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Abstract With the development of multimedia technol-

ogy, effective cross-modal retrieval methods are increas-

ingly demanded. The key point of cross-modal retrieval is

analyzing the correlation of heterogeneous modalities.

There are mainly two types of correlation: content corre-

lation and semantic correlation. Semantic correlation is

constructed at a high level of abstraction which is more

close to the human understanding than content correlation.

In this paper, we investigate a semantic model to construct

the semantic correlation for cross-modal retrieval. We

assume that the semantic correlation of multimedia data

from different modalities can be conditionally generated by

semantic concepts in a probabilistic generation framework.

The cross-modal semantic generation model (CMSGM) is

proposed based on this assumption. We consider three

cases of the cross-modal retrieval task. The first is the ideal

case that all manifest concepts exist in training data for

constructing the correlation, and we propose manifest

CMSGM (M-CMSGM) which directly uses CMSGM on

the manifest semantic concepts for retrieval. The second is

the case that there are no manifest concepts in training data,

and latent CMSGM (L-CMSGM) based on latent semantic

concepts is proposed for this case, where the latent

semantic concepts are learned by asymmetric spectral

clustering. The last is the most general case that some of

the manifest concepts exist, and we combine M-CMSGM

and L-CMSGM to get combinative CMSGM (C-CMSGM)

to solve this case. Experimental results on Wikipedia fea-

tured articles and MIR Flickr show that our methods have

better performance compared with previous state-of-the-art

methods. And C-CMSGM can maintain good performance

in the case that manifest concepts are lacking, which

confirms the robustness and practicality of C-CMSGM.

Keywords Cross-modal retrieval � Semantic correlation �
Generation model � Semantic concept

1 Introduction

In recent years, there has been a rapid development of

multimedia content on the web. A variety of media data

such as image, text, audio and video have become easy to

be accessed and delivered. However, most of existing

retrieval methods focus on unimodal data, such as content-

based image retrieval and text-based retrieval, they cannot

deal with multiple media modalities. With the development

of multimedia technology, to facilitate the management of

a variety of multimedia content, effective cross-modal

retrieval methods are increasingly demanded.

In cross-modal retrieval, the modality of query data is

different from the data to be retrieved. In this paper, we

refer to the modality as the media type, thus image, text,

and audio are different modalities. Cross-modal retrieval is

different from multi-modal retrieval which has been stud-

ied by many works [1–3]. Although they both deal with

multi-modal data, they are two different retrieval problems.

In multi-modal retrieval, both query and retrieved data are

multi-modal, and they always contain the same modalities.
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The main purpose of multi-modal retrieval methods is to

improve the performance of unimodal retrieval; texts are

always utilized to enhance the traditional content-based

image retrieval. Multi-modal retrieval methods usually fuse

different modalities for retrieval rather than correlate them

[39]. Unlike multi-modal retrieval, in cross-modal retrieval

query data and retrieved data do not share the same

modality, cross-modal retrieval methods have to analyze

the correlation of different modalities. For example, if a

user wants to use an image of tiger to retrieve the text

description about tiger, then the cross-modal methods can

work for him/her. General multi-modal methods cannot

meet this requirement, because they cannot establish the

correlation between the image and text documents.

The key point of cross-modal retrieval is analyzing the

correlation of heterogeneous modalities. There are mainly

two types of correlation to be analyzed. One is content

correlation, which is the correlation of content features

from different modalities. The content correlation is gen-

erally obtained according to the concurrence of different

modalities. Different modal data occurring in a document,

a web page, etc., are seen as correlated, and their correla-

tion of content features can be analyzed by content-based

cross-modal methods. Canonical correlation analysis

(CCA) [4] is a typical method which is used to analyze the

content correlation of multiple modalities. CCA learns two

subspaces from two content features of two different

modalities, and these subspaces maximize the correlation

between the two modalities. The advantage of content-

based cross-modal methods is that content correlation can

be easily obtained from the multi-modal documents and

multi-modal web pages, thus they are well suited to most of

the cross-modal retrieval problems. The other is the

semantic correlation. It is obvious that all the modalities

are correlated by the semantic concepts. Different modal-

ities can share the same semantic concepts, for example,

the textual description of a bird, the image of the bird and

the sound of the bird are all about the bird, and they are

correlated according to the concept ‘‘bird’’.

The semantic-based cross-modal methods which ana-

lyze the semantic correlation can better correlate hetero-

geneous modalities, the reason is that they construct the

correlation at a high level of abstraction which is more

close to the human understanding. However, semantic

correlation is learned from training data which is labeled by

semantic concepts and hard to be collected. General

semantic concepts include scenes (e.g., indoor, outdoor,

landscape, etc.), objects (animal, people, car, etc.), or

events (travel, work, etc.), we refer to them as manifest

semantic concepts which can be easily understood by

human. Due to the semantic gap between these concepts

and the feature contents of multimedia data, training data

with semantic information are required for learning true

semantic concepts. Without the semantic knowledge in the

training data, it is impossible to make the machine under-

stand the manifest semantic concepts. Manually labeling

manifest semantic concepts for training data is a traditional

approach to construct the training data, but the cost is

expensive [5]. On the other hand, latent semantic concepts

can be automatically learned by machine, they are not

similar to the manifest semantic concepts and may be more

difficult to be understood by human. A good automatical

learning method can learn latent concepts which are close

to the manifest concepts, latent concepts can also be used

to construct the correlation between the multi-modal data at

a higher level of abstraction than content correlation.

In this paper, we propose the cross-modal semantic

generation model (CMSGM) for cross-modal retrieval.

CMSGM describes the semantic correlation of heteroge-

neous multimedia data in a probabilistic generative

framework. The core idea of CMSGM is that multimedia

data from different modalities share the same semantic

concepts, they can be generated by these concepts, and

their generation processes are conditional independent. In

the estimation of CMSGM, unlike previous generative

approaches which directly use an existing distribution such

as Gaussian for the generation probabilities, we use an

indirect discriminative approach to estimate the generation

probabilities. At last, effective cross-modal similarities are

inferred from the generation model to measure the

semantic correlation. We consider three cases to use the

CMSGM for cross-modal retrieval. For the ideal case

where the training data contain complete manifest semantic

information, we construct CMSGM on the manifest

semantic concepts, and propose manifest CMSGM (M-

CMSGM) for cross-modal retrieval. For the case that the

training data do not contain any manifest semantic infor-

mation, we propose asymmetric spectral clustering (ASC)

which is an extension of spectral clustering to automati-

cally learn latent semantic concepts from training data, and

CMSGM is constructed on the latent semantic concepts,

finally we get latent CMSGM (L-CMSGM) for cross-

modal retrieval. For more general case where training data

may contain incomplete semantic information, we combine

M-CMSGM and L-CMSGM to get combinative CMSGM

(C-CMSGM) for retrieval. The C-CMSGM takes the

advantages of the two methods and avoids their disad-

vantages. Experimental results show the effectiveness of

our CMSGM model, and C-CMSGM is shown to be

practicable when we cannot know whether the manifest

concepts is lacking.

