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Abstract—Being a proven efficient approach to answering queries that have common data needs, data broadcast has received much

attention in the past decade, especially for dynamic and large-scale data dissemination. An important class of emerging data broadcast

applications must monitor multiple data items continuously in order to enable data-driven decision making. For such applications, an

important problem that must be addressed is how to disseminate data to periodic continuous queries so that all the requests can be

satisfied while the bandwidth utilization is minimized. To our best knowledge, the only known work on this topic is the RM-UO algorithm

proposed in [27]. However, the RM-UO algorithm simply utilizes the Sr algorithm introduced in [13] to transform the original queries into

2-harmonic tasks, which would lead to a considerable waste of available bandwidth. In this paper, based on the observation that some

queries can be merged to save bandwidth consumption, we propose two merging polices namely Multiple Query Merging (MQM) and

Redundant Query Merging (RQM), and show that both can lead to notable bandwidth savings. Further, to disseminate data to periodic

continuous queries, we implement a unified scheduling algorithm called UM, which combines both MQM and RQM. Extensive

experiments have been conducted to compare our UM algorithm with RM-UO, and the results show that UM outperforms RM-UO

considerably in terms of wireless bandwidth consumption and query service ratio.

Index Terms—On-demand data broadcast, periodic continuous queries, query merging, real-time scheduling

Ç

1 INTRODUCTION

WITH the rapid development of wireless technology,
data broadcasting has become a popular data access-

ing method in wireless communication environments, due
to its distinguishing feature of satisfying all pending
requests for the same data item with a single transmission.
Recently, mobile data services with real-time support has
received particular attention in the research community. A
time-critical request is associated with a deadline imposed
by either the application or the user, the result of a request
is useful only if all the required data items can be received
before the deadline. For such kind of applications, some
real-time broadcast scheduling algorithms have been pro-
posed [14], [6], [22], which take queries’ deadlines into
account. But unfortunately, almost all the existing real-time
broadcast scheduling algorithms only support single data
item [2] or one-shot queries [7], [16], and thus can be of low
performance, or even not applicable in some practical appli-
cations. For example, a stock investor wants to refresh his
stock information once every minute to decide whether or
not to trade his stock. Since the stocker wants to get continu-
ous services to guarantee that a relatively accurate stock
price can be obtained in a limited time interval, existing
data broadcasting methods which do not consider the time
constraints of queries cannot support such periodic query
processing efficiently. Therefore, it is essential to design

new scheduling algorithms to process periodic queries with
real-time requirement.

To our best knowledge, the work in [27] presented the
first and only algorithm (RM-UO) which achieves timing
predictability for admitted periodic continuous queries.
This algorithm is designed to broadcast data items and sup-
ports processing of continuous queries with fixed periods.
Specifically, it assumes that mobile clients send their data
requests to the server with implicit deadlines, which are
equal to their corresponding periods.

Review of RM-UO. The RM-UO algorithm consists of the
following three steps.

� Data set division and Distance-Constrained (DC)
tasks generation.

� Transform the DC tasks into two-harmonic periodic
tasks, by using the Sr algorithm proposed in [13].

� Schedule the generated two-harmonic periodic task
set by the Rate Monotonic (RM) [20] algorithm.

In the first step, the data items which one query needs
to access are divided into two subsets: the unique set and
the shared set. Each data item in the unique set of a query
has the shortest period among all the queries requiring it.
It should be pointed out that, the data items in the unique
sets are different. After the data set division operation,
the DC task set is generated which only includes the
unique sets, and the shared sets are ignored, since the data
items in the shared set of a query can be shared from the
unique set of other queries.

In the second step, the Sr algorithm is invoked to gener-
ate a two-harmonic task set from the DC task set [13]. We
call a task set T ¼ ft1; . . . ; tng 2-harmonic if the period of
any task tk, denoted by Tk, is 2

xðx 2 0 [NþÞ times of other
task periods which are not greater than Tk. For example,
the task set with periods T1 ¼ 3, T2 ¼ 6, T3 ¼ 6, T4 ¼ 24 is
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two-harmonic. Detail of the Sr algorithm is described as
follows: 1) First, for each DC task ti, Sr computes

gi ¼ Ti=2
dlog2

Ti
T1
e
, where T1 represents the shortest period of

all the tasks; 2) Based on each different gi (with duplicates
removed), the period of each DC task tk is transformed into

gi � 2x, where x ¼ blog2
Tk
gi
c. After the transformation, the

total utilization of the tasks is calculated. Finally, the trans-
formed task set with the minimum utilization is selected to
be the final two-harmonic task set.

In the third step, the RM-UO algorithm calculates the
bandwidth consumption of the two-harmonic task set (gen-
erated in the second step) first. If the bandwidth consump-
tion is no larger than 100 percent, then by the result in [13],
the two-harmonic task set is schedulable under RM. Other-
wise, RM-UO fails to handle this task set and thus cannot
guarantee to provide services for the query set.

Shortcoming of RM-UO. Although RM-UO is an effective
algorithm to schedule periodic queries to satisfy their time
constraint, there is still much room for improvement. Specif-
ically, we observe that some task sets which cannot be
scheduled under RM-UO are actually schedulable. The
main reason lies in that, in RM-UO, the transformation from
DC tasks to two-harmonic tasks would result in consider-
able waste of the broadcasting bandwidth.

Consider a simple example in which there are five
queries with their periods to be 4, 5, 6, 6 and 8, respectively.
The data items they need to access are d1, d2, d3, d4 and d5
respectively. Under the RM-UO algorithm, each original
query is considered independently and transformed into a
two-harmonic task. Specifically, these five queries will be
transformed to five two-harmonic periodic tasks each with
a new period 4, 4, 4, 4 and 8, respectively. Obviously, the
server will refuse to provide services for these five queries,
since the total bandwidth utilization of the first four queries

(4 � 14) has reached the upper bound 100 percent. But actu-

ally, under the multiple query merging (MQM) merging pol-
icy which will be introduced in this paper, the last three
queries with periods 6, 6 and 8 can be merged into one vir-

tual task tM3 with period 2. Then, the five queries can be
processed by the server, since the total bandwidth con-

sumption is 1
4 þ 1

4 þ 3
6 ¼ 1. As an illustration, Fig. 1 depicts

the feasible broadcast sequence for the five queries.
The above example indicates that, for a query set, some-

times a few queries can be merged to save the consumption
of the wireless broadcast bandwidth while maintaining the
schedulability of the query set. Moreover, in RM-UO, when
transforming the DC-tasks into two-harmonic ones, the
periods of some queries are shortened. But, sometimes there
is no need to broadcast data items with such a shortened
period, which means the period transforming operation
would also lead to bandwidth waste. Inspired by these two

observations, we propose two methods namely Multiple
Query Merging and Redundant Query Merging (RQM) to
merge queries, with the objective of saving bandwidth
utilization and hence accommodating more queries. We
also formally prove the correctness of our algorithms on
scheduling the query sets. Further, to disseminate data to
periodic continuous queries, we implement a unified sched-
uling algorithm called UM which combines both MQM and
RQM. In summary, the main contributions of this paper can
be summarized as follows.

� Based on the observation that some queries can be
merged in the transformation step, we propose the
Multiple Query Merging policy. We also propose a
scheduling algorithm MQM-UO to schedule the
query set derived by MQM, and theoretically prove
the correctness of it on scheduling the queries to get
desired data items before their deadlines.

� Based on the observation that using the Sr algorithm
to transform the DC-tasks to two-harmonic tasks
would lead to unnecessary bandwidth waste, we
further propose another merging policy Redundant
Query Merging. We also propose a scheduling algo-
rithm RQM-UO to schedule the query set derived by
RQM, and theoretically prove the correctness of it on
scheduling the queries to get desired data items
before their deadlines.

� We implement a unified scheduling algorithm
namely UM which combines both MQM and RQM.
Extensive experiments have been conducted to com-
pare UM versus RM-UO, and the experimental
results demonstrate that UM can result in significant
performance improvement compared to RM-UO, in
terms of service ratio and bandwidth consumption.

The remainder of this paper is organized as follows:
Section 2 gives the system model along with some basic
assumptions. In Section 3, we introduce two merging poli-
cies, MQM and RQM, based on which we present the UM
algorithm in Section 4. Experimental results are shown in
Section 5. Section 6 reviews some related work. Finally, the
conclusion of this paper with a brief discussion on future
work is given in Section 7.

