
Knowledge-Based Systems 93 (2016) 121–134

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Efficient reverse spatial and textual k nearest neighbor queries on road

networks

Changyin Luo a, Li Junlin b, Guohui Li a, Wei Wei a,∗, Yanhong Li c, Jianjun Li a

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
b Wuhan Digital Engineering Institute, Wuhan, China
c Department of Computer Science, South-Central University for Nationalities, Wuhan, China

a r t i c l e i n f o

Article history:

Received 14 July 2015

Revised 30 October 2015

Accepted 6 November 2015

Available online 27 November 2015

Keywords:

Spatial keyword query

Reverse k nearest neighbor

Road network

Network voronoi diagram

a b s t r a c t

The proliferation of geo-positioning technologies boosts the prevalence of GPS-enabled devices, and thus

many spatial-textual objects that possess both text descriptions and geo-locations are extensively available

in reality. Hence, how to efficiently exploit both spatial and textual description of objects to a spatial key-

word query (SKQ) has increasingly become a challenging problem. Previous studies on SKQ problem usually

focus on Euclidean space. In the real world, however, most of the spatial-textual objects lie on road networks.

This paper takes the first step to investigate a novel problem, namely, reverse spatial and textual k nearest

neighbor (RSTkNN) queries on road networks. We formalize the RSTkNN queries and present several spa-

tial keyword pruning methods to accelerate the query processing. Then two effective verifying techniques

are proposed, which can be seamlessly integrated into our RSTkNN query procedure. Finally, comprehensive

experiments on real-world and synthetic data sets are conducted to demonstrate the performance of our

approaches.

© 2015 Elsevier B.V. All rights reserved.

1

c

a

F

g

p

a

l

T

t

k

a

t

s

t

d

l

s

t

e

a

o

f

a

a

r

c

c

a

w

t

c

E

f

q

k

s

n

h

0

. Introduction

With the rapid development of mobile portable devices and lo-

ation positioning technologies, a large number of user locations

re shared on various social platforms, such as Facebook, Twitter,

oursquare, Flickr and Gowalla. Meanwhile, increasing volumes of

eo-textual objects that represent Point-of-interests (POIs, e.g., shop-

ing mall, hotel or restaurant) are gaining in prevalence. Generally,

geo-textual object contains a geographical location (i.e., longitude,

atitude) and a textual description (e.g., features, reviews, facilities).

he massive amount of available geo-textual data enables users to re-

rieve a set of objects that best matches the user’s submitted spatial

eyword query (i.e., SKQ, which includes a geographical location and

set of keywords), in terms of both spatial proximity to query loca-

ion and textual relevance to query keywords.

Reverse k Nearest Neighbor (RkNN) [1] query, which aims to find a

et of objects that take the query as one of their kNN based on the spa-

ial distance, has been studied extensively (e.g., [1–12]) over the past

ecade, due to its importance in a wide range of applications, such as

ocation based service, resource allocation, marketing and decision

upport, profile-based management, etc. These traditional studies on
∗ Corresponding author. Tel.: +8618827440253.

E-mail address: weiwei8329@gmail.com, weiw@hust.edu.cn (W. Wei).

t

s

a

R

ttp://dx.doi.org/10.1016/j.knosys.2015.11.009

950-7051/© 2015 Elsevier B.V. All rights reserved.
he retrieval of RkNN only consider spatial distance as a unique influ-

nce factor. However, in real-world applications, both spatial distance

nd textual relevance should be taken into account. For example, if

ne plans to select a location from a given set of potential locations

or establishing a new facility (e.g., restaurant, hospital, supermarket),

better choice might be choosing a location that could minimize the

verage distance among customers, and meanwhile have less textual

elevance with their competitors. As another example, assume the

ustomers specify their procurement plans via a set of keywords (e.g.,

omputer, printer, fax) and their locations, a shopping mall can pose

n RSTkNN query to find the potential buyers (customers) whose key-

ords are relevant to that of the shopping mall and meanwhile have

he shopping mall as one of their k nearest neighbor.