This paper is organized as follows. We discuss related

work in Sect. 2. In Sect. 3, we propose the ASC for

learning the latent semantic concepts. In Sect. 4, we

describe our CMSGM; and the cross-modal similarities for

retrieval are derived from CMSGM. In Sect. 5, we propose
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three cross-modal retrieval methods based on CMSGM for

three different cases. Section 6 shows experimental results

of our methods based on CMSGM and compares it to other

methods, as well as the performance of our three methods

in different cases. Finally, we conclude in the last section.

2 Related work

There are many works on cross-modal problems. Auto-

matic image annotation is a typical cross-modal problem;

the purpose of it is solving the problem of keyword-based

image retrieval which belongs to the problem of cross-

modal retrieval. The main goal of image annotation is

allocating appropriate textual words to an image by

machine automatically. There are many works on the

image annotation task. Most of them can be divided into

three groups [6]. The first is the group of generative

models; they usually analyze the correlation of images and

text words which is based on latent variables, such as

images in the training data, semantic topics, etc. Cross-

media relevance model [7] and multiple Bernoulli rele-

vance model [8] both choose the images in the training data

as latent variables, and the correlation of images and words

is analyzed on these variables. Semantic topics which can

be seen as the latent semantic concepts in our paper are

also widely used for image annotation. CORR-LDA [9] is

the extension of the Latent Dirichlet Allocation (LDA)

[10], it correlates words and images by semantic topics

which are learned by LDA. Asymmetric probabilistic latent

semantic analysis (PLSA) [11] first learns semantic topics

from text words using PLSA, then folding-in method [12]

is used to learn the relation between topics and images, at

last images and words are correlated according to these

topics. The idea of asymmetric learning is also adopted by

our ASC. The second is the group of discriminative mod-

els, these methods learn a separate classifier for each word,

and use them to predict whether the test image belongs to

the class of images that are annotated with each particular

word [13, 14]. The last is nearest neighbor-based methods;

in fact they are special discriminative methods. The rep-

resentative methods: JEC [15] and TagProp [16] use the

nearest neighbor method to solve the classify problem

which is similar to discriminative methods. The successes

of generative and discriminative models on image anno-

tations demonstrate their excellent ability in analyzing the

correlation of heterogeneous media data.

In recent years, cross-modal retrieval has gained much

attention. Some cross-modal methods analyze the content

correlation of heterogeneous data. Hierarchical manifold

learning is proposed in [17] for the content-based cross-

media retrieval. CCA is used by [18] to localize visual

events associated with sound sources. In [19], relative

importance of object is leveraged to construct tag features,

and then kernel CCA [20] is used for cross-modal retrieval.

Besides, other methods analyze the semantic correlation. A

cross-media correlation graph is constructed in [21]

according to the media objects features and their co-exis-

tence information, and cross-modal retrieval is performed

on this graph. [22] constructs Multimedia Correlation

Space by exploring the semantic correlation of different

multimedia modalities, then the ranking algorithm Local

Regression and Global Alignment is proposed. However,

[21] and [22] do not give the deep analyzing for the

semantic correlation, the semantic concepts are not used in

these methods, and they mainly correlate multiple modal-

ities by contents of multimedia. Other works correlate

heterogeneous modalities on manifest semantic concepts

[23, 36], but they cannot be applied in the case that man-

ifest concepts are missing in the training data. SCM [23]

combines content correlation and semantic correlation for

cross-modal retrieval. CCA is firstly used to learn a content

correlation space for images and texts, then logistic

regression is used to learn the semantic correlation based

on manifest semantic concepts. However, CCA is the

preliminary step of SCM, and only the semantic correlation

is preserved for retrieval, thus SCM cannot work well in

the case that the manifest semantic concepts are lacking.

The cross-modal methods also have other applications,

many works use cross-modal analysis to improve the uni-

modal and multi-modal retrieval. In [24], cross-media

correlations are explored to improve the multimedia doc-

ument retrieval. [25] uses Markov random field to model

the correlation of heterogeneous modalities, then the cross-

modality similarity is learned for the task of multi-modal

retrieval. [26] uses the asymmetric non-negative matrix

factorization to learn the latent factors which correlate the

images and texts in the same representation space, and

multi-modal retrieval is based on this representation. In

[27], the visual–textual joint relevance is determined by a

hypergraph learning approach, and then the relevance is

used for social image retrieval. In [40], image similarity is

learned from the cross-modal relation of images and

associated textual documents, and query expansion is used

for internet cross-media retrieval.

3 Learning latent semantic concepts

To learn the semantic correlation of heterogeneous modali-

ties explicitly, semantic concepts are needed to label the

training data. Traditional manually labeling uses existing

manifest semantic concepts such as categories, objects, etc.,

it is time consuming and the cost is expensive. However, we

can learn semantic concepts from training data automatically

by unsupervised learning methods instead. These semantic
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concepts are different from manual labeled concepts; they

may be more difficult to be understood by human than

manifest concepts, so we refer to them as latent semantic

concepts to make them different from traditional semantic

concepts. A good automatic learning method can get latent

semantic concepts which are nearly equal to the ground truth

of the manifest semantic concepts, and basing on these latent

concepts a good semantic correlation can be constructed for

cross-modal retrieval.

In this section, we describe the method: ASC, an

asymmetric type of spectral clustering (SC) [28], to learn

the latent semantic concepts from training data. Unlike

symmetric methods which use all modalities in training

data for learning, ASC only uses one modality for learning.

Despite asymmetric using of modalities, ASC is actually a

standard SC algorithm. Text features tend to provide a

more reliable information source to extract semantic

information for retrieval than other modality such as visual

features, and asymmetric methods have been proven to

perform well on text features [11, 26]. Moreover, it is easy

to collect textual information from web resources such as

social tags and comments, wikipedia articles, etc. ASC also

learns latent semantic concepts from text features of

training data, and then these concepts are used to label all

the training data including other modalities.