2 MODEL AND ASSUMPTIONS

2.1 System Model

The on-demand broadcasting environment we considered
in this paper is shown in Fig. 2. The server schedules the
broadcasting data based on the queries issued from clients.
When a mobile client wants to get service, it sends
requested data items and the deadline of the query to the
server and then keeps on monitoring the broadcasting

Fig. 1. A feasible schedule for the simple example in Section 1.
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channel. Once the server receives a query, it checks the fea-
sibility of providing service for this query. If the server
decides to provide service for the query, the requested data
items of the query are added into the broadcast channel.
Note that, the same as [27], in this paper, queries are
assumed to be periodic and continuous. Moreover, our
research focuses on the multi-receiver, single-channel envi-
ronments. So, all the mobile clients monitor the same chan-
nel and there is no channel-changing processing.

To facilitate discussion, we assume that all data items are
of the same size. Therefore, the time to transfer all data
items from the server to a mobile client is the same and the
time needed to broadcast one data item is called a time unit.
In the rest of this paper, time length is measured in the num-
ber of time units. Note that even though it is assumed that
the sizes of all data items are equal, the algorithms proposed
in this paper can be easily adapted to the situation where
data items are of different sizes.

2.2 Notations and Assumptions

We assume that there is a data setD ¼ fdij1 � i � mgmain-
tained in the broadcast server, and there is a set ofN queries
T ¼ q1; . . . ; qNf g, where qi represents the ith query. Each
query qi is characterized by two parameters (T 0

i , Si), where
T 0
i is qi’s period and Si indicates the set of data items

qi wants to access. T is sorted in ascending order of queries
period, i.e., if i < j, then T 0

i � T 0
j . The same as in [27], the set

of data items a query qi requests is partitioned into two sets:
the unique set and the shared set. The unique set of qi consists
of the data items which are accessed by qi and qi is the front-
most one among the queries requiring them. The shared set
of qi consists of the rest data items accessed by qi. Note that,
each data item only belongs to the unique set of the query
which has the shortest period among all the queries access-
ing it. For example, suppose there is a task set fq1; q2gwhich
has been sorted in non-decreasing order of there periods,
q1 requires d1 and d2, while q2 requires d2 and d3. Based on
the description above, d1 and d2 should be set in the unique
set of q1, since q1 is the front-most one among the queries
requiring them. Due to the same reason, d3 should be set in
the unique set of q2. Furthermore, we can get that the shared
set of q1 is ;, while the shared set of q2 is fd2g, since d2 has
been set in the unique set of q1. Note that, since query qi can

share the data items in its shared set from other queries, qi is
transformed into a DC task which does not include the data
items in its shared set. Obviously, the unique set of a DC task
may contain multiple data items. In this case, the DC task is
further transformed into multiple tasks each having the
same period as the original task but only one single data in
its unique set. In this way, a new DC task set is obtained and
the ith DC task in the newly generated task set is repre-
sented by ti, with its unique set to be dif g. In order to distin-
guish the periods of the original queries from that of the
tasks in the newly generated DC task set, we use Ti to repre-
sent the period of ti. Note here Ti is the same as the period
of the query from which ti is generated. To facilitate discus-
sion, in the remaining of this paper, we assume a DC-task
set t ¼ ft1; t2; . . . ; tng has been generated with only one
data item di in each task ti’s unique set. Moreover, in the fol-
lowing discussion, when we talking about that a task set is
schedulable, we mean all the queries in the corresponding
query set can get desired data items before their deadlines.

3 MERGING QUERIES

In this section, we present our two merge policiesMQM and
RQM in Sections 3.1 and 3.2, respectively.

3.1 TheMQM Policy

As pointed out in Section 1, RM-UO may lead to waste of
bandwidth consumption when transforming DC tasks into
two-harmonic tasks. In this section, we propose a novel
method called Multiple Queries Merging, which can merge
multiple tasks to save the bandwidth, but without affecting
any time constraints of the queries. The same as in [27], we
also need to first transform the DC task set into a two-
harmonic periodic task set. To distinguish, we use t�i to rep-
resent the transformed result of the ith DC task ti. For any
DC task ti, after the transform operation, its period will be

shortened to T �
i ¼ g � 2x, where x is an integer and T1

2 <

g � T1. Note here g is called the key unit for the two-
harmonic task set, and is calculated by the method
described in Section 1. It should be pointed out that trans-
forming the DC-task set into a two-harmonic one is only an
intermediate step in our method, we still need to check
whether some tasks can be merged and study how to merge
them. Before detailing the merging policy of our method,
we first give three definitions.

Definition 1. For each DC task ti, if the period of the correspond-
ing two-harmonic task after transformation is equal to g � 2x,
then the value of 2x, denoted by ki, is defined as the coefficient
of ti.

For example, suppose there is a DC task set and the key
unit (g) of the corresponding two-harmonic task set is 3.

Then, for task ti whose period Ti satisfies 3 � 22 < Ti < 3 � 23,
we know the period of t�i must be 3 � 22, thus ti’s coefficient
ki is 2

2.

Definition 2. For each DC task ti with period Ti and its corre-
sponding two-harmonic task t�i with period T �

i , we define the
set which consists of all the tasks with indexes no smaller than
i and periods after transformation equal to T �

i , as the Possible
Merging task set of ti, denoted by PMi. More formally,

Fig. 2. System model.
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PMi ¼ ftjjj � i T �
j ¼ T �

i g. The number of the elements in

PMi is denoted byNi.

Definition 3. For a DC task ti, let b ¼ 2 log2Nib c, a ¼ bb�TiT�
i
c, and

x be the greatest common divisor of a and b. If a > b, then we

define ti as a ðz; 2yÞ-task, where z ¼ a
x and 2

y ¼ b
x.

We will detail the reason why we set b, a, z and 2y this
way later in this section. Below we introduce a lemma to be
used in the merging policy.

Lemma 1. If there exists a ðz; 2yÞ-task ti, then there are at least 2y

tasks with their indexes no smaller than i and periods after
transformation (to two-harmonic tasks) equal to T �

i .

Proof. Based on Definition 3, there are 2y ¼ b
x � b and

b ¼ 2 log2Nib c. So, we have 2y � 2 log2Nib c � Ni. Based on
Definition 2, Ni is the number of the tasks whose indexes
are no smaller than i and periods after transformation
equal to T �

i . So there must be at least 2y tasks with their
indexes no smaller than i and periods after transforma-
tion equal to T �

i , the lemma thus follows. tu

We are now ready to present our MQM policy. First, the
same as RM-UO, we transform the DC task set into a two-
harmonic task set. Then, for each DC task tið1 � i � nÞ, we
calculate Ni based on Definition 2. Next, we traverse the DC
task set to find the ðz; 2yÞ-tasks. Once a ðz; 2yÞ-task ti is
found, we have the following two cases to be considered:

� If there are no less than ðz� 1Þ tasks located behind
ti, then starting with ti, we merge the z continuous

tasks to obtain a new task tMi with period TM
i ¼ g � ki2y;

� Otherwise, if the number of the tasks located behind
ti is less than ðz� 1Þ, then all the tasks starting with

ti are merged into one task tMi with period

TM
i ¼ g � ki2y.

We call the above merging policy MQM. Note that based
on Lemma 1, there are at least ð2y � 1Þ tasks located behind
ti. For simplicity, we use mi to denote the number of the
tasks to be merged with task ti, it is then clear to see that
2y � mi � z. To record the data items which are accessed by

the tasks being merged, we assume the virtual task tMi
requires a virtual data item set VDi, where VDi ¼ fdi;
diþ1; . . . ; diþmi�1g.

After conducting the merging operation by MQM, the
other problem is how to broadcast the data items so that all
the queries can be satisfied.

Algorithm MQM-UO: In [27], RM is used to schedule the
generated two-harmonic task set. In this work, we can also
obtain a two-harmonic task set after the merging operation,
but the schedule is different from that in RM-UO. Specifi-
cally, we first invoke the RM algorithm to generate a sched-
ule for the two-harmonic task set in a hyper period. Then,
when determining the data items to be broadcast, we need
to consider the following two cases: 1) For the virtual task
which is generated by theMQM policy, the data items which
are in the virtual data item set will be broadcast sequentially
and periodically; 2) For the tasks which are derived by
transforming the DC tasks directly, the same as RM-UO, the
corresponding data item accessed by the task will be broad-
cast. To help understand the first case, consider that there is

a virtual task tMi , which is the result of merging

ti; tiþ1; . . . ; tiþmi�1

� �
by executing the MQM policy. Then,

when tMi is selected to execute based on the task schedule,
the broadcasting server will sequentially and periodically
choose a data item from VDi ¼ fdi; diþ1; . . . ; diþmi�1g to

broadcast. Since we also only broadcast the data items in
the unique set, similar to [27], we call this scheduling algo-
rithm MQM-UO. The pseudo-code of MQM-UO is shown in
Algorithm 1.