In recent years, SKQ has become an active topic in database

ommunity. Most of the existing studies on SKQ are restricted to

uclidean space [13–22]. According to [23], previous works mainly

ocus on three types of SKQ in Euclidean space, i.e., Boolean range

ueries (BRQ) [24,25], Boolean kNN queries (BkQ) [17,26] and Top-k

NN queries (TkQ) [13,14,21,22,27]. Nevertheless, in reality, the po-

ition and accessibility of spatial-textual objects are constrained by

etwork connectivity, and spatial proximity should be determined by

he shortest path distance rather than Euclidean distance. Recently,

patial keywords queries on road networks have drawn increasing

ttention. Rocha et al. [28] pioneer TkQ queries on road networks.

ange-constrained spatial keyword queries on road networks have

http://dx.doi.org/10.1016/j.knosys.2015.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.11.009&domain=pdf
mailto:weiwei8329@gmail.com
mailto:weiw@hust.edu.cn
http://dx.doi.org/10.1016/j.knosys.2015.11.009

122 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

e

t

e

n

w

e

a

(

t

2

w

l

S

n

e

s

i

C

a

o

s

e

[

r

d

s

v

q

d

s

s

M

t

g

C

r

o

[

o

[

t

o

a

t

a

H

s

3

a

f

3

G

o

(

o

r

been described in [29]. Guo et al. [30] propose a safe segment to

continuously monitor TkQ queries on road networks. In order to

obtain a spatially diversified SKQ result, diversified spatial keywords

search (DSKQ) on road networks is investigated in [31], in which a

signature-based inverted indexing and an incremental network ex-

pansion method are developed for DSKQ search. Gao et al. [32] design

an innovative count-tree to study reverse top-k Boolean spatial key-

word (RkBSK) retrieval on road networks. In their work, several novel

pruning heuristic methods are developed to facilitate RkBSK queries

processing, but they can only process Boolean spatial keyword query.

Although the traditional RkNN queries have been particularly well

studied, they only focus on spatial location but ignore text (keywords)

relevance. Recently, Lu et al. [33] first take the textual relevance into

consideration for RkNN queries in Euclidean space. Albeit they de-

sign a branch-and-bound search algorithm based on an innovative

index called IUR-tree (Intersection-Union R-tree) in their work, their

approach cannot be employed to handle RSTkNN queries on road net-

works. The key reason is that, IUR-tree is a combination of textual

vectors and R-tree that is constructed in Euclidean space, while spa-

tial distance between two objects on road networks should be eval-

uated by the shortest path distance rather than Euclidean distance.

Hence, the pruning methods designed based on IUR-tree cannot work

on road networks. As a result, their branch-and-bound search frame-

work cannot be adopted to solve RSTkNN queries on road networks.

In this work, we investigate RSTkNN queries on road net-

works, which pose significant challenges to the existing approaches

for processing both conventional RkNN queries (without taking

textual relevance into account) and RSTkNN queries in Euclidean

space (its computation cost for the spatial proximity is much lower

than that in road networks). Furthermore, RSTkNN queries in our

work belong to score based spatial keywords queries. Therefore, the

techniques concerning the Boolean SKQ cannot be employed to solve

our problem directly.

The contributions of this paper can be summarized as follows:

• We formalize reverse spatial and textual k nearest neighbor

(RSTkNN) queries on road networks, and identify the problem of

RSTkNN retrieval. To the best of our knowledge, this is the first

work on RSTkNN queries on road networks.

• We describe several pruning methods to prune non-promising ob-

jects at a low cost. The first verifying algorithm in our solutions is

based on the network-expansion. In order to avoid expanding road

networks multiple times as the first method does, we take advan-

tage of Network Voronoi Diagram (NVD) to develop the second

algorithm to obtain RSTkNN results in an efficient way.

• Comprehensive experiments on real-world and synthetic datasets

demonstrate the effectiveness and efficiency of our approach.

The rest of this paper is organized as follows. Section 2 reviews

related work and Section 3 gives preliminaries and describes index

structure. In Section 4, a basic approach is described. Two efficient

algorithms for RSTkNN queries are developed in Section 5. The exper-

imental results are demonstrated in Section 6. Section 7 makes the

conclusion.

2. Related work and background

2.1. RkNN queries on road networks

Korn et al. [1] are the pioneers who first research on RNN queries.

They answer RNN query by pre-calculating and adopt three phases,

namely pruning, containment and verification, to obtain the final

results. After that, numerous literatures concerning the variants of

RNN queries in Euclidean space have been particularly well studied

[1–10,12]. The following will make an overview of RNN queries

on road networks. The snapshot RNN queries in spatial networks

are first discussed by Safar et al. [34], in which NVD is utilized to
fficiently process RNN queries. In a following work [35], they extend

heir approach to answer RkNN queries in spatial networks. Sun

t al. [36] study the continuous monitoring of RNN queries on road

etworks. Li et al. [37] design a novel DLM-tree that represents the

hole monitoring area of a continuous RkNN (CRkNN) queries to

xplore CRkNN queries on road networks. Cheema et al. [11] employ

filter and refinement technique to first study CRkNN retrieval

monochromatic and bichromatic) in spatial networks where both

he objects and queries continuously change their locations.