In this paper, our cross-modal analysis only concentrates

on text and image modality which are the most prevalent

on the web. However, our methods are also suitable for

other modalities such as audio and video. Suppose the

training data are composed of N multimedia documents,

each document Mi contains text Ti and an image Ii. The

purpose of ASC is to learn K latent semantic concepts

LSkðk ¼ 1; . . .;KÞ and assign them to every document in

the training data. The steps of ASC are:

1. Construct the similar graph W of text features;

2. Compute the laplacian matrix L ¼ D�W where D is

a diagonal matrix and di ¼
PN

j¼1 wij;

3. Compute the first K generalized eigenvectors u1 � � � uK
of the generalized eigenproblem Lu ¼ kDu;

4. Let U be the matrix containing the vectors u1 � � � uK as

columns, for i ¼ 1; . . .; n, let vi be the vector

corresponding to the i-th row of U;

5. Use the k-means algorithm to cluster ðv1 � � � vNÞ into K

clusters LS1 � � � LSK which is also the latent semantic

concepts. After clustering each text belongs to one of

the K latent semantic concepts, the document which

contains the text and the image in the document is also

labeled by this concept.

The steps of ASC are similar to classical spectral clus-

tering methods, but ASC only concentrates on text features.

The computation of similar graph W on text features is:

W ¼
wij wij [ d

0 wij\d or i ¼ j

�

ð1Þ

where wij is the similarity of text feature Ti and Tj in the

training documents, d is the threshold to control the spar-

sity of the similar matrix. Text features are histogram of

term frequency and we use histogram intersection distance

as the similarity, the details of text features will be dis-

cussed in the experimental section.

If the training data are labeled by manifest semantic con-

cepts, ASC may be not necessary for our semantic-based

cross-modal analysis. However, the role of ASC is very

important to make our cross-modal model practicable. In

reality, it is hard to get enough semantic labeled multi-modal

data for training, and it is also not easy to know all semantic

concepts about the trainingdata. If the trainingdata are labeled

by semantic concepts, then the semantic correlation can be

obtained based on the existing concepts. However, in most

cases, the semantic information of training data is lacking, we

need to use ASC to learn the latent semantic concepts instead,

and then construct the semantic correlation based on the latent

concepts. Besides, the latent semantic information is also

supplementary for the semantic information.

4 CMSGM

Once we obtain the manifest semantic concepts or latent

semantic concepts for the training data, we can learn the

semantic correlation of heterogeneous modalities. CMSGM

is proposed to construct the semantic correlation for cross-

modal retrieval in the probabilistic framework. The core idea

of CMSGM is that if multimedia data from different

modalities share the same semantic concept, then they can be

generated by this concept, and they should be generated

independently. This means given a semantic concept, the

generation processes of heterogeneous data are conditional

independent. These generation processes are analogous to

the generation of media data from different modalities in the

real world. For example, given the concept ‘‘bird’’, using the

camera to get an image of bird, is independent of using text

words to describe the bird. Although the generation pro-

cesses of the two media data are independent, they both

describe the concept ‘‘bird’’, which makes them correlated.

CMSGM has a good description for the real correlation of

media data. In addition, introducing the conditional inde-

pendent property into the generation processes makes the

model concise and easy to be solved.

4.1 Description of CMSGM

Suppose there are K semantic concepts Skðk ¼ 1; . . .;KÞ
which may be manifest concepts from the existing
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knowledge or be latent concepts learned byASC.We let S be

the semantic concept for multi-modal documentM ¼ ðI;TÞ,
where I represents the visual feature of the image in the

document and T represents the text feature. S is a K dimen-

sional vector which follows the 1-of-K scheme, one of the

elements in the vector equals 1, and all remaining elements

equal 0, and the k-th element equals 1 means the document

has the semantic concept Sk. S follows the categorical dis-

tribution with parameter l ¼ ½l1; . . .; lK �. Then, we denote
two semantic conditional probability distributions:

PðIjS; hIÞ and PðTjS; hTÞ, they are the distributions on the

semantic concepts to generate image I and text T, hI and hT
are the parameters of the distributions.

CMSGM assumes the following generative process from

which a multi-modal document M consists of image and

text is generated:

1. Choose a semantic concept S�CategoricalðlÞ;
2. Generate image I from concept S by I�PðIjS; hIÞ;
3. Generate text T from concept S by T�PðTjS; hTÞ.

From the generative process above, we obtain the joint

distribution of the document and a semantic concept:

PðI;T; SÞ ¼ PðIjS; hIÞPðTjS; hTÞPðSjlÞ ð2Þ

Marginalizing over S, we can get the joint distribution of

image and text features, which also describes the proba-

bility of the multimedia document:

PðMÞ ¼ PðI;TÞ ¼
X

S

PðIjS; hIÞPðTjS; hTÞPðSjlÞ ð3Þ

The graphical illustration of the generation process is

shown in Fig. 1. Image and text are correlated according to

their generation from the same semantic concept, and the

semantic correlation between them can be described by the

joint probability. If images and texts are semantically

correlated closely, then they are likely to be generated by

the same semantic concept, and the joint probability of

them is higher. The model has two advantages. One is that

images and texts are correlated in the high-level semantics

which makes the cross-modal and multi-modal retrieval to

become more effective. The other is the conditional inde-

pendence which enables images and texts to be modeled

separately, which makes the model easy to be learned and

extended to the semantic model with more than two

modalities. While using CMSGM for retrieval, individual

image and text are assumed to be in the same document,

then their semantic correlation can be described by the

joint probability. Our CMSGM is somewhat similar to the

traditional generative models, the difference is that our

CMSGM purely focuses on the semantic correlation which

is based on the existing semantic concepts, they may be

manifest concepts provided by people, or latent concepts

automatically learned by ASC.

4.2 Estimation for CMSGM

To estimate the joint probability distribution of our model,

we need to estimate the prior parameter l, as well as the

semantic conditional probability distribution parameters hI
and hT . Let the number of the multi-modal documentMn ¼
ðIn;TnÞ in the training set be N. Using maximum likelihood

estimation, the log-likelihood function of the training data

can be expressed as:

max
l;hI ;hT

XN

n¼1

ðlogPðInjSn;hIÞþ logPðTnjSn;hTÞþ logPðSnjlÞÞ

ð4Þ

Then, we can write (4) in the summation of three parts:

max
l;hI ;hT

XN

n¼1

logPðInjSn; hIÞ þ
XN

n¼1

logPðTnjSn; hTÞ

þ
XN

n¼1

logPðSnjlÞ ð5Þ

From (5), it can be seen that the semantic conditional

probability of image feature In, text feature Tn, and the

prior parameters of semantic concepts, are independent of

each other. Thus, we can maximize these three terms

separately, which will maximize the entire Eq. (4).