Algorithm 1.MQM-UO

Input: a two-harmonic task set, the current time t
Output: the data item to be broadcast at t

1 begin
2 Utilize the RM algorithm to derive the task schedule for the

two-harmonic task set within one hyper period;
3 Find the task to be executed at time t;
4 if the task to be executed is a virtual task then
5 Sequentially and periodically return a data item in the

virtual data item set accessed by the virtual task;
6 else
7 Return the data item accessed by the task;
8 end

An astute reader may concern whether the queries can
get their data on time after merging some tasks by the MQM
policy. The answer is affirmative, as shown in the following
theorem.

Theorem 1. Given a periodic continuous query set fq1;
q2; . . . ; qmg and its corresponding DC task set ft1; t2; . . . ; tng,
if

Pn
i¼1

Ci
Ti

� n � ð21
n � 1Þ, then this periodic continuous query

set fq1; q2; . . . ; qng is schedulable underMQM-UO.

Proof. Based on [27], given a periodic continuous query set
fq1; q2; . . . ; qmg, if its corresponding DC task set ft1;
t2; . . . ; tng satisfies the following condition:

Xn
i¼1

Ci

Ti
� n � ð21

n � 1Þ

then this periodic continuous query set is schedulable
under RM-UO. Now we need to prove the query set is
alsoMQM-UO schedulable. Clearly, if there does not exist
any task which can be merged by the MQM policy, then
MQM-UO is the same as RM-UO, and the claim holds
obviously.

Now we consider the case that some tasks can be
merged by MQM. Without loss of generality, suppose
there is a ðz; 2yÞ-task ti. Then based on Definition 3, we
know ti’s period Ti satisfies the following condition:

T �
i � z

2y
� Ti < 2 � T �

i : (1)

Note that, although ti’s period is shortened to
Ti

� ¼ g � ki, its actual period remains unchanged and the
mobile client still requires di every Ti time units. As men-

tioned above, by the MQM policy, the period of tMi is

TM
i ¼ g � ki2y. So, if we broadcast fdi; diþ1; . . . ; diþmi�1g

cyclically with period TM
i , each of them will be broadcast
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with a fixed period g � ki2y �mi ¼ g � ki � mi
2y . Obviously, all

these tasks ti, tiþ1; . . . ; tiþmi�1 can obtain their unique-
data, since by 2y � mi � z and Formula (1), there is
g � ki � mi

2y � g � ki � z
2y � Ti � Tiþ1 � � � � � Tiþmi�1.

Next we argue that other tasks can also share data
from these mi tasks correctly. First, we prove that for
any task tk with di in its shared set, tk can share di in
each of its period. Based on the data item division
method of a query, only the tasks whose periods are not
shorter than Ti can hold di in their shared sets. So we
have Tk � Ti � g � ki � z

2y � g � ki � mi
2y . Note that, under

MQM-UO, di is broadcast with period g � ki � mi
2y . So, tk

can get di in each of its period. Following a same way,
we can prove that the tasks with diþ1, diþ2, . . ., or diþmi�1

in their shared set can also get these data items in their
periods respectively. The proof is thus finished. tu

The following theorem formally shows the improvement
ofMQM-UO as compared to RM-UO, in terms of bandwidth
consumption.

Theorem 2. Suppose theMQM policy is executed on mi continu-
ous tasks starting with a ðz; 2yÞ-task ti, then the bandwidth

saving of this operation is 1
T�
iþ2y

þ 1
T�
iþ2yþ1

þ � � � þ 1
T�
iþmi�1

.

Proof. Under RM-UO, the mi continuous tasks consume the

bandwidth in the size of 1
T�
i
þ 1

T�
iþ1

þ � � � þ 1
T�
iþmi�1

. Since

ti is a ðz; 2yÞ-task, by Lemma 1, we know there are at least
ð2y � 1Þ tasks which are sorted behind ti will be trans-
formed into two-harmonic tasks with period T �

i . So, we

have 1
T�
i
þ 1

T�
iþ1

þ � � � þ 1
T�
iþmi�1

¼ 1
T�
i
þ 1

T�
iþ1

þ � � � þ 1
T�
iþ2y�1

þ
1

T�
iþ2y

þ � � � þ 1
T�
iþmi�1

¼ 2y

T�
i
þ 1

T�
iþ2y

þ � � � þ 1
T�
iþmi�1

¼ 2y

g�ki þ
1

T�
iþ2y

þ � � � þ 1
T�
iþmi�1

. Under MQM-UO, by executing the MQM

policy on the tasks from ti to tiþmi�1, the newly gener-

ated virtual task has a bandwidth consumption of 2y

g�ki. So,

the bandwidth saving is 1
T�
iþ2y

þ 1
T�
iþ2yþ1

þ � � � þ 1
T�
iþmi�1

. tu

Reason for setting b, a, z and 2y. Now, we explain the rea-

son why we set b ¼ 2 log2Nib c, a ¼ bb � Ti
T�
i
c, 2y ¼ b

x and z ¼ a
x in

Definition 3. First, we consider the case where mi ¼ z. With-
out loss of generality, suppose ti is a ðz; 2yÞ-task, since
mi ¼ z, we know z is the number of the tasks merged into

tMi , and TM
i ¼ T�

i
2y is the period of tMi . Someone may concern

why the period of the new task tMi must be in the form of
T�
i
2k
ðk 2 NÞ. This is because we need to guarantee that the

new task set after conducing the MQM policy is still a two-
harmonic one. Since the data items in VDi are broadcast one
after another in sequence, we know the broadcasting period

of each data item is equal to z � TM
i ¼ z � T

�
i
2y . Note that, we

must guarantee that the broadcasting period of each item is
not larger than the original period of its corresponding DC

task. So, there is z � T
�
i
2y � Ti, which means z � Ti � 2y

T�
i
. Since z is

the total number (an integer) of the tasks which can be
merged, in order to select a bigger z to save more band-

width consumption, we have z ¼ b2
y�Ti
T�
i
c. As described

above, under the RM-UO algorithm, the total bandwidth

consumption of fti; . . . ; tiþz�1g is
Piþz�1

j¼i
1
T�
j
. Under the

MQM-UO algorithm, the bandwidth consumption of tMi is
2y

T�
i
. In order to guarantee

2y

T �
i

�
Xiþz�1

j¼i

1

T �
j

¼ Ni �
1

T �
i

þ
Xiþz�1

j¼iþNi

1

T �
j

;

we must have 2y � Ni. Moreover, it should be pointed out
that, during one MQM execution, the bandwidth saving is
determined by the total consumption of the two-harmonic
tasks ðft�iþ2y ; . . . ; t

�
iþz�1g) which is generated by the transfor-

mation of the last z� 2y tasks. Since z� 2y is a non-decreas-
ing function with respect to 2y, in order to maximize the
value of z� 2y, we need to choose the largest 2y which satis-

fies 2y � Ni. Consequently, we have 2y ¼ 2 log2Nib c.
Note that the above analysis focuses on the case where

mi ¼ z. However, it is also possible that mi < z. In this case,
if mi > Ni, then MQM-UO can still save some broadcast

bandwidth. But, if mi ¼ Ni and we still set z ¼ b2
y � Ti
T�
i
c and

2y ¼ 2 log2Nib c, then there is not any bandwidth savings by

merging the mi tasks with MQM, since 2y

T�
i
¼

Piþmi�1
j¼i

1
T�
j
. In

order to get bandwidth savings byMQM, we first select an x

which is the greatest common divisor of b2
y � Ti
T�
i
c and 2 log2Nib c,

and then set 2y ¼ 2 log2Nib c=x and z ¼ b2
y�Ti
T�
i
c=x to make the

new number of tasks which are to be merged into one task
is bigger than 2y in most cases, with the objective of saving
the bandwidth consumption as much as possible. In sum-

mary, we have b ¼ 2 log2Nib c, a ¼ bb�TiT�
i
c, 2y ¼ b

x and z ¼ a
x.

We now give an example to illustrateMQM-UO.

Example 1. Suppose there are eight queries and their corre-
sponding DC tasks are ft1; t2; t3; t4; t5; t6; t7; t8g, with
their periods respectively to be f4; 4; 4; 16; 24; 24; 24; 24g.
By the RM-UO algorithm, the periods of the DC tasks
will be transformed (shortened) to f4; 4; 4; 16; 16; 16;
16; 16g with g ¼ 4. Obviously, the total bandwidth con-

sumption is 17
16 > 100%, which means RM-UO fails to han-

dle this query set. Different from RM-UO, we do not
schedule these two-harmonic tasks directly, but merge
some DC tasks by the MQM policy to generate a new
two-harmonic task set. Based on Definition 3, we find

that t5, t6 and t7 are ð3; 21Þ-tasks and their coefficients
are 4. So, instead of shortening the periods of them to 16,

we merge t5, t6 and t7 to obtain a new task tM5 , with

period g � k5
2 ¼ 8. After this merging operation, the DC

task set is changed to t�1; t
�
2; t

�
3; t

M
5 ; t�4; t

�
8

� �
with periods

f4; 4; 4; 8; 16; 16g. As can be seen, this new two-harmonic
task set’s bandwidth consumption is 100 percent, which
means it can be scheduled by MQM-UO. Fig. 3 shows the
feasible schedule for the newly generated task set.