.2. Spatial keyword queries

Retrieving geo-textual objects with query location and key-

ords has gained increasing attention recently for the popularity of

ocation-based services. There are two types of SKQ, namely, Boolean

KQ and score-based SKQ. The Boolean SKQ is to find the k objects

earest to the query q among a set of objects whose keyword set cov-

rs the query keywords. While score-based SKQ is to obtain the re-

ults according to score evaluated by a ranking function that takes

nto account the spatial proximity and text relevancy (e.g. Eq. (1)).

omparing with Boolean SKQ, it is much more expensive to obtain

score-based SKQ result. A comprehensive experimental evaluation

f different SKQ indexing and query processing techniques have been

urveyed in [23]. Several geo-textual indices have been developed to

fficiently answer TkQ, such as IR2-tree [17], IR-tree [13], S2I [38], I3

39] and IL-Quadtree [19]. Top-k spatial keyword queries on trajecto-

ies are first investigated in [40], in which k trajectories whose text

escriptions cover the keywords given by the user and that have the

hortest match distance are found out. In order to preserve user pri-

acy in text-based search, Wang et al. [41] propose a new dummy

uery generation method (called HDGA) to deal with various attacks

iscussed in their work. Literatures [42–44] study closet keywords

earch (Keyword Cover), which retrieves objects that should cover a

et of query keywords and have the minimum inter-objects distance.

otivated by the observation of increasing availability and impor-

ance of keyword rating in decision marking, Deng et al. [45] investi-

ate a generic version of closet keyword search (called Best Keyword

over) which considers inter-objects distance as well as the keyword

ating of objects. Sometimes, users may wonder why some known

bject is unexpectedly missing from a result when a SKQ is issued,

46] takes the lead in exploring how to answer why-not questions

n spatial keyword top-k queries using query refinement. Wang et al.

47] propose a novel adaptive spatial textual partition index (AP-Tree)

o support continuous spatial keyword queries over stream. More-

ver, many variants of SKQ have been developed such as direction-

ware SKQ [48], interactive Top-k spatial keyword (ITkSK) query [49],

emporal spatial-keyword Top-k publish/subscribe (TaSK) query [50],

pproximate keyword query of sematic trajectory [51] and so on.

owever, all the methods mentioned above cannot be employed to

upport RSTkNN retrieval.

. Preliminaries

In this section, the problem of RSTkNN queries on road networks

s well as the necessary definitions is formally given in Section 3.1,

ollowed by the indexing architecture in Section 3.2.

.1. Problem definition

Road networks. We model a road network as a weighted graph

= (V, E,W), where V is the set of vertices (i.e., road conjunctions

r road borders), E is the set of edges, and W is the set of weights

network distance) that are associated with each edge. Without loss

f generality, we assume bidirectional traffic which is pervasive in

eal life. Unidirectional traffic is also supported by our approach.

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 123

e

d

d

o

a

d

τ

w

a

q

a

i

i

i

t

δ

A

v

a

e

θ

w

(

i

n

q

r

t

k

i

λ

S

t

θ

b

D

s

q

o

w

|

D

o

R

q

O

3

i

s

p

t

a

n

n

w

b

c

c

c

p

t

a

v

e

M

o

t

d

o

g

τ
o

(

E

t

t

a

v

f

4

c

t

r

r

s

p

j

b

r

u

e

a

m

e

a

s

τ

t

v

w

n

t

e

(

τ

s

Object set. Let O represent a set of spatial-textual objects on the

dges E of G. Each object o ∈ O has a spatial location o.l and a textual

escription (or called document) o.d. Denote |o, n| and |o, n′| as the

istance between an object o and two end nodes of the edge (n, n′)
n which it lies. The shortest path distance between two objects o

nd o′ on G is defined as dN(o.l, o′.l).
Spatial-textual similarity. Following the previous work [28], we

efine a spatial-textual similarity in Eq. (1).

(o, q) = θ (o.d, q.d)

1 + α · δ(o.l, q.l)
(1)

here δ(o.l, q.l) represents the network proximity between o.l and q.l,

nd θ (o.d, q.d) is the text relevance between o.d and q.d. α ∈ R+ is a

uery preference parameter to balance between network proximity

nd text relevance. For example, if α = 0, it means the network prox-

mity is ignored. And if α > 1, it means the network proximity is more

mportant than the textual relevance. Specifically, the network prox-

mity is defined by the network distance between o.l and q.l, which is

he length of the short path connecting o and q.