It is easy to estimate the prior parameters

l ¼ ½l1; . . .; lK �, we can get the optimal estimation func-

tion of the parameter from the third term of Eq. (5):

argmax
l

XN

n¼1

log pðSnjlÞ ð6Þ

According to the properties of categorical distribution, we

can get the constraint
PK

k¼1 lk ¼ 1. Then, using the

method of Lagrange multipliers, we obtain the estimation:

lk ¼
Nk

N
k ¼ 1; . . .;K ð7Þ

where Nk is the number of training data with the k-th

semantic concept Sk. The prior probability of a semantic

vector is:Fig. 1 The graphical illustration of the CMSGM
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PðSjlÞ ¼
YK

k¼1

lskk ð8Þ

where sk is the k-th element of vector S, it is 1 or 0 which

denotes the presence/absence of the concept Sk.

To estimate the semantic distribution, we need to max-

imize the first and second terms of the Eq. (5), respectively.

Without loss of generality, we use X to represent image

feature as well as text feature. Then, the semantic condi-

tional distribution of a media data X can be expressed as

PðXjS; hXÞ, the optimal function is:

argmax
hX

XN

n¼1

logPðXnjSn; hXÞ ð9Þ

The general methods are directly estimating the semantic

conditional distribution PðXjS; hXÞ, it can be defined as

parametric distribution, such as Gaussian. Assume that each

semantic concept Sk corresponds to a Gaussian distribution

with mean lk, and all the Gaussians share the same covari-

ance matrix R, which makes the model easy to be estimated

and more effective. Using the maximum likelihood estima-

tion, the estimations of means and covariance matrix are:

lk ¼
PN

n¼1 MnkXn
PN

n¼1 Mnk

k ¼ 1; . . .;K ð10Þ

R ¼
PN

n¼1

PK
k¼1 MnkðXn � lkÞðXn � lkÞT

N
ð11Þ

where Mnk indicates whether Xn corresponds to the k-th

semantic concept Sk, if Xn belongs to Sk, then Mnk ¼ 1,

otherwise Mnk ¼ 0. We denote this method, which directly

estimates Gaussian distribution, as SGM-Gaussian.

However, it is difficult to directly model the distribution

PðXjS; hXÞ for multiple high-dimensional multimedia fea-

tures; using an existing probability distribution may not be

well to depict PðXjS; hXÞ. We consider the discriminative

approach to estimate semantic conditional distributions indi-

rectly. Unlike general direct approach, discriminative

approach estimates the posterior probability distributions of

semantic concepts, and then the posterior probability can be

used to infer the semantic conditional probability by Bayes

rule. Discriminative approach has the superiority that it avoids

directly estimating the complex distribution of multimedia

features, while obtaining a relative accurate estimation of the

posterior distribution, then it will lead to more accurate esti-

mation of semantic conditional distribution. When the pos-

terior has been estimated, we can use the equation below to

obtain the semantic conditional distribution:

PðXjS; hXÞ ¼
PðSjX; hXÞPðXÞ

PðSjlÞ ð12Þ

where PðXÞ is the prior of featureX. It is difficult to estimate

the priors of features in the discriminative approach,

fortunately they can be ignored in the retrieval, which will be

shown in Sect. 4.3. PðSjlÞ can be obtained using Eq. (8). At
this time, hX is now the discriminative model parameter

which is used to predict the posteriors on X. And the esti-

mation of semantic conditional distribution is converted to

estimation of the posterior of the semantic concept.

From Eq. (12), we can know if the posterior is accurate,

then the semantic conditional probability calculated by

posterior is also accurate. Many discriminative methods

can obtain the posteriors of semantic concepts, such as

logistic regression, support vector machine (SVM), and

ensemble learning methods, etc. We adopt the SVM [29]

for both image and text features. SVM is a good discrim-

inative method for semantic learning, classification and

object detection and has been successfully applied to var-

ious modalities, it can obtain precise discriminative results

but do not cost much computing resource, thus it is suitable

for large-scale data. LibSVM [30] is used as the imple-

mentation of SVM and it has the ability to predict the

posterior of each semantic concept. We also adopt the one-

versus-all scheme [31] to learn multiple semantic concepts.

4.3 Cross-modal similarity

After constructing and estimating the CMSGM, the cross-

modal similarity can be inferred from it. CMSGM describes

the semantic correlation of heterogeneous modalities; it can

measure the cross-modal similarity between heterogeneous

modalities. In the previous section, we have estimated the

joint probability of the image feature I and text featureT, the

joint probability shows the possibility that the image and the

text are generated by the same semantic concept, thus it can

be used for computing the similarity between the image and

the text. We consider two types of cross-modal retrieval:

image query, where an image query example is used to

retrieve texts; and text query, where a text query example is

used to retrieve images. For both two types of cross-modal

retrieval, the corresponding CMSGM similarities are infer-

red by the joint probability in CMSGM.

In image query, suppose the query image is Iq, for each

text Tn (n ¼ 1; . . .;NT , NT is the number of texts in the

database) to be retrieved, the similarity of the query image

Iq and text Tn is expressed by the conditional probabilities

of texts on the image:

SimðIq;TnÞ ¼ PðIqjTnÞ ¼
PðIq;TnÞ
PðTnÞ

ð13Þ

Using the joint probability of CMSGM and substituting it

into (13), the similarity can be expressed as:

SimðIq;TnÞ ¼
XK

k¼1

PðIqjSk; hIÞPðTnjSk; hTÞPðSkÞ
PðTnÞ

ð14Þ
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The semantic conditional probabilities PðIqjSk; hIÞ and

PðTqjSk; hTÞ in (14) can be substituted by Eq. (12), then

(14) is transformed to the equation expressed by posteriors:

SimðIq;TnÞ ¼
XK

k¼1

PðSkjIq; hIÞPðSkjTn; hTÞPðIqÞ
PðSkÞ

ð15Þ

In text query, the similarity of query text Tq and each

image In (n ¼ 1; . . .;NI , NI is the number of images in

retrieval set) is also a conditional probability which is

slightly diferent to the similarity of image query:

SimðTq; InÞ ¼ PðTqjInÞ ð16Þ

Then, we can compute the similarity which is similar to

Eq. (15):

SimðTq; InÞ ¼
XK

k¼1

PðSkjTq; hTÞPðSkjIn; hIÞPðTqÞ
PðSkÞ

ð17Þ

We can find in the two similarities (15) and (17), the prior

PðIqÞ and PðTqÞ can be ignored for the same query. If we

get the semantic posteriors of image and text, then we can

easily compute the similarity of CMSGM. Unlike tradi-

tional approaches which use joint probability PðI;TÞ for

similarity, we use conditional probability PðIjTÞ for image

query and PðTjIÞ for text query. The main difference

between two types of probability is the prior PðXÞ, it

describes the probability that each feature occurs, and it

may decrease the performance of our method in cross-

modal retrieval.