3.2 The RQM Policy

In this section, we introduce another method which can be
used to further reduce the waste of the bandwidth con-
sumption. We start by giving an example as follows.
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Example 2. In Example 1, suppose a new task t9 with period
48 is added, i.e., the new task set t is ft1; t2; t3; t4; t5;
t6; t7; t8; t9g, with their periods to be f4; 4; 4; 16; 24; 24;
24; 24; 48g. By the RM-UO algorithm, the periods of the
DC tasks will be transformed to f4; 4; 4; 16; 16; 16;
16; 16; 32g. It is clear that RM-UO still cannot handle this
query set since the total bandwidth consumption is
35
32 > 100%. By MQM-UO, the DC task set will be changed

to t�1; t
�
2; t

�
3; t

M
5 ; t�4; t

�
8; t

�
9

� �
with periods f4; 4; 4;

8; 16; 16; 32g. Since the bandwidth consumption is
33
32 > 100%, it means MQM-UO also cannot handle this

query set.

At first glance, it seems that t in Example 2 cannot be
scheduled to get services. But actually, if we schedule it in a
more wise way, these nine tasks can still get their services
simultaneously. We first introduce a useful lemma.

Lemma 2. Suppose there is task ti with di in its unique set, and
ti’s period Ti will be shortened to Ti

� under the RM-UO algo-
rithm, then in the broadcast sequence of RM-UO, there must
exist a ti’s instance which can get di twice , but at most twice,
in a time-interval of Ti.

Proof. Without loss of generality, suppose di appears in the
broadcast channel at time unit m for the first time. Then
under RM-UO, di must be broadcast at each time unit
mþ k � T �

i where k is a non-negative integer. Let

x ¼ m
Ti � T�

i

j k
, since ti’s period Ti will be shortened to T �

i ,

i.e., Ti > T �
i , it is clear that x is a non-negative integer.

Then we know under the RM-UO algorithm, di must be
broadcast at time unit mþ x � T �

i and mþ ðxþ 1Þ � T �
i . By

x ¼ m
Ti � T�

i

j k
, we have x � Ti � mþ x � T �

i < mþ ðxþ 1Þ�
T �
i < ðxþ 1Þ � Ti. This means the ðxþ 1Þth instance of

ti can get di twice from the broadcast channel, and the
two broadcasting time units are mþ x � T �

i and m þ
ðxþ 1Þ � T �

i , respectively. Moreover, since for any
instance of ti, there is T �

i < Ti < 2 � T �
i , we know ti can-

not get di more than twice. In summary, the claim is
proved. tu

Obviously, it is a waste of bandwidth to broadcast data
item di twice during the execution of any instance of ti in a

time length of Ti. In the following discussion, the second
broadcasting of di during the execution of an instance of
task ti as described in the above lemma is called a potentially
redundant broadcast of di. Based on this definition, we can
derive that a potentially redundant broadcast of di appears at
time t, if and only if the following equation holds:

t

Ti

� �
¼ t� T �

i

Ti

� �
: (2)

Note that, for such a potentially redundant broadcasting of di,
sometimes it can be removed from the broadcast channel to
save the broadcasting bandwidth.

Now we give a lemma to specify when we can remove a
potentially redundant broadcasting of di, so as to save the
bandwidth consumption. We first give a definition.

Definition 4. Assume there are two adjacent DC tasks ti and
tiþ1, with their coefficients to be ki and kiþ1, respectively. If
ki < kiþ1, i.e., T

�
i < T �

iþ1 (or 2T �
i � T �

iþ1 due to that they are

all two-harmonic periods), and the period of ti will be short-
ened under RM-UO, then ti is called an R-task.

For instance, in Example 2, k8 ¼ 4ðT �
8 ¼ 16Þ, k9 ¼ 8ðT �

9 ¼
32Þ and the period of t8 will be shortened from 24 to 16
under RM-UO. So, Based on Definition 4, t8 is an R-task.

Lemma 3. If ti is an R-task with its unique set to be dif g, then
the potentially redundant broadcasting of data item di can be
removed from the broadcast channel but without affecting the
satisfaction of the queries which require di.

Proof. Obviously, for task ti, removing the potentially
redundant broadcasting of di will not affect its execution.
Now we discuss the execution of the tasks whose shared
units including di.

Under the RM-UO algorithm, di is broadcast with
period T �

i . So, di definitely will appear in any time inter-
val of length 2 � T �

i . Assume there is a task tj with di is in
its shared set. Based on the definition of R-task and the
rules of item division, we know Tj > Ti. Because ti and
tiþ1 are two adjacent DC tasks, and the DC-tasks are
sorted in non-decreasing order of period, we know
j must be larger than i, which indicates that Tj � Tiþ1.
Since ti is an R-task, based on Definition 4, we have,

Fig. 3. Schedule of the queries in Example 1 by MQM-UO.
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Tj � Tiþ1 � T �
iþ1 � 2 � T �

i :

As we have argued above, di appears in any time interval
of length 2 � T �

i , then di must be broadcast in each of tj’s
period. As a conclusion, if ti is an R-task, then all the
redundant broadcasting of di can be deleted and the
schedulability of the task set will not be affected. The
lemma thus follows. tu

Obviously, for those R-tasks, removing the redundant
broadcasting data items can leave space to accommodate
some other data items. Now the remaining problem is how
to use these space, we first give a definition as follows.

Definition 5. Given a DC task set, assume there is an R-task
ti with period Ti, the first task tj with its period satisfying

Tj � d Ti
Ti�T�

i
e � T �

i , is defined to be the RM-task of ti.

Based on the above definition, we are now ready to
present our merging policy. Assume there is an R-task
ti and tj is its RM-task. Then, by replacing potentially
redundant broadcasting of di with dj, ti and tj can be

merged into a new task tRi with period TR
i ¼ T �

i . We call
such a task merging policy Redundant Query Mering.

After merging the R-task and RM-task to obtain a new
one by RQM, the other problem is how to broadcast the
data items so that all the queries can be satisfied.

Algorithm 2. RQM-UO

Input: a 2-harmonic task set, the current time t
Output: the data item to be broadcast at t

1 begin
2 Utilize the RM algorithm to derive the task schedule for

the 2-harmonic task set within one hyper period;
3 Find the task to be executed at time t;
4 if the task to be executed is a virtual task then
5 Find the R-task and RM-task of the virtual task;
6 if broadcasting the data item accessed by the R-task is redun-

dant then
7 Return the data item accessed by the RM-task;
8 else
9 Return the data item accessed be the R-task;
10 else
11 Return the data item accessed by the task;
12 end

Algorithm RQM-UO: The same as MQM-UO, we first uti-
lize the RM algorithm to derive the task schedule for the
two-harmonic task set within one hyper period. When
determining the data items to be broadcast, we also need to
consider two cases: 1) For a virtual task which is generated
by the RQM policy, we first find the R-task and RM-task of
the virtual task. Then, we check whether broadcasting the
data item accessed by the R-task is redundant, by Equa-
tion (2). If the answer is negative, we broadcast this data
item. Otherwise, we broadcast the data item accessed by the
RM-task; 2) For the tasks which are derived by transform-
ing the DC tasks directly, the same as MQM-UO and RM-
UO, we simply broadcast the corresponding data items
accessed by these tasks. To help understand the first case,

suppose at time t, a virtual task tRi needs to execute, and tRi

is the result of merging ti (R-task) and tj (RM-task). We
first check whether broadcasting di is potentially redundant
by verifying if Equation (2) holds for ti. If the answer is
affirmative, it means broadcasting di is redundant (since ti
is an R-task) and we broadcast dj. Otherwise, we broadcast
di. Similar to MQM-UO, since we only broadcast the data
items in the unique set, we call this scheduling algorithm
RQM-UO. The pseudo-code of RQM-UO is shown in Algo-
rithm 2.

The following theorem illustrates this merging and
data replacing policy does not affect the query set’s
schedulability.

Theorem 3. Given a periodic continuous query set fq1; q2; . . . ;
qmg and its corresponding DC task set ft1; t2; . . . ; tng, ifPn

i¼1
Ci
Ti
� n � ð21

n � 1Þ, then this periodic continuous query set

fq1; q2; . . . ; qng is schedulable under RQM-UO.

Proof. Based on [27], given a periodic continuous query set
fq1; q2; . . . ; qmg, if its corresponding DC task set ft1;
t2; . . . ; tng satisfies the following condition:

Xn
i¼1

Ci

Ti
� n � ð21

n � 1Þ

then this periodic continuous query set is schedulable
under RM-UO. Now we need to prove the query set is
also RQM-UOschedulable. Clearly, if there does not exist
any task which can be merged by the RQM policy, then
RQM-UO is the same as RM-UO, and the claim holds
obviously.

Now we consider the case that some tasks can be
merged by RQM. Without loss of generality, suppose ti
is an R-task and tj is its RM-task. Based on Lemma 3, we
know that, after merging ti with tj by RQM, any task
which requires di can get it from the wireless channel
correctly during their execution. So, in order to prove the
claim in this theorem, we only need to show that under
the RQM policy, the broadcasting of dj will not affect the
timing constraints of the tasks which need to access dj.

Suppose di is broadcast at time unitmðm < T �
i Þ for the

first time and let x ¼ Ti
Ti � T�

i
, now regarding x, we have

the following two cases to be considered.

� x is an integer. In this case, we first assume that

y ¼ b m
Ti � T�

i
c þ 1. Then by x ¼ Ti

Ti � T�
i
, we can get,

ðx� 1Þ � Ti ¼ x � T �
i : (3)

By y ¼ b m
Ti � T�

i
c þ 1, we can get,

y �
�
Ti � T �

i

�
> m � ðy� 1Þ �

�
Ti � T �

i

�
: (4)

Due to the periodic execution of the queries, it is
obvious that under RQM-UO, di will be broadcast
at the two time units: mþ ðy� 1þ k � xÞ � T �

i and
mþ ðyþ k � xÞ � T �

i ðk ¼ 1; 2; . . .Þ. Moreover, for
any k, there must be an instance of ti which
releases at time unit ðy� 1þ k � x� kÞ � Ti and
ends at time unit ðyþ k � x� kÞ � Ti. By Formulas
(3) and (4), we have,
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ðy� 1þ k � x� kÞ � Ti � mþ ðy� 1þ k � xÞ � T �
i

< mþ ðyþ k � xÞ � T �
i < ðyþ k � x� kÞ � Ti;

which means the ðyþ k � x� kÞth instance of
ti can get di twice at the time unitsmþ ðy� 1þ k �
xÞ � T �

i and mþ ðyþ k � xÞ � T �
i respectively. This

means all the broadcastings of di at time unit
mþ ðyþ k � xÞ � T �

i are redundant. According to
the RQM policy, these redundant broadcasting
items will be replaced by dj, and dj will be broad-
cast with period x � T �

i . Note that, task tj is the
RM-task of ti. By the definition of RM-task

(Definition 5), Tj � d Ti
Ti � T�

i
e � T �

i ¼ x � T �
i , we can

conclude that the broadcasting of dj will not affect
its time constraints under RQM-UO. Furthermore,
based on the division rule of data items, we are
sure that the periods of the tasks sharing dj from
tj must be longer than Tj. So, under the RQM

policy, all these tasks can get dj in each of their
periods.

� x is not an integer. Note that according to the
RQM policy, dj will only replace the redundant
broadcasting of di. For any two neighboring
broadcastings of dj, we assume there are q broad-
castings of di between them. We consider the time
interval between the first broadcastings of dj and
the last broadcasting of di. As shown in Fig. 4, the
length of the interval is equal to q � T � and it must
contain ðq � 1Þ complete instances of ti, since the
time interval between the broadcasting of di and
dj or two continuous broadcasting of di is T

�
i time

units. So, we have ðq � 1Þ � Ti < q � T �
i , which

means q < Ti
Ti�T�

i
. Moreover, since q is an integer,

we have q þ 1 � d Ti
Ti�T�

i
e, i.e., ðq þ 1Þ � T �

i �

d Ti
Ti�T�

i
e � T �

i . This means, under the RQM policy, dj

is broadcast at least once in every time interval

of d Ti
Ti�T�

i
e � T �

i . Since tj is the RM-task of ti, based

on the definition of RM-task, we have Tj �
d Ti
Ti�T�

i
e � T �

i . So, all the instances of tj can get

dj before their deadlines. Based on the division
rule of data times, the periods of the tasks which

require dj must be longer than d Ti
Ti�T�

i
e � T �

i . There-

fore, all the tasks which require dj can get dj in
each of their periods.

Based on the above discussion, the theorem follows. tu

The following theorem formally shows the improvement
of RQM-UO as compared to RM-UO, in terms of bandwidth
consumption.

Theorem 4. By executing the RQM policy once, a bandwidth
consumption in the size of the utilization of the RM-task after
period transformation can be saved, as compared to RM-UO.

Proof. Without loss of generality, suppose the RQM policy
is executed to merge an R-task ti and its RM-task tj.
Under RM-UO, the total bandwidth occupied by ti and

tj is
1
T�
i
þ 1

T�
j
. By executing the RQM policy, the newly gen-

erated task tRi only consumes bandwidth in the size of 1
T�
i
.

So, the bandwidth saving is 1
T�
j
, which is the utilization of

the RM-task tj after period transformation. tu

Now let us go back to Example 2. After merging the tasks
byMQM, it can be found that task t8 is the first R-task in the
newly produced task set, and t9 is the RM-task of t8. Then,

by RQM, t8 and t9 can be merged to generate a new task tR8
with period TR

8 ¼ 16. Clearly, this new two-harmonic task
set is schedulable since the total bandwidth happens to be
100 percent. As an illustration, Fig. 5 shows two broadcast

cycles of tR8 .

4 ALGORITHM IMPLEMENTATION ISSUES

A whole on-demand broadcast system consists of three
active components: Arrival-query-handler and Scheduler
running at the server side, and Receiver executing on the

Fig. 4. Illustration of Case 2 (x is not an integer) in Theorem 2.

Fig. 5. A piece of schedule of the query set in Example 2 by RQM-UO.
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client side. Arrival-query-handler maintains a pending
query list and inserts newly issued queries into the list.
Scheduler generates the broadcast schedule, releases
pending queries and removes expired queries at appro-
priate instants. Receiver simply keeps listening to the
broadcast channel and retrieves the needed data items as
they appear. In this work, we adopt the same Arrival-
query-handler and Receiver algorithms as in [27]. Hence,
we mainly concentrate on detailing the design of the
Scheduler. Specifically, we will discuss the implementa-
tion details of the proposed MQM and RQM polices, and
introduce a new scheduling algorithm namely UM which
combines RQM with MQM. We start by defining two
data structures OQ (original query profile) and TP (task
profile list) as follows:

� OQ is described as a six-tuple in the form of < id;
period; items; Uitems; Sitems; k > , where id is a
unique number for identifying a query; period is the
period of this query; items includes all the data items
the query requires; Uitems and Sitems denote the
unique and shared sets of the query, respectively; and
k is the number of items which are in Uitems. Note
that, once a query is accepted, an OQ is initialized.
OQList consists of all the OQs which are sorted in
non-decreasing order of their periods. If the queries
having the same periods, then they are sorted in
non-decreasing order of the number of the data
items in their unique sets.

� TP is defined as an eight-tuple in the form of < id;
op; pp; anum; flag; itemlist; vdiset; position > , where
id is a unique number for identifying a task; op is the
original period of the query from which the task is
generated; pp is the period of the two-harmonic task
which is generated from this task by the Sr

algorithm; anum is Nid, which is introduced in
Definition 2; flag is used to identify the merging pol-
icy (MQM or RQM) adopted when generating the
task. Specifically, flag ¼ 0 means that the task is
directly transformed from a query without adopting
any merging policy. flag ¼ 1 and flag ¼ 2 indicate
that the task is produced by using the MQM and
RQM policies, respectively; itemlist is a list used to
record the data items. If flag ¼ 0, only the single
data item in the unique set of task TP is in the
itemlist; If flag ¼ 1, task TP is produced by using
the MQM policy and itemlist records the unique sets
of the mi tasks respectively which are merged into
one task TP . If flag ¼ 2, then task TP is produced by
using the RQM policy and itemlist records the unique
sets of the R-taskti and its RM-task tj, sequentially.
It should be pointed out that, when the RM-task is a
virtual task generated by executing MQM, we use
vdiset to record the data items which are accessed by
the virtual task, and the second element in itemlist is
set to be null. When flag ¼ 2, position is used to
record the position of the last broadcast of the first
data item in itemlist, so that we can determine
whether it is unnecessary to broadcast the data item
in the unique sets of the R-task at a special time unit.
Note that, a TP has only one single unique data item

and it is generated by transforming an OQ. More-
over, all the TPs constitute a list TPList and they are
sorted in non-decreasing order of TP:pp.

Before showing the UM algorithm, we first detail MQM
and RQM.

Algorithm 3 shows the pseudo-code of merging tasks by
MQM. For presentation convenience, we let

aðiÞ ¼ 2 log2TP ½i�:anumb c�TP ½i�:op
TP ½i�:pp

j k
bðiÞ ¼ 2 log2TP ½i�:anumb c;

(

where i is a cursor used to traverse TPList. First, we tra-
verse the TPList to find the first task ti which satisfies
aðiÞ > bðiÞ (line 4). Once such a task ti is found, we know it

is a ðz; 2yÞ-task, where z ¼ aðiÞ
x , 2y ¼ bðiÞ

x , and x is the greatest

common divisor of aðiÞ and bðiÞ (line 5). Next, we check the
number of the tasks behind ti. Note here since the size of
TPList is n, TP ½n� 1� is the last TP in TPList. If
iþ z� 1 � n� 1, we know there are at least ðz� 1Þ tasks
behind ti, and the z tasks (from ti to tiþz�1) can be merged

into one task tMi with period TM
i ¼ g � ki2y (lines 6-8). Other-

wise, all the tasks starting from ti will be merged
(lines 9-11). Finally, we order the newly generated task set
TPList in non-decreasing order of pp (line 13) and return
the result. The time complexity of MQM is Oðn � lognÞ, since
traversing TPList takes OðnÞ time, while ordering the newly
generated TPList takes at most Oðn � lognÞ time.

Algorithm 3.MQM

Input: TPList;
Output: TPList derived byMQM

1 begin
2 i ¼ 0; temp ¼ 0;
3 while TP ½i� is not null do
4 if aðiÞ > bðiÞ then
5 x ¼ GCDðaðiÞ;bðiÞÞ;
6 if iþ aðiÞ

x � 1 � n� 1 then
7 Merge tasks from TP ½i� to TP ½iþ aðiÞ

x � 1�;
8 Delete tasks from TP ½iþ 1� to TP ½iþ aðiÞ

x � 1�;
9 else
10 Merge tasks from TP ½i� to TP ½n� 1�;
11 Delete tasks from TP ½iþ 1� to TP ½n� 1�;
12 iþþ;
13 Order tasks in TPList in non-decreasing order of pp;
14 Return TPList;
15 end

Algorithm 4 presents the pseudo-code of RQM. For

presentation convenience, we let F ðiÞ ¼ d TP ½i�:op
TP ½i�:op � TP ½i�:ppe.

The same as in Algorithm 3, we first traverse TPList to
find the first task ti which satisfies TP ½i�:pp 6¼ TP ½iþ
1�:pp and TP ½i�:pp 6¼ TP ½i�:op. Based on Definition 4, we
know ti is an R-task (line 4). Next, we traverse TPList
with cursor j to find the RM-task tj of ti, and merge
them (lines 5-9). Note here j starts from iþ 1. This is

because based on Definition 5, we have Tj � d Ti
Ti�T�

i
e�

T �
i � 2 � T �

i > T �
i , which indicates that j � iþ 1. It is not

difficult to see the time complexity of Algorithm 4 is

Oðn2Þ, since it contains two while loops.
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Algorithm 4. RQM

Input: TPList
Output: TPList derived by RQM

1 begin
2 i ¼ j ¼ 0;
3 while TP ½i� is not null do
4 if TP ½i�:pp 6¼ TP ½iþ 1�:pp and TP ½i�:pp 6¼ TP ½i�:op then
5 j ¼ iþ 1;
6 while TP ½j� is not null do
7 if TP ½j�:op � F ðiÞ � TP ½i�:pp then
8 Merge TP ½i�with TP ½j�;
9 Delete TP ½j�; Break;

10 jþþ;
11 iþþ;
12 return TPList;
13 end

Now, we are ready to show our UM algorithm, which
consists of the following three steps:

� Divide the data item set of every query into two sets,
unique set and shared set, and generate a DC task set.

� Transform the newly generated DC tasks into two-
harmonic tasks, and merge them by MQM and RQM
(this step obtains a new two-harmonic task set).

� Schedule the two-harmonic tasks by the UM algo-
rithm, which combines RQM-UO andMQM-UO.

Algorithm 5 shows the first two-steps of UM. Similar to
RM-UO, we first divide the item set and transform original
queries into two-harmonic tasks (line 2). Then, the MQM
and RQM schemes are invoked sequentially to merge some
tasks, with the objective of saving the bandwidth con-
sumption. After that, the utilization of TPList is checked
to see whether the newly generated two-harmonic task set
can be scheduled. If utilization of TPList does not exceed
100 percent, we use the RM algorithm to generate the
broadcasting sequence BS of TPList (line 6). Note here BS
is also a TPList which consists of multiple BSs, and each
BS½i� corresponds to one TP ½i0�.

Algorithm 5. Admission Control of UM

Input: OQList
Output: Scheduling sequence BS of queries in TP List

1 begin
2 Generate 2-harmonic task list TP List of OQList by Sr and

compute anum for each TP ;
3 Invoke AlgorithmMQM (with TP List as input);
4 Invoke Algorithm RQM (with TP List derived in the last

step as input);
5 if utilization of TP List � 100% then
6 Use RM to generate the scheduling sequence BS of

TP Listwithin one hyper-period;
7 return BS;
8 end

After computing the initial broadcasting sequence BS,
we use the scheduler of UM (Algorithm 6) to identify the
data item to be broadcast at each time unit. As mentioned
above, for each BS½i� in BS, it corresponds to a TP ½i0�. Sup-
pose the current time unit is t and BS½t� is selected to be

broadcast, we have the following three cases to be
considered:

� If BS½t�:flag ¼ 0, i.e., BS½t� represents a task derived
by directly transforming (using Sr) the originally
query, then the data item in TP ½t0�:itemlist is
returned (line 3);

� If BS½t�:falg ¼ 1, i.e., BS½t� represents a task derived
by merging some tasks with MQM. Then based on
the MQM policy, we circularly choose the data items
in TP ½t0�:itemlist (line 5) and return it;

� If BS½t�:falg ¼ 2, i.e., BS½t� represents a task derived
by merging some tasks with RQM. Then based on
the RQM policy, the redundant broadcast of the data
item accessed by an R-task will be replaced by the
data item accessed by its RM-task. We use the
position (the initial value of position is set to be a
negative number) of each TP to help check whether
one broadcast is redundant. Specifically, if the profile
of TP ½t0� satisfies the following condition:

TP ½t0�:position
TP ½t0�:op

� �
¼ t

TP ½t0�:op

� �
(5)

then the broadcast of the first item in TP ½t0�:itemlist
is redundant, and we have two cases to be consid-
ered. If TP ½t0�:itemlist½1� is null, it means the
RM-task is a virtual task derived by MQM, and we
cyclically choose the data item from TP ½t0�:vdiset
and return it (line 9). Otherwise, we simply return
TP ½t0�:itemlist½1� (line 11). Finally, if Equation (5)
does not hold, we return the first data item in
TP ½t0�:itemlist (line 13).

Algorithm 6. Scheduler of UM

Input: BS; t—the current time unit
Output: The data item to be broadcast at time t

1 begin
2 if BS½t�:flag ¼ 0 then
3 Return the data item in TP ½t0�:itemlist;
4 if BS½t�:flag ¼ 1 then
5 Cyclically choose the data item in TP ½t0�:itemlist and

return it;
6 if BS½t�:flag ¼ 2 then
7 if the profile of TP ½t0� satisfying Equation (5) then
8 if TP ½t0�:itemlist½1� is null then
9 Cyclically choose the data item in TP ½t0�:vdiset and

return it;
10 else
11 Return TP ½t0�:itemlist½1�;
12 else
13 Return TP ½t0�:itemlist½0�;
14 end

Algorithm 5 has a time complexity of Oðn2Þ, while
Algorithm 6 has a time complexity of Oð1Þ. But for a given
query set, Algorithm 5 only needs to be executed once,
while Algorithm 6 is invoked at each broadcast slot.

As stated in Theorems 2 and 4, both MQM and RQM
algorithms can lead to considerable bandwidth savings as
compared to RM-UO. In UM, we first invoke the MQM
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algorithm, and then the RQM algorithm to generate the final
task set for scheduling, which means UM combines the
advantages of both MQM and RQM. Hence, the perfor-
mance improvement of UM is also more significant, as illus-
trated in our experimental study.

5 EXPERIMENTAL EVALUATION

This section presents the performance evaluation of the
proposed algorithms versus RM-UO via simulation
experiments. We first describe the experimental setup in
Section 5.1, and then present our experimental results and
discussions in Section 5.2.

5.1 Experimental Setup

To our best knowledge, RM-UO is the only known work
that can support continuous periodic queries with time con-
straints. Hence, in this section, we focus on comparing our
algorithms with RM-UO. Specifically, we compare the per-
formance of the following four algorithms: RM-UO,
MQM-UO, RQM-UO and UM. We have developed a simula-
tor written in C++which imitates the on-demand broadcast-
ing environments in which data items for periodic
continuous queries are scheduled. It should be pointed out
that when a new query arrives, all the four algorithms will
check the feasibility at first. If the feasibility test cannot be
passed, then the new query cannot be served. Hence, it is
meaningless to compare the deadline miss ratios of the
queries which have got their services, since the results are
all 0 under the four algorithms. In fact, a good scheduling
algorithm should save more broadcast bandwidth to serve
more queries. In view of this, in this work, we use the ser-
vice ratio of a set of queries and the total bandwidth con-
sumption of a set of accepted queries to measure the
performance of the scheduling algorithms. Note that when
testing the bandwidth consumption, our experiments are
designed with the premise that all the queries can get their
services.

To simulate a wide variety of queries, we choose five
classes of queries, whose parameters are originally from
[27]. In particular, each query period belongs to one of the
following five ranges: 50; 60½ �, 100; 120½ �, 140; 150½ �, 250; 300½ �

and 500; 590½ �. The number of data items accessed by a
query belonging to the five period ranges is ½1; 2�, 3; 5½ �,
5; 8½ �, 10; 15½ � and 15; 20½ �. Note here we use the similar base-
line values for the parameters as [27], for the following rea-
sons: 1) To enable easy comparison; 2) Our objective is to
evaluate the relative performance characteristics of the
approaches, not their absolute levels. Within each category,
a query’s period and the number of data items to be
accessed by the query are randomly selected from the corre-
sponding ranges. For each particular level in each simula-
tion set, we randomly generate 1;000 qualified query sets
and take the average. For each point plotted in the figure,
the simulations continued until a confidence interval of
95 percent with half-width of less than 5 percent about the
mean was achieved.

5.2 Experimental Results

5.2.1 Service Ratio

In the first set of experiments, by fixing the number of data
items to be m ¼ 5; 000, we first test the service ratios with
different number of queries. The number of the queries N is
set to be 15 initially, and increases with a step size of 1, until
it reaches 35. Fig. 6 shows the service ratio of the four algo-
rithms. It can be seen that whenN is no larger than 20, feasi-
bility can be easily achieved and all algorithms yield 100
percent service ratio. As N increases, the service ratio per-
formance of all schemes drops to some extent in different
degrees. This is because with limited bandwidth, some
queries cannot get services any more when N is relatively
large. Among the four algorithms, UM has the best service
ratio performances, followed by MQM-UO and RQM-UO.
The largest performance gap between UM and RM-UO is
about 20 percent. MQM-UO outperforms RQM-UO on the
service ratio aspect because it can merge more tasks (or
queries) to save more bandwidth consumption. UM exhibits
the best performance since it combines both the advantages
ofMQM-UO and RQM-UO.

Next, by fixing the number of the queries to be N ¼ 30,
we test the service ratio performance with different number
of data items (m) in the database. m is limited in ½100; 2;500�
and increases with a step size of 100. The performance of
the four algorithms on the service ratio is shown in Fig. 7.
As can be seen, the service ratios of the four algorithms
decrease sharply with the increase of m. This is because
with the growth of m, the probability of one item accessed
by multiple queries decreases. UM has the best service ratio
among the four algorithms, due to the same reason as in
Fig. 6. Moreover, we can see that in this experiment, the
largest performance gap between UM and RM-UO is about
21 percent.

5.2.2 Bandwidth Consumption

In the second set of experiments, we compare the band-
width consumption of the four algorithms. Firstly, we test
the bandwidth consumption with different number of
queries. In order to guarantee that all the queries can get
their services, we let m ¼ 5;000 and vary the range of N to
½5; 18�. The bandwidth consumption comparison is shown
in Fig. 8. As can be seen, UM preserves the best performance
on bandwidth utilization, during almost the whole range of

Fig. 6. Service ratio comparison withm ¼ 5;000.
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parameter settings. It can also be observed that with the
growth of N , the superiority of UM compared to RM-UO
becomes more significant. The largest performance gap
between UM and RM-UO is about 11 percent when N ¼ 18.

Secondly, by fixing the number of the queries to be
N ¼ 30, we test the bandwidth consumption performance
with different number of data items (m) in the database. To
guarantee that all the queries can get their services,m is lim-
ited in ½30; 100� and increases with a step size of 10. Fig. 9
shows the bandwidth utilization comparison of the four
algorithms. It can be seen that UM still outperforms the
other three algorithms, and the performance gains become
more significant as m becomes larger. When m ¼ 100, the
largest performance gap (about 10 percent) between UM
and RM-UO can be achieved.

In summary, both MQM-UO and RQM-UO outperform
RM-UO due to that they can merge queries to save band-
width consumption and thus accommodate more queries.
MQM-UO outperforms RQM-UO since it can merge more
queries. UM outperforms the other three algorithms in terms
of the resulted bandwidth utilization and service ratio in
almost the whole range of parameter setting, because it
combines the advantages of bothMQM and RQM.

6 RELATED WORK

Scheduling algorithms play an important role in data dis-
semination in mobile environments. Since the publication of
the seminal work by Acharya et al. [1], various scheduling
algorithms have been proposed to determine the broadcast
sequence of data items [2], [4], [9], [12], [15], [24], [25], [26],
[29], [30]. In general, these algorithms can be classified into
two categories: push-based and on-demand. The push-based
approach periodically broadcasts a set of predetermined
data items, based on some prior knowledge of data access
patterns, regardless of individual information requirements.
Hence, push-based broadcast is useful for applications with
relatively stable access patterns. In contrast, on-demand
broadcast is more suitable and widely used for dynamic
and large-scale data dissemination. Moreover, when deal-
ing with queries with time constraints, on-demand broad-
cast is more suitable than push-based method due to that it

takes the client’s individual requirements into consideration
to determine broadcasting period of the data items.

For on-demand broadcasting environments with real-
time constraints, Lam et al. studied the issue on how to
ensure consistency and currency of data items and pro-
posed the OUFO algorithm in [17]. Fang et al. proposed the
ACR algorithm which always broadcasts the data item with
the most deadlines to meet at each time unit in [11]. Xu et al.
[28] considered both urgency and access frequency of data
items, and proposed the Slack time Inverse Number of
pending requests (SIN) algorithm with a theoretical upper
bound of deadline miss rates. In [19], Lee et al. presented a
pyramid preemptive algorithm (PRDS) which considers
data urgency, data size and the number of pending
requests. In addition to the above firm deadline scheduling,
Dewri et al. studied in [10] the soft deadline broadcast
scheduling problem and proposed an evolution strategy
based stochastic hill-climber. However, all of the above
studies are focused on single item requests, single channel
real-time broadcast scheduling.

With the rapid development of real-time broadcast tech-
nology, multi-item requests problem and multi-channel

Fig. 9. Bandwidth utilization comparison withN ¼ 30.

Fig. 8. Bandwidth utilization comparison withm ¼ 5;000.Fig. 7. Service ratio comparison withN ¼ 30.
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broadcast scheduling problem have attracted significant
attention and a lot of research efforts have been conducted
on these topics. Lee et al. [18] presented multiple priority
allocation policies to deal with the broadcast scheduling
problem in single item requests, multi-channel environ-
ment. Chen et al. [7] made a great contribution in the area of
multi-item, single-channel broadcast scheduling. They pro-
pose an efficient algorithm which considers the urgency,
access frequency and request serving status. For multi-item
requests, multi-channel broadcast scheduling, Chen et al.
gave a theoretical minimum number of channels for sched-
uling all queries and proposed a data allocation algorithm
in [5]. Liu and Lee [21] presented the DUP algorithm which
considers both the urgencies of queries and data items, and
the DUP algorithm always broadcasts the most urgent data
item which is required in the most urgent query. A much
more comprehensive discussion on recent research results
can be found in [22]. Lv et al. introduced the concept of
profit into the broadcast schedule and proposed an efficient
scheduling algorithm in [23] which always choose the data
item with highest profit to be broadcast at each time unit. It
should be pointed out that, all the work mentioned above
focused on one-shot broadcast schedule and the goals of
them are fundamentally different from ours in providing
timing predictability.

The first study on real-time broadcast scheduling prob-
lem was conducted by Baruah and Bestavros [3], in which
data items are assumed to be broadcast at least once in a
given spacing, so that clients can get all their accessing data
items in a pre-specified timing bound. The authors also pro-
posed an algorithm which is closely related to the pinwheel
scheduling in [3]. However, different form our research
environment, the algorithm proposed in [3] is designed for
push-based real-time broadcast schedule. In [8], Chung
et al. extended [3] to a multi-channel environment and pro-
posed the minimum number of channels to satisfy all the
queries. Later, Chen et al. [5] further extended [8] to multi-
item requests environment. However, as pointed out in
[27], all these work ([3], [5], [8]) neglected the data sharing
character between queries in broadcast environment and
assumed the read sets of any two queries are disjoint. Differ-
ent from them, our work in this paper considers the sharing
character, in particular, a query can access more than one
data item and an overlap between the read sets of any two
queries is allowed.

7 CONCLUSIONS AND FUTURE WORK

Research on scheduling for periodic continuous queries in
broadcasting environments has received specific attention
recently. In this paper, we took a second look at the problem
and proposed two merging policies (MQM and RQM) to
save the bandwidth consumption of the existing RM-UO
algorithm. Based on the two merging policies, a unified
merging based broadcast scheduling algorithm (UM) is pro-
posed. Experimental study shows that UM exhibits signifi-
cant performance improvement compared to RM-UO, in
terms of both wireless bandwidth consumption and query
service ratio.

For future work, we intend to generalize our current
work to multi-channel environments. Moreover, in this

work, we assume that all the data items received in each
period are valid to the query, it would be interesting to
take the temporal constraints of data items into consider-
ation when processing periodic queries with real-time
requirement.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their constructive and helpful comments.
This work was substantially supported by the State Key
Program of National Natural Science of China under
Grant No. 61332001, National Natural Science Founda-
tion of China under Grants Nos. 61173049, 61300045, and
China Postdoctoral Science Foundation under Grant
No. 2013M531696. Jianjun Li is the corresponding author.

REFERENCES

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast
disks: Data management for asymmetric communication environ-
ments,” ACM SIGMOD Rec., vol. 24, pp. 199–210, 1995.

[2] N. Bansal, R. Krishnaswamy, and V. Nagarajan, “Better scalable
algorithms for broadcast scheduling,” in Proc. 37th Int. Colloquium
Automata, Lang. Programm., 2010, pp. 324–335.

[3] S. Baruah and A. Bestavros, “Pinwheel scheduling for fault-
tolerant broadcast disks in real-time database systems,” in Proc.
IEEE Int. Conf. Data Eng., 1997, pp. 543–551.

[4] J. Chang, T. Erlebach, R. Gailis, and S. Khuller, “Broadcast sched-
uling: Algorithms and complexity,” ACM Trans. Algorithms, vol. 7,
no. 4, p. 47, 2011.

[5] C.-C. Chen, C. Lee, and S.-C. Wang, “On optimal scheduling for
time-constrained services in multi-channel data dissemination
systems,” Inf. Syst., vol. 34, no. 1, pp. 164–177, 2009.

[6] J. Chen, G. Huang, and V. C. Lee, “Scheduling algorithm for
multi-item requests with time constraints in mobile computing
environments,” in Proc. Int. Conf. Parallel Distrib. Syst., 2007, vol. 2,
pp. 1–7.

[7] J. Chen, V. Lee, and K. Liu, “On the performance of real-time
multi-item request scheduling in data broadcast environments,”
J. Syst. Softw., vol. 83, no. 8, pp. 1337–1345, 2010.

[8] Y.-C. Chung, C.-C. Chen, and C. Lee, “Design and performance
evaluation of broadcast algorithms for time-constrained data
retrieval,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 11, pp. 1526–
1543, Nov. 2006.

[9] Y. D. Chung and M.-H. Kim, “Qem: A scheduling method for
wireless broadcast data,” in Proc. 6th Int. Conf. Database Syst. Adv.
Appl., 1999, pp. 135–142.

[10] R. Dewri, I. Ray, I. Ray, and D. Whitley, “Utility driven optimiza-
tion of real time data broadcast schedules,” Appl. Soft. Comput.,
vol. 12, no. 7, pp. 1832–1846, 2012.

[11] Q. Fang, S. V. Vrbsky, Y. Dang, and W. Ni, “A pull-based broad-
cast algorithm that considers timing constraints,” in Proc. Int.
Conf. Parallel Process. Workshops, 2004, pp. 46–53.

[12] J. Fernandez-Conde and K. Ramamritham, “Adaptive dissemina-
tion of data in time-critical asymmetric communication environ-
ments,” in Proc. 11th Euromicro Conf. Real-Time Syst., 1999,
pp. 195–203.

[13] C.-C. Han, K.-J. Lin, and C.-J. Hou, “Distance-constrained sched-
uling and its applications to real-time systems,” IEEE Trans. Com-
put., vol. 45, no. 7, pp. 814–826, Jul. 1996.

[14] C.-L. Hu, “Fair scheduling for on-demand time-critical data
broadcast,” in Proc. IEEE Int. Conf. Commun., 2007, pp. 5831–5836.

[15] J.-L. Huang and M.-S. Chen, “Dependent data broadcasting for
unordered queries in a multiple channel mobile environment,”
IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1143–1156, Sep.
2004.

[16] K.-W. Lam and S.-L. Hung, “Scheduling real-time requests in on-
demand broadcast environments,” in Proc. 1st Int. Conf. Netw.-
Based Inf. Syst., 2007, pp. 258–267.

[17] K.-Y. Lam, E. Chan, H.-W. Leung, and M.-W. Au, “Concurrency
control strategies for ordered data broadcast in mobile computing
systems,” Inf. Syst., vol. 29, no. 3, pp. 207–234, 2004.

LI ET AL.: A NOVEL SCHEDULING ALGORITHM FOR SUPPORTING PERIODIC QUERIES IN BROADCAST ENVIRONMENTS 2431



[18] G. Lee, Y.-N. Pan, and A. L. Chen, “Scheduling real-time data
items in multiple channels and multiple receivers environments,”
in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 455–456.

[19] V. C. Lee, X. Wu, and J. K.-Y. Ng, “Scheduling real-time requests
in on-demand data broadcast environments,” Real-Time Syst.,
vol. 34, no. 2, pp. 83–99, 2006.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[21] K. Liu and V. Lee, “On-demand broadcast for multiple-item
requests in a multiple-channel environment,” Inf. Sci., vol. 180,
no. 22, pp. 4336–4352, 2010.

[22] K. Liu and V. Lee, “Performance analysis of data scheduling algo-
rithms for multi-item requests in multi-channel broadcast envi-
ronments,” Int. J. Commun. Syst., vol. 23, no. 4, pp. 529–542, 2010.

[23] J. Lv, V. Lee, M. Li, and E. Chen, “Profit-based scheduling and
channel allocation for multi-item requests in real-time on-demand
data broadcast systems,” Data Knowl. Eng., vol. 73, pp. 23–42,
2012.

[24] C. J. Su and L. Tassiulas, “Broadcast scheduling for information
distribution,” in Proc. IEEE 16th Annu. Joint Conf. IEEE Comput.
Commun. Soc., 1997, vol. 1, pp. 109–117.

[25] C.-J. Su, L. Tassiulas, and V. J. Tsotras, “Broadcast scheduling for
information distribution,” Wireless Netw., vol. 5, no. 2, pp. 137–
147, 1999.

[26] W. Sun, Z. Zhang, P. Yu, and Y. Qin, “Skewed wireless broadcast
scheduling for multi-item queries,” in Proc. Int. Conf. Wireless Com-
mun., Netw. Mobile Comput., 2007, pp. 1865–1868.

[27] H. Wang, Y. Xiao, and L. Shu, “Scheduling periodic continuous
queries in real-time data broadcast environments,” IEEE Trans.
Comput., vol. 61, no. 9, pp. 1325–1340, Sep. 2012.

[28] J. Xu, X. Tang, and W.-C. Lee, “Time-critical on-demand data
broadcast: Algorithms, analysis, and performance evaluation,”
IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 1, pp. 3–14, Jan. 2006.

[29] D.-N. Yang and M.-S. Chen, “Data broadcast with adaptive net-
work coding in heterogeneous wireless networks,” IEEE Trans.
Mobile Comput., vol. 8, no. 1, pp. 109–125, Jan. 2009.

[30] B. Zheng, X. Wu, X. Jin, and D. L. Lee, “Tosa: A near-optimal
scheduling algorithm for multi-channel data broadcast,” in Proc.
ACM Conf. Mobile Data Manag., 2005, pp. 29–37.

Guohui Li received the PhD degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), China, in
1999. He was promoted to a full professor in
2004, and currently acts as a vice dean of the
School of Computer Science and Technology
in HUST. His research interests mainly include
real-time systems, mobile computing, and
advanced data management.

Quan Zhou received the BS degree in computer
science from Heilongjiang University, China, in
2009. He is currently working toward the PhD
degree at the School of Computer Science and
Technology, Huazhong University of Science and
Technology (HUST), Wuhan, China. His research
interests include real-time scheduling and mobile
computing.

Jianjun Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology (HUST), China, in 2012. He is
currently a postdoctoral and lecturer at the
School of Computer Science and Technology,
Huazhong University of Science and Technology.
He serves as the corresponding author of this
article. His research interests include real-time
systems, real-time databases and advanced data
management.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2432 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 12, DECEMBER 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