(o.l, q.l) = dN(o.l, q.l) (2)

ctually, there exist several methods to measure the textual rele-

ance, such as [13], cosine similarity [28,30,38]. In this paper, we

dopt the well-known cosine similarity to compute the textual rel-

vance between o.d and q.d, as shown in Eq. (3).

(o.d, q.d) =
∑

t∈q.d wt,o.dwt,q.d√∑
t∈o.d (wt,o.d)

2 ∑
t∈q.d (wt,q.d)

2
(3)

here wt,o.d = 1 + ln(ft,o.d), and ft, o.d is the number of occurrences

frequency) of term t in o.d; wt, q.d is computed by wt,q.d = ln(1 + |O|
d ft

),

n which |O| is the total number of objects in the system and dft is the

umber of objects in O containing t. Specifically, the value of θ (o.d,

.d) is within the range [0, 1], and it is proportional to the textual

elevance.

Similar to [38], we also give a definition of the impact λt, d of a

erm t in document d, where d represents a description or a set of

eywords of object o.d (or query q.d). The impact λt, d is the normal-

zed weight of the term in the document [52],

t,d = wt,d√∑
t∈d (wt,d)

2

(4)

ubsequently, the textual relevance θ (o.d, q.d) in Eq. (3) can be rewrit-

en as follows.

(o.d, q.d) =
∑
t∈q.d

λt,o.d.λt,q.d (5)

Next, we give the definition of Spatial and Textual k Nearest Neigh-

or (STkNN) query and RSTkNN query on road networks.

efinition 1 (STkNN query on road networks). Given a set O of

patial-textual objects and a query object q =< q.l, q.d, q.k >, where

.l is the query location, q.d is the query keywords, q.k is the number

f requested results. An object o ∈ O is one of k most similar objects

ith q, denoted by o ∈ STkNN(q) if and only if it satisfies the condition:

{p ∈ O|τ (p, q) ≥ τ (o, q)}| < k.

efinition 2 (RSTkNN query on road networks). Given a set O

f spatial-textual objects and a query object q =< q.l, q.d, q.k >,

STkNN query on the road networks retrieves objects that contain

uery q in their k most similarity objects, namely, RSTkNN(q) = {o ∈
|q ∈ STkNN(o)}.

.2. Indexing architecture

Our work concentrates on RSTkNN queries on road networks. It

ncrementally expands the networks from a query point which is
imilar to Dijkstra’s algorithm in essence, but the pruning methods

roposed in this work are able to accelerate the query processing, and

he expanding stop condition can terminate the networks expansion

s early as possible. Applying Dijkstra’s approach to expand the road

etworks, [28] investigates Top-k spatial keyword queries on road

etworks. Its indexing structure combines IR-tree [13,16,38] and Net-

ork R-tree [53]. Likewise, we adopt a similar indexing framework

y following the works [28,30]. Next, we will briefly illustrate it.

Fig. 1 presents the indexing architecture, which consists of four

omponents. (a) Spatial component combines spatial and network

onnectivity information as proposed in [53]. It is employed to lo-

ate the road edge on which the query lies. (b) Adjacency component

oints to the adjacent vertices (road network nodes) of a given ver-

ex allowing traversing the network from vertex to vertex. It adopts

B-tree to point to block in the adjacency file where the adjacent

ertices of a given vertex vi are stored. The adjacency file stores for

ach vi: (i) the id of each edge, and (ii) the length of the edge. (c)

apping component employs a B-tree that maps a key composed

f the pair of edge id and a keyword(a term: ti) to the inverted list

hat contains the objects located on the edge with the term in their

escription. This component also contains the maximum impact λ−
t

f a given term t among the description of the objects located on a

iven edge. The inverted list of a term t on an edge is accessed only if

derived by minimum distance and maximum impact may turn an

bject, present on the edge, inside the top-k objects obtained so far.

d) Inverted file component contains inverted list and a vocabulary.

ach inverted list stores the objects located on an edge with a term in

heir textual descriptions. For each object, the inverted list stores: (i)

he distance between the object and the reference node of the edge,

nd (ii) the impact of the term in the description of the object. The

ocabulary file stores the document frequency dft of each term.

Based on the indexing architecture, we present a basic approach

or RSTkNN queries in the next section.

. Basic approach

Although Lu et al. [33] investigate RSTkNN search problem in Eu-

lidean space, it cannot be applied to road networks directly as men-

ioned in Section 1. Hence, actually there exists no previous work that

esearches on the problem of RSTkNN queries on road networks.

[28] studies TkQ on road networks that return k best objects

anked according to the score (Eq. (1)). Its idea can be briefly de-

cribed as follows: it first locates the edge on which q lies, and ex-

ands the adjacencies of q similarly to Dijkstra’s algorithm to find ob-

ects on the edges. If the keywords of o are not relevant to q.d, o will

e ignored. Otherwise, it computes the score of o using Eq. (1). The

oad networks are expanded gradually to check each relevant object

ntil the following conditions are satisfied: (i) the entire network is

xpanded, or (ii) the unexamined networks cannot have a qualified

nswer. In other words, the minimum network distance to any re-

aining object produces an aggregated score that is smaller than or

quals to the score of the kth object already found. Specifically, when

vertex vi is visited, we assume vi and q have the same keyword

et, i.e., θ (vi.d, q.d) = 1, and then we compute an aggregated score
−(v) = 1

1+α·δ(v.l,q.l)
. If τ−(v) is smaller than or equals to the score of

he kth object already found, we are certain the network expansion

ia vi can be safely terminated.

Based on this method, we develop a baseline method (BM), in

hich we first locate the edge on which q lies, then expand the road

etwork utilizing Dijkstra’s approach. For each object o located on

he each visited edge, if the keyword set of o is relevant to q.d, BM

mploys the method TkQ to compute STkNN(o), and if the kth result

e.g., ok) is smaller than the similarity between o and q, i.e., τ (ok, o) <

(q, o), then o is added to RSTkNN(q).

However, even though BM can obtain a correct RSTkNN result, its

hortcomings are obvious: in order to obtain the complete answer,

124 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

Fig. 1. Indexing architecture.

fi

q

5

q

5

e

o

L

o

b

o

a

o

P

k

f

∀
t

δ
q

o

S

c

p

t

BM has to expand network gradually and check every relevant

spatial-textual object one by one. In particular, it has to compute

STkNN(oi) for each candidate object oi, and then checks whether

τ (ok, oi) < τ (q, oi). Even worst, if all objects on road networks

are relevant to q, the whole data set should be traversed (|O| + 1)

times, i.e., fetching data objects 1 time and verification |O| times by

employing TkQ method, resulting in high I/O overhead and high CPU

cost.

By analyzing Eq. (1), score (i.e., τ (o, q)) is determined by net-

work proximity and textual relevance. Given two candidate objects

oi and oj, assume both of them have the same textual relevance

to q, i.e., θ (oi.d, q.d) = θ (o j.d, q.d), if q is closer to oi than oj, q

is more likely to be a member of STkNN(oi). In other words, if

θ (oi.d, q.d) = θ (o j.d, q.d) and δ(oi.l, q.l) ≤ δ(oj.l, q.l), then τ (oi, q)

≥ τ (oj, q), which means oi is more likely to be a valid member

of RSTkNN(q) as compared with oj. As depicted in Fig. 2, the key-

word set of each object is in the braces. For instance, both o3 and

o4 located on the edge (n2, n4) have the same keyword sets, but

dN(o3, q) < dN(o4, q), thus δ(o3.l, q.l) < δ(o4.l, q.l). Comparing with

o4, o3 has a higher chance to be a member of RSTkNN(q). If o3 is

verified to be an invalid answer, we can directly ignore o4 without

verification.

Conversely, assume oi and oj are located on the same short-

est path to q, and both of them have the same distance to q,

i.e., dN(oi, q) = dN(o j, q). If the keyword set of oi is more rele-

vant to q, i.e., θ (oi.d, q.d) > θ (oj.d, q.d), we can obtain τ (oi, q)

> τ (oj, q), which means oi is more likely to be a member of

RSTkNN(q).