5 CMSGM for cross-modal retrieval

If the manifest semantic information exists in the training

data, and we know all the manifest semantic concepts for

the training data, then we can use CMSGM to compute the

cross-modal similarity based on the manifest semantic

concepts. However, this is only the ideal case. In general,

we do not know the manifest semantic information of the

training data, or the manifest semantic information in the

training data is incomplete. To cope with these two more

general cases, we need to design different retrieval proce-

dures. In the next three subsections, we propose three

different cross-modal retrieval methods based on CMSGM

for different cases, respectively.

5.1 CMSGM on manifest semantic concepts

In the ideal case that we know all the manifest semantic

concepts in the training data, CMSGM based on the man-

ifest semantic concepts can be directly constructed for the

cross-modal retrieval. Suppose there are NI images and NT

texts in the retrieval set, they are individual document and

are not correlated. When there are manifest semantic

concepts MS for training data, the preliminary procedure

for cross-modal retrieval is:

1. Train the SVM model hI for the images in the training

data;

2. Train the SVM model hT for the texts in the training

data;

3. Estimate the prior of semantic concepts from training

data using Eq. (7);

4. Estimate the semantic posteriors PðMSkjIn; hIÞðk ¼
1; . . .;K; n ¼ 1; . . .;NIÞ for each image in the retrieval

set using SVM hI ;
5. Estimate the semantic posteriors PðMSkjTn; hTÞ for

each text in the retrieval set using SVM hT .

The preliminary procedure estimates the parameters of

conditional semantic distribution for CMSGM, and maps

the images and texts into the semantic space which is

represented by semantic posteriors. Then, the images and

texts in the retrieval set can be retrieved by the CMSGM

retrieval procedure.

While the new query comes, for image query, the

retrieval procedure of CMSGM is:

1. Estimate the semantic posteriors PðMSkjIn; hIÞ of the

query image using SVM hI ;
2. Compute the CMSGM similarity SimðIq;TnÞ of query

image Iq and each text Tnðn ¼ 1; . . .;KÞ from the

retrieval set using Eq. (15);

3. Rank the similarities in descending order, and return

the texts which are most similar to the query image in

semantic.

For text query, the retrieval procedure is similar to the

image query, and only the roles of text and image are reversed

in retrieval. The method which uses CMSGM on manifest

semantic concepts for retrieval is called asM-CMSGM. Since

the manifest semantic concepts are close to the human

understanding, the semantic correlation constructed on man-

ifest concepts can grasp almost all the semantic aspects of

humanunderstanding.Thus,M-CMSGMcanperformwell on

complete semantic concepts of training data.

5.2 CMSGM on latent semantic concepts

There is usually no manifest semantic information in the

multi-modal document for training, and it is hard to obtain

the semantic concepts for the training data manually. The

ASC described in the previous section of this paper can

automatically learn latent semantic concepts, which can be

seen as substitution for the manifest semantic concepts for

the training data. Thus, we first use ASC for learning the
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latent semantic concepts, and then we can use CMSGM

based on the latent semantic concepts for the cross-modal

retrieval. For the case that there is no manifest semantic

information in the training data, the preliminary procedure

for cross-modal retrieval is:

1. Learn the latent semantic concepts from training data

by ASC;

2. Train the SVM model h0I and h0T for the images and

texts in the training data, respectively, the two SVM

models are different to the SVM models in Sect. 5.1,

they are about the latent semantic concepts;

3. Estimate the semantic posteriors PðLSkjIn; h0IÞðk ¼
1; . . .;K; n ¼ 1; . . .;NIÞ for each image in the

retrieval set using SVM h0I ;
4. Estimate the semantic posteriors PðLSkjTn; h

0
IÞ for

each text in the retrieval set using SVM h0T .

Besides the step (1) which uses ASC to learn latent

semantic concepts, the rest steps are similar to the steps of

preliminary procedure in Sect. 5.1, the only difference is

that the manifest semantic concepts in Sect. 5.1 are

replaced by latent semantic concepts. To make the two

types of retrieval distinguishable, we denote the latent

semantic concepts as LSkðk ¼ 1; . . .;KÞ to distinguish it

from the manifest semantic concepts MSk.

While the new query comes, for image query, the

retrieval procedure of CMSGM on latent semantic con-

cepts is:

1. Estimate the latent semantic posteriors PðLSkjIn; h0IÞ of
the query image Iq using SVM h0I ;

2. Compute the CMSGM similarity SimðIq;TnÞ of query
image Iq and each text Tnðn ¼ 1; . . .;KÞ from the

retrieval set using Eq. (15), it should be noted here

that in this equation only the posteriors of latent

semantic concepts are used;

3. Rank the similarities in descending order, and return

the texts which are most similar to the query image in

semantic.

The retrieval procedure of text query is also similar to the

image query and the roles of image and text are reversed.We

can find that the retrieval procedure of CMSGM based on

latent semantic concepts is similar to the retrieval procedure

in Sect. 5.1 which is based on manifest semantic concepts.

And we denote the CMSGM retrieval methods based on

latent semantic concepts as L-CMSGM.

5.3 Combining latent and manifest semantic concepts

for retrieval

In the previous two sections, we consider the two cases that

the training data either contain complete manifest semantic

information or do not contain any manifest semantic

information. Sometimes the multi-modal data for training

may also contain incomplete manifest semantic informa-

tion. Documents in the training data may not be labeled by

all manifest semantic concepts completely, part of the

manifest semantic concepts corresponding to the docu-

ments are labeled, and the other concepts are missed. So

using the incomplete manifest semantic information of the

training data can only obtain the incomplete semantic

correlation. Combing the latent semantic correlation can

supplement the incomplete manifest semantic correlation

for cross-modal retrieval. While combining the latent and

manifest semantic concepts for cross-modal retrieval, the

preliminary procedure is:

1. Execute the preliminary procedure based on manifest

semantic concepts in Sect. 5.1 to obtain SVM hI and hT ,
semantic posteriors PðMSkjIn; hIÞ and PðMSkjTn; hTÞ
for each image and text, respectively, in the retrieval

set;

2. Execute the preliminary procedure based on latent

semantic concepts in Sect. 5.2 to obtain SVM h0I and h
0
T ,

semantic posteriors PðLSkjIn; h0IÞ and PðLSkjTn; h
0
TÞ;

In the retrieval procedure, we need to combine the

retrieval results of the two retrieval methods. We linearly

combine the similarities of the two retrieval methods with

equal weights, which is simple but effective. For both

image query and text query, suppose the similarity of M-

CMSGM is MSimðI;TÞ, and the similarity of L-CMSGM

is LSimðI;TÞ, then the final combination of similarity is:

SimðI;TÞ ¼ a �MSimðI;TÞ þ LSimðI;TÞ ð18Þ

where a is used to control the importance of the two sim-

ilarities. However, in real world it is difficult to determine

which part is more important. If the manifest concepts in

the training data are extremely incomplete, a should be

very small. If the manifest concepts are relatively com-

plete, then a should be relatively large. In our work, we set

a ¼ 1, it may be optimized by the relevance feedback from

users.

The retrieval procedure of the combination of

M-CMSGM and L-CMSGM is:

1. Estimate the manifest semantic posteriors

PðMSkjIn; hIÞ of the query image Iq using SVM hI ,
and estimate the latent semantic posteriors

PðLSkjIq; h0IÞ of the query image Iq using SVM h0I ;
2. Compute the M-CMSGM similarity MSimðIq;TnÞ of

query image Iq and each text Tnðn ¼ 1; . . .;KÞ from

the retrieval set as well as the L-CMSGM similarity

LSimðIq;TnÞ;
3. Compute the combination of the two similarities to get

the final similarity SimðIq;TnÞ using Eq. (18);
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4. Rank the final similarities in descending order, and

return the texts which are most similar to the query

image in semantic.

For text query, the retrieval procedure is the same and

the roles of image and text are reversed. The method which

combines M-CMSGM and L-CMSGM for cross-modal

retrieval, is denoted as C-CMSGM. C-CMSGM gains the

advantages of both M-CMSGM and L-CMSGM. When

most manifest semantic concepts exist in the training data,

the manifest part of C-CMSGM plays a more important

role. And when the manifest semantic concepts are lacking,

the latent part of C-CMSGM has a more important effect.

C-CMSGM has a wide range of application; it can also

obtain a good performance while manifest concepts are

complete; thus if we cannot know whether the manifest

semantic concepts are complete, we can consider the

C-CMSGM. Figure 2 shows the framework of cross-modal

retrieval by C-CMSGM, M-CMSGM and L-CMSGM are

also shown in it.

6 Experiments

In this section, we will describe details of two datasets used

and also discuss the visual features and textual feature

extracted from these two datasets. Then, we will test our

three methods on these two datasets. We also compare the

experimental results of our methods with the varying

amount of preserved concepts. Finally, we show the illus-

trative examples of our retrieval methods.

6.1 Datasets

We use two datasets: Wikipedia featured articles and MIR

Flickr for our experiments.

The dataset of Wikipedia featured articles was firstly

used in [23]. It is a continually updated collection in which

articles have been selected and reviewed by Wikipedia’s

editors. The articles are accompanied by one or more

pictures from the Wikimedia Commons. Each featured

article is categorized by Wikipedia into 29 original con-

cepts. These concept labels are assigned to both the text

and image components of each article. Since some of the

concepts are very scarce, only ten most popular ones are

considered. The dataset is finally pruned by removing the

sections without images. The final corpus contains a total

of 2,866 documents. These documents are text–image

pairs, annotated with a label from the vocabulary of ten

concepts, which are treated as the manifest semantic con-

cepts in this paper. And the dataset is divided into training

set of 2,173 documents and test set of 693 documents.

The MIR Flickr dataset [32] contains 25,000 images

downloaded from the popular online photo-sharing service

Flickr. These images were collected directly from the web,

Fig. 2 The framework of our

C-CMSGM for cross-modal

retrieval, it also contains the

procedures of M-CMSGM and

L-CMSGM

Analyzing semantic correlation for cross-modal retrieval 533

123



to provide a realistic dataset for multimedia retrieval

research, with high-resolution images and associated

metadata. Images of this dataset were annotated for 24

semantic concepts, including not only object categories but

also more general scene concepts such as sky, water and

indoor. For 14 of the 24 concepts a second, stricter,

annotation was made: for each concept, a subset of the

positive images was selected where the concept is salient in

the image. In total, there are 38 manifest semantic concepts

for this dataset. Images in this dataset are also associated

with the Flickr tags given by users, which can be consid-

ered as the text information. Thus, we also get the image–

text pairs with semantic concepts from this dataset. We

kept the tags that appear at least 50 times, resulting in a

vocabulary of 457 tags. Finally, we remove the images

without tags, and obtain the training set of 9,359 images,

test set of 9,335 images.

6.2 Features and kernels

We extract three visual features from images for both two

datasets, including SIFT histogram, HOG histogram and

GIST. For SIFT histogram, local SIFT descriptors are first

computed on 16� 16 overlapping patches with a spacing

of 1 pixels. Then, we perform k-means clustering of a

random subset of computed SIFT descriptors to form a

visual vocabulary of 200 visual words. Each SIFT

descriptor is quantized into a visual word using the nearest

cluster center. At last, SIFT descriptors of each image map

to a spatial pyramid histogram with two spatial scales [33],

resulting in the 1,000-dimensional SIFT histogram. The

extraction of HOG histogram is similar to SIFT histogram;

the difference is that local HOG descriptors [34] are

computed in the extraction procedure. The dimension of

the HOG histogram computed is also 1,000. Furthermore,

we use the GIST descriptor [35], which roughly encodes

the image layout. For text modality, the vector of words

frequency is used to represent each text. In Wikipedia

featured articles, we kept the words which appear more

than 20 times in the whole dataset, resulting in a vocabu-

lary of 6,603 words, thus we will get the 6,603-dimension

text features. In MIR Flickr, the text features are binary

vectors; this is attributed to the fact that each Flickr tag

appears no more than two times in each image-text pair.

Finally, to compare with previous works on Wikipedia

articles, we also use 128-D SIFT histograms and 10-D

LDA features in [23] for this dataset.

For SIFT and HOG histograms, we use histogram

intersection kernel, the kernel is calculated by the follow-

ing equation:

Kintersectionðxi; xjÞ ¼
X

d

minðxid; xjdÞ ð19Þ

where xi and xj are the features, and xid is the d-th element

of xi. For Gist descriptors, RBF kernel is used, it is cal-

culated by:

KRBFðxi; xjÞ ¼ expð�dðxi; xjÞ=kÞ ð20Þ

where dðxi; xjÞ is the L2 distance, and k is the mean of all

distance values. After calculating kernels of the three

visual features, we linearly combine three kernels with

equal weights to obtain the final kernel for SVM. For text

features, we also choose the histogram intersection kernel.

6.3 Retrieval results

The performance of all retrieval methods is evaluated on

the test sets of the two datasets. The training sets are used

for learning our models. We evaluate our methods on two

types of cross-modal retrieval: text retrieval using image

query, and image retrieval using text query. In the first

case, each image in the test set is used as a query, pro-

ducing a ranking of all texts in the test set. In the second

case, the roles of images and texts are reversed. In all cases,

performance is measured by mean average precision

(MAP) and precision–recall (PR) curves. Average

Table 1 The comparison of Map scores on two datasets for the case

that all manifest semantic concepts are available

Image query Text query Average

Wikipedia featured articles

SCM [23] 0.277 0.226 0.252

MSCP [37] 0.329 0.256 0.293

AHSM [38] 0.347 0.259 0.303

SM?SVM(SIFT?LDA) 0.299 0.272 0.286

SGM-Gaussian 0.321 0.253 0.287

SGM-Gusssian(joint) 0.219 0.127 0.173

L-CMSGM(SIFT?LDA) 0.347 0.266 0.306

M-CMSGM(SIFT?LDA) 0.352 0.276 0.314

C-CMSGM(SIFT?LDA) 0.355 0.277 0.316

KCCA 0.302 0.254 0.278

ASC?GM?SVR 0.265 0.243 0.254

SCM?SVM 0.364 0.309 0.337

L-CMSGM 0.385 0.305 0.345

M-CMSGM 0.425 0.339 0.382

C-CMSGM 0.426 0.340 0.383

MIR FLickr

KCCA 0.288 0.278 0.283

ASC?GM?SVR 0.289 0.294 0.292

SCM?SVM 0.332 0.322 0.327

L-CMSGM 0.321 0.319 0.320

M-CMSGM 0.403 0.389 0.396

C-CMSGM 0.403 0.391 0.397

The best results are marked as bold
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precision is the average of precision values at the ranks

where relevant items occur, which is further averaged over

all queries to give MAP. MAP is widely used in the

information retrieval. For the retrieval of Wikipedia fea-

tured articles, the documents which share the same

semantic concept with the query are the relevant docu-

ments to the query. For the retrieval of MIR Flickr, because

each document has multiple semantic concepts, we choose

the documents which have at least two same semantic

concepts to the query as relevant documents.

Table 1 shows the MAP scores of our three methods:

L-CMSGM, M-CMSGM and C-CMSGM on two datasets.

State-of-the-art methods on Wikipedia featured articles are

also shown in Table 1. Some of them are absence in MIR

Flickr, because there are few cross-modal experiments on

this dataset. To make a fair comparison, we also show the

performance of our three methods using only 128-D SIFT

histograms and 10-D LDA features, which are used by

previous works on Wikipedia articles. SGM-Gaussian uses

Eqs. (15) and (18) as similarity, and SGM-Gaussian(joint)

uses the joint probability PðI;TÞ as similarity. SCM?SVM

is our implementation of SCM [23], we replace the logistic

regression in SCM by probabilistic kernel SVM and use

three visual features, which causes a significant improve-

ment in MAP score. SM?SVM(LDA?SIFT) is similar to

SM [23], the only difference is that logistic regression is

replaced by probabilistic kernel SVM, and we can observe

that using kernel SVM can improve the retrieval perfor-

mance. In the implementation of KCCA all three visual

features are used, and normalized correlation distance is

A B

C D

Fig. 3 Precision–recall curves
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used for KCCA. For most methods, all manifest semantic

concepts in the training set are available for cross-modal

analysis, only L-CMSGM and KCCA do not use any

manifest semantic concepts in training set, L-CMSGM

only uses latent semantic concepts learned from content

features (image features and text features) of training set.

We use ASC to learn 10 latent semantic concepts in Wi-

kipedia featured articles, and 30 latent semantic concepts in

MIR Flickr, and the threshold of text similarity is set to

0.15 in Wikipedia featured articles, and 0 in MIR Flickr. In

addition, we also evaluate a baseline latent method:

ASC?GM?SVR to show the performance of soft assign-

ment for detection of latent concepts. It is similar to

L-CMSGM, the differences are that Gaussian mixture

(GM) is used to replace K-means in ASC, and support

vector regression (SVR) is used to train on the continuous

labels. NC distance which is the best choice we have found,

is used for ASC?GM?SVR.

From Table 1, we can observe on both two datasets our

three CMSGM methods perform best, except on MIR

Flickr SCM?SVM obtains a slightly higher MAP score

than L-CMSGM. This result confirms the effectiveness of

our CMSGM model for cross-modal retrieval. SGM-

Gaussian performs better than SGM-Gaussian(joint), which

confirms that PðIjTÞ for image query and PðTjIÞ for text

query are more effective than PðI;TÞ in our framework.

M-CMSGM outperforms SGM-Gaussian, which shows that

indirect discriminative estimation for posteriors is better

than direct generative estimation for Gaussian. We can also

find that ASC?GM?SVR performs worse than

L-CMSGM on both two datasets, which demonstrates that

hard assignment for latent concepts is reasonable. Although

soft assignment seems better than hard assignment, the

advantages of CMSGM can make our methods obtain well

retrieval results.

In addition, using three features makes our methods

perform better than only using SIFT. Since HOG and GIST

can be easily extracted from images, it is reasonable to use

all three visual features for retrieval. L-CMSGM outper-

forms other methods except our two methods on Wikipedia

featured articles, and on MIR Flickr L-CMSGM obtains

only a slightly lower MAP score than SCM?SVM. We

think the reason of the high performance of L-CMSGM is

that the semantic correlation is based on latent semantic

concepts which are an approximation of the manifest

semantic concepts, and ASC can make the approximation

quite close to the manifest correlation.

Our CMSGM can model a good correlation of hetero-

geneous modalities, and thus L-CMSGM has a competitive

performance in comparison to the previous methods which

use manifest concepts. In the case that no manifest con-

cepts exist in the training data, we can use L-CMSGM for

retrieval and the performance is even better than previous

methods. C-CMSGM and M-CMSGM obtain similar MAP

scores, and C-CMSGM has a slightly better performance.

The PR curves of our three methods and SCM?SVM are

Table 2 The MAP scores of cross-modal retrieval for different

methods and various amounts of preserved manifest concepts

Preserved

concepts

Method Image

query

Text

query

Average

Wikipedia featured articles

2 L-CMSGM 0.385 0.305 0.345

SCM?SVM 0.217 0.161 0.189

M-CMSGM 0.220 0.172 0.196

C-CMSGM 0.374 0.313 0.344

4 L-CMSGM 0.385 0.305 0.345

SCM?SVM 0.272 0.192 0.232

M-CMSGM 0.293 0.214 0.254

C-CMSGM 0.379 0.321 0.350

6 L-CMSGM 0.385 0.305 0.345

SCM?SVM 0.299 0.220 0.278

M-CMSGM 0.342 0.245 0.250

C-CMSGM 0.391 0.325 0.358

8 L-CMSGM 0.385 0.305 0.345

SCM?SVM 0.304 0.233 0.269

M-CMSGM 0.356 0.259 0.308

C-CMSGM 0.391 0.329 0.360

10 L-CMSGM 0.385 0.305 0.345

SCM?SVM 0.364 0.309 0.337

M-CMSGM 0.425 0.339 0.382

C-CMSGM 0.426 0.340 0.383

MIR Flickr

8 L-CMSGM 0.321 0.319 0.320

SCM?SVM 0.258 0.268 0.263

M-CMSGM 0.270 0.286 0.278

C-CMSGM 0.322 0.323 0.322

16 L-CMSGM 0.321 0.319 0.320

SCM?SVM 0.291 0.282 0.287

M-CMSGM 0.320 0.310 0.315

C-CMSGM 0.336 0.332 0.334

24 L-CMSGM 0.321 0.319 0.320

SCM?SVM 0.307 0.302 0.305

M-CMSGM 0.355 0.323 0.339

C-CMSGM 0.364 0.344 0.354

32 L-CMSGM 0.321 0.319 0.320

SCM?SVM 0.320 0.316 0.318

M-CMSGM 0.390 0.374 0.382

C-CMSGM 0.393 0.378 0.386

38 L-CMSGM 0.321 0.319 0.320

SCM?SVM 0.332 0.322 0.327

M-CMSGM 0.403 0.389 0.396

C-CMSGM 0.403 0.391 0.397

The best results are marked as bold
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shown in Fig. 3. We can also see that the PR curves are

consistent with the MAP scores, and C-CMSGM has

almost the same PR curves with M-CMSGM. The advan-

tage of C-CMSGM is not significant in the case that all

manifest semantic concepts are available. And the latter

experiment will show the advantage of C-CMSGM.

We have shown that in the case all manifest semantic

concepts are available in the training data, M-CMSGM

which learns semantic correlation based on manifest

semantic concepts performs better than L-CMSGM.

However, in the case that not all the manifest semantic

concepts are available, M-CMSGM may be worse than

L-CMSGM. Moreover, if there is no semantic information

in training data, M-CMSGM cannot work but the perfor-

mance L-CMSGM is unchanged.

We also evaluate the performance our methods in the

case that training data lack the manifest semantic concepts.

In the experiment, we preserve part of the manifest semantic

concepts and the other concepts in the training data cannot

be used by any methods, this can simulate the case that

manifest semantic information is lacking. Table 2 shows

the MAP scores of our three methods and SCM?SVM with

varying amounts of preserved concepts. We randomly

preserve 2, 4, 6, 8 manifest semantic concepts on Wikipedia

featured articles, and 8, 16, 24, 32 on MIR Flickr. The

results of all semantic concepts preserved in two datasets

are also shown in Table 2 for comparison. The MAP score

of M-CMSGM decreases significantly when the number of

preserved concepts becomes less. And the M-CMSGM

performs even worse than L-CMSGM when small amounts

of manifest semantic concepts are preserved. SCM?SVM

which is also based on the manifest semantic concepts, has

the same decreasing of MAP score with M-CMSGM. In

most cases, C-CMSGM obtains higher MAP scores than

other two methods, which confirms the robustness of this

method. C-CMSGM always has a good performance and

adapts to most cases, if we do not know whether all manifest

concepts are preserved in the training data (even if in fact

the manifest concepts are complete in training data),

C-CMSGM is the best choice. In the case that there are no

manifest semantic concepts in the training data, L-CMSGM

is the only choice. M-CMSGM performs well in the ideal

case that all manifest semantic concepts are preserved in the

training data, but it may be not practicable.

6.4 Illustrative examples

In this section, we show the illustrative examples of the

C-CMSGM on the two datasets. We only show the text

query in the case that all manifest concepts are preserved,

which is enough to demonstrate the effectiveness of our

CMSGM model. The examples of text query on two dataset

are shown in Fig. 4, we can see from Fig. 4 that our cross-

modal retrieval method can find the heterogeneous media

data semantically correlated to the query. The text query of

the Wikipedia featured articles is about the biology, and all

the five relevant images are also about biology. The text

query of MIR Flickr is about the sky and clouds, and all

A

B

Fig. 4 Illustrative examples of text query
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five relevant images contain sky and cloud. The text que-

ries in the two datasets have different structures; text in

Wikipedia featured articles consists of sentences and text in

MIR Flickr consists of individual words; this shows that

our methods can be applied to various types of text.

Although our C-CMSGM constructs the latent semantic

correlation, its performance is still affected by the com-

pleteness of manifest semantic concepts. In the retrieval of

Wikipedia featured articles, the queries are also about bird,

and one of the relevant images is about dinosaur, the reason

is the two concepts are lacking in the dataset.

7 Conclusion

In this paper, we propose the CMSGM which has a good

description for the semantic correlation of multiple

modalities. And we design three methods M-CMSGM,

L-CMSGM and C-CMSGM based on CMSGM for three

different cases of the cross-modal retrieval. Experimental

results show that CMSGM-based methods outperform the

other cross-modal retrieval methods. L-CMSGM which

constructs semantic correlation on latent semantic concepts

learned by ASC, performs better than previously proposed

methods which model the manifest concepts. This shows

that our ASC can learn the latent concepts which are quite

close to manifest concepts. Thus, even in the case that no

manifest concepts exist, we can use L-CMSGM to obtain a

good performance. Moreover, we also find when the man-

ifest latent concepts are lacking, C-CMSGM always per-

forms best, thus it is practicable in the more general case

and M-CMSGM is only suited to the ideal case that all

manifest concepts exist.

In the future work, some aspects of our methods still can

be improved. The generation process of multiple modalities

can be more sophisticated to better model the cross-modal

correlation. In the estimation of posteriors SVM is used,

and recent state-of-the-art multi-task learning [41] in dis-

criminative task can be exploited to enhance the accuracy

of estimation. The combination of L-CMSGM and

M-CMSGM is proven to be effective, and weights learning

method is needed to be designed for a better combination.

Besides, the ability of our methods on dealing with large-

scale multimedia data is needed to be tested.
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