspected mined speci¯cations manually and the above

results were preliminary in nature, we examined CIMs of 10 JDK classes and found

that most of them were consistent with speci¯cations documented, except for a small

(a)

(b)

(c)

Fig. 15. Several of CIMs that we investigated. (a): CIM of class java.io.FileInputStream; (b): CIM
of class java.io.BufferedReader; (c) CIM of class java.io.FileOutputStream. Ellipses ¯lled
with grey color are beginning methods and those denoted graphically by a double ellipse are end methods.

Mining Class Temporal Speci¯cation Based on Markov Model 599

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

number of false positives and negatives that we discussed in the ¯rst experiment.

Therefore, we believe that ISpecMiner is able to mined useful speci¯cations.

6.5. Limitations of our approach

Although our technique is able to mine useful class temporal speci¯cations, it has the

following limitations:

. Like any dynamic technique, e®ect of our approach largely depends upon the

quality of generated test cases, which is a long-term conundrum in software

testing. In this paper, we performed experiments using manual input data, which

may bias the mined speci¯cations. To our relief, this problem can be alleviated to

some extent using our online learning algorithm, which can continuously re¯ne

existing MCFs.

. Just as any technique leveraging instrumentation, performance is a great concern.

As our investigation, the applications instrumented by ISpecMiner run three to

¯ve times slower than the uninstrumented ones.

. For some technical reasons, ISpecMiner is unable to instrument Java native

methods and several JDK classes.

. MCF breaks some properties of Markov chain, such as the sum of outgoing

transition probabilities should be one. This makes MCF inconsistent with Markov

chain and may limit the scope of its application.

7. Related Work

Class temporal speci¯cation is also referred to as component interface, object be-

havior model, object usage model, etc. Techniques of mining this kind of speci¯cation

automatically have been studied extensively in recent years. Generally, these tech-

niques can be divided into two categories: (1) static analysis based approach and (2)

dynamic analysis based approach.

Static analysis based approach takes program source code or bytecode as input

and infers speci¯cations using techniques from data mining, machine learning, ab-

stract interpretation, model checking, and etc. Since it does not require running

applications with test cases, it can be highly automated and e±cient. For instance,

Wasylkowski [29, 30] proposed to mine object usage models from Java bytecode

and a tool JADET was developed. However, it is sticky for static analysis based

approach to deal with infeasible paths, complicated data structures and pointer alias.

Dynamic analysis based approach does not require program source code as input.

It mines speci¯cations from program execution traces, which can be obtained by

running applications. This makes it a more dominant alternative in the case when

source code is unavailable. To date, several tools of this kind have been developed,

such as Daikon and ADABU. Both of these tools work in a similar manner. First a

tracer is applied to collect program execution traces in a data ¯le and then speci¯-

cations are synthesized from the ¯le. The di®erence between them is that Daikon

600 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

aims to learn invariants among variables and ADABU mine temporal speci¯cations

among methods which are most similar to ours. It has been proved that these tools

are capable of learning many useful speci¯cations. However, e®ect of this approach

largely depends upon quality of generated test cases, which is a long time conundrum

in software testing.

Whatever technique, a model should be employed to describe class temporal

speci¯cation. In the past decade, most researchers perform the task using ¯nite state

automaton (FSA) and reduce the problem of mining class temporal speci¯cation to

the well-known grammar inference problem. For instance, Lorenzoli [31] modeled

class temporal speci¯cation using EFSM which extends from FSM and an automata

learning algorithm GK-tail was adopted to infer the EFSM model of components.

Alur [32] synthesized FSA model of class temporal speci¯cation using L* learning

algorithms combined with model checking and abstract interpretation techniques.

Observed that FSA is a kind of deterministic model with inability to tolerate

noise, Ammonset al. proposed to mine temporal speci¯cations among application

programming interfaces (API) or abstract data types (ADT) based on probabilistic

¯nite state automaton (PFSA). A PFSA is a nondeterministic ¯nite automaton

(NFA), in which each edge is labeled by an abstract interaction and weighted by how

often the edge is traversed while generating or accepting scenario strings. To mine

temporal speci¯cations, they ¯rst infer PFSA from scenario strings using an o®-the-

shelf PFSA learner. Next, they transform PFSA to NFA by discarding rarely-used

edges and weights. Finally, the NFA obtained is used for program veri¯cation and

manual inspection. Our work is most similar to theirs. The di®erences are as follows:

(1) our approach aims at object-oriented programs. In the work of Ammons, before
learning speci¯cations, °ow dependence annotation should be used to re¯ne program

execution traces into interaction scenarios. In object-oriented programs, an inter-

action scenario is a method call sequence upon an object, which can be extracted

directly from applications. To the best of our knowledge, this is the ¯rst work of

mining class temporal speci¯cations from object-oriented programs based on prob-

abilistic models; (2) we learn class temporal speci¯cations using an online algorithm.

Relying on this algorithm, more universal speci¯cations can be achieved by re¯ning

existing probabilistic models continuously; and (3) both of the works require

transforming probabilistic models into deterministic models. However, details about

the topic are omitted in their work. In this paper, we discussed connectivity problem

of transformed models and an algorithm was proposed to resolve it.

8. Conclusions and Future Work

In this paper, we proposed to mine class temporal speci¯cations dynamically relying

on a probabilistic model extending from Markov chain. To the best of our knowledge,

this is the ¯rst work of mining program speci¯cations from object-oriented programs

based on probabilistic models. Compared with similar works which apply probabi-

listic models to non-object-oriented programs, our technique does not require

Mining Class Temporal Speci¯cation Based on Markov Model 601

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

annotating programs. In addition, we learn probabilistic models using an online

algorithm, which enables our approach to infer more universal speci¯cations. Real-

ized that an unconnected model was an invalid speci¯cation, we discussed the con-

nectivity problem of mined models and an algorithm was proposed to compute the

maximum connected transition threshold, with which, connected models can be

obtained. Although we use MCF to model class temporal speci¯cations, our tech-

nique can be generalized to libraries and frameworks, where a speci¯cation includes

methods from di®erent classes.

We implemented our technique in a prototype tool ISpecMiner and used it to

conduct several experiments. In evaluation, we mined models from several real-world

applications and examined models of 10 JDK classes. Results of the experiments

show that our approach can deal with noise e®ectively and obtain useful class

temporal speci¯cations. In addition, the proposed algorithm of computing maximum

connected transition threshold can guarantee connectivity of mined models.

Markov chain is a traditional approach to handle sequential data. Some of its

fundamentals may be applicable for the domain of mining program speci¯cations.

We leave this exploration to future work. In evaluation, we inspected mined program

speci¯cations manually. In the future, we will validate them in a more objective way

by using them in program veri¯cation. Additionally, a comparison of our prototype

tool ISpecMiner with others may be relevant. Due to some technical reasons, we

leave it as an extension of this work.

Acknowledgments

This research is supported by Shenzhen Key Laboratory for High Performance

Data Mining with Shenzhen New Industry Development Fund under grant No.

CXB201005250021A and Natural Science Foundation of Hubei Province under grant

No. 2014CFB1006.

References

1. M. Pradel and T. R. Gross, Automatic generation of object usage speci¯cations from large
method traces, in ASE, 2009, pp. 371–382.

2. M. Pradel and T. R. Gross, Leveraging test generation and speci¯cation mining for
automated bug detection without false positives, in ICSE, 2012.

3. M. K. Ramanathan, A. Grama and S. Jagannathan, Static speci¯cation inference using
predicate mining, SIGPLAN Not. 42(6) (2007) 123–134.

4. S. Shoham and E. Yahav et al., Static speci¯cation mining using automata-based
abstractions, in Proceedings of the International Symposium on Software Testing and
Analysis, 2007.

5. M. Di Penta, L. Cerulo and L. Aversano, The life and death of statically detected vul-
nerabilities: An empirical study, Information and Software Technology 51(10) (2009)
1469–1484.

6. S. Thummalapenta and T. Xie, Alattin: Mining alternative patterns for defect detection,
Automated Software Engineering 18(3-4SI) (2011) 293–323.

602 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

7. D. Lo and G. Ramalingam et al., Mining quanti¯ed temporal rules: Formalism, algo-
rithms, and evaluation, Science of Computer Programming 77(6SI) (2012) 743–759.

8. M. D. Ernst and J. Cockrell et al., Dynamically discovering likely program invariants to
support program evolution, IEEE Trans. Software Engineering 27(2) (2001) 99–123.

9. M. Gabel and Z. Su, Javert: Fully automatic mining of general temporal properties from
dynamic traces, in Proc. 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2008.

10. J. Yang and D. Evans, Dynamically inferring temporal properties, in Proc. 5th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, 2004.

11. J. H. Perkins and M. D. Ernst, E±cient incremental algorithms for dynamic detection of
likely invariants, SIGSOFT Softw. Eng. Notes, 29(6) (2004) 23–32.

12. J. E. Cook and A. L. Wolf, Discovering models of software processes from event-based
data, ACM Trans. Softw. Eng. Methodol. 7(3) (1998) 215–249.

13. G. Ammons, R. Bodik and J. R. Larus, Mining Speci¯cations, SIGPLAN Not. 37(1)
(2002) 4–16.

14. O. Rasanen and U. K. Laine, A method for noise-robust context-aware pattern dis-
covery and recognition from categorical sequences, Pattern Recognition, 45(1) (2012)
606–616.

15. M. Casar and J. A. R. Fonollosa, Analysis of HMM temporal evolution for automatic
speech recognition and veri¯cation, in Proc. 9th International Conference on Text,
Speech and Dialogue, 2006.

16. E. A. Rua and J. Castro, Online signature veri¯cation based on generative models, IEEE
Transactions on Systems Man and Cybernetics Part B-Cybernetics, 42(4SI) (2012) 1231–
1242.

17. D. Impedovo and G. Pirlo, Automatic signature veri¯cation: The state of the art, IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(5)
(2008) 609–635.

18. J. Fierrez and J. Ortega-Garcia et al., HMM based online signature veri¯cation:
Feature extraction and signature modeling, Pattern Recogn. Lett. 28(16) (2007)
2325–2334.

19. M. M. Yin and J. Wang, Application of hidden Markov models to biological data mining:
A case study, in Data Mining and Knowledge Discovery: Theory, Tools, and Technology
II (2000), pp. 352–358.

20. M. D. Ernst and J. H. Perkins et al., The Daikon system for dynamic detection of likely
invariants, Science of Computer Programming 69(1–3) (2007) 35–45.

21. V. Dallmeier and C. Lindig et al., Mining object behavior with ADABU, in Proc. In-
ternational Workshop on Dynamic Systems Analysis, 2006.

22. L. R. PARINER, A tutorial on hidden Markov models and selected application in speech
recognition, in Proc. IEEE 77(2) (1989) 257–286.

23. Javassist, 2013. http://en.wikipedia.org/wiki/Javassist.
24. Javassist, 2013. http://www.jboss.org/javassist.
25. S. Chiba and M. Nishizawa, An easy-to-use toolkit for e±cient Java bytecode translators,

in Proc. 2nd International Conference on Generative Programming and Component
Engineering, 2003.

26. M. Tatsubori and T. Sasaki et al., A bytecode translator for distributed execution of
\legacy" Java software, in Proc. 15th European Conference on Object-Oriented Pro-
gramming, 2001.

27. BCEL, 2013. http://commons.apache.org/proper/commons-bcel.
28. ASM, 2013. http://asm.ow2.org.

Mining Class Temporal Speci¯cation Based on Markov Model 603

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

29. A. Wasylkowski, A. Zeller and C. Lindig, Detecting object usage anomalies, in Proc. 6th
Joint Meeting of the European Software Engineering Conference & ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2007.

30. A. Wasylkowski, Mining object usage models, in Companion to the Proceedings of the
29th International Conference on Software Engineering, 2007.

31. D. Lorenzoli, L. Mariani and M. Pezz, Automatic generation of software behavioral
models, in Proc. 30th International Conference on Software Engineering, 2008.

32. R. Alur and Pavol et al., Synthesis of interface speci¯cations for Java classes, SIGPLAN
Not. 40(1) (2005) 98–109.

604 D. Chen et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

5.
25

:5
73

-6
04

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
U

A
Z

H
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n

03
/1

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

	Mining Class Temporal Specification Dynamically Based on Extended Markov Model
	1. Introduction
	2. Markov Chain with Final Probability
	2.1. Markov chain
	2.2. Markov chain with final probability
	2.3. Advantages of MCF

	3. MCF Online Learning Algorithm
	4. Class Interface Model
	5. Transforming MCF to CIM
	5.1. General approach
	5.2. Computing initial and final thresholds
	5.3. Computing transition threshold
	5.3.1. Connectivity problem in transformation
	5.3.2. Maximum-threshold connected spanning sub-PMCF
	5.3.3. Judgement of connected PMCF
	5.3.4. Computing MAXSTP
	5.3.5. Example of transformation using computed transition threshold

	6. Experiments
	6.1. Prototype tool ISpecMiner
	6.2. Subjects
	6.3. Experiment 1: Transforming MCF to CIM with different values of TFV
	6.4. Experiment 2: Inspecting mined class temporal specifications
	6.5. Limitations of our approach

	7. Related Work
	8. Conclusions and Future Work
	Acknowledgments
	References