According to the above discussion, we find that it is un-

necessary to verify each object when obtaining a candidate

set for an RSTkNN query, namely, part of candidates could be

pruned based on some verified candidates. As shown in Fig. 2,

for a candidate set: {o1, o2, o3, o4, o5}, supposed o2 is ver-

ified, i.e., o2 ∈ RSTkNN(q), we can infer o1 ∈ RSTkNN(q) due

to θ (o1.d, q.d) = θ (o2.d, q.d) ∧ dN(o1.l, q.l) < dN(o2.l, q.l). Next, sup-

pose o3 �∈ RSTkNN(q), as θ (o3.d, q.d) = θ (o4.d, q.d) ∧ dN(o3.l, q.l) <

d (o .l, q.l), hence, o is an invalid result. Specifically, it is not dif-
N 4 4
cult to infer that o5 �∈ RSTkNN(q) owning to o5.d ⊂ o3.d (i.e., θ (o5.d,

.d) < θ (o3.d, q.d)) and dN(o5.l, q.l) > dN(o3.l, q.l).

. RSTkNN query process

In this section, we first give four lemmas to accelerate the RSTkNN

ueries processing, and then expound on our RSTkNN Algorithm.

.1. Pruning methods

For pruning the unpromising objects as many as possible, sev-

ral effective pruning methods are proposed, which take advantage

f both spatial and textual information. We present them as follows.

emma 1. Given a query point q = 〈q.l, q.d, q.k〉 and a spatial-textual

bject o whose keywords are relevant to q.d, i.e., o.d ∩ q.d �= ∅. Let SPqo

e the shortest path from q to o, and Ssk be the set of spatial-textual

bjects (including o) located on SPqo with their keyword sets the same

s o.d, i.e., Ssk = {o′ ∈ O|o′ ∈ SPqo ∧ o′.d = o.d}. If |Ssk| > k, we can infer

�∈ RSTkNN(q). If o ∈ RSTkNN(q), it is certain that |Ssk| ≤ k.

roof. We prove the first statement by contradiction. That is, if |Ssk| >

, we have o ∈ RSTkNN(q). If a STkNN query is issued at o, based on the

act that Ssk = {o′ ∈ O|o′ ∈ SPqo ∧ o′.d = o.d} and o.d ∩ q.d �= ∅, we have

o′ ∈ Ssk, 1 = θ (o′.d, o.d) ≥ θ (o′.d, q.d). Furthermore, every point in

he set Ssk lies on the shortest path SPqo, thus ∀o′ ∈ Ssk, δ(o.l, o′.l) <

(o.l, q.l). According to Definition 1, we have ∀o′ ∈ Ssk, τ (o′, o) > τ (o,

). Because of |Ssk| > k, q cannot be an answer point for STkNN(q), i.e.,

�∈ RSTkNN(q), which contradicts our assumption that o ∈ RSTkNN(q).

Therefore, our assumption is invalid, and the first statement is cor-

rect.

Then, we prove the second statement via contradiction as well.

Assume that o ∈ RSTkNN(q), it can infer |Ssk| > k. Now suppose

sk = {o1, o2, · · · ok, ok+1, ...}, and the points in Ssk are sorted in as-

ending order of their distance to q, and assume o is in the last

lace, i.e., ∀oi ∈ Ssk, δ(oi.l, q.l) < δ(oi+1.l, q.l) < δ(o.l, q.l). Based on

he fact ∀o ∈ S , o .d = o.d, and o.d ∩ q.d �= ∅, we have ∀o ∈ S , 1 =
i sk i i sk

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 125

Fig. 2. Road network and spatial-textual objects.

θ
s

o

p

F

w

D

s

a

o

o

t

c

w

c

w

w

i

q

θ
o

v

L

o

f

a

a

|

i

t

o

P

fi

∈
h

o

o

w

r

s

≥
|

t

i

s

o

t

T

c

s

o

i

o

h

i

i

i

S

c

τ
1

w

o

t

(oi.d, o.d) ≥ θ (q.d, o.d). Because of |Ssk| > k, if a STkNN query is is-

ued at o, then q �∈ STkNN(o). In other words, o �∈ RSTkNN(q). Therefore,

ur assumption is invalid, and the second statement is correct. The

roof completes. �

To better illustrate Lemma 1, let us take the objects depicted in

ig. 2 as an example. q is located on the edge (n1, n2), and its key-

ord set is {a, b}. If a RST2NN (k=2) query is issued at q, we can adopt

ijkstra’s approach to extend the road network from q. When the

hortest path SPqn4
from q to node n4 is visited, we find that o1, o2

nd o6 located on SPqn4
have the same keyword set, i.e., o1.d = o2.d =

6.d = {a}, and thus |Ssk| > 2. According to Lemma 1, we can infer

6 �∈ RST2NN(q). In fact, if o1 and o2 have been visited, we can infer

hat any object with keyword set {a} that is located on SPqn4
after o2

annot become a member of RST2NN(q), they can be ignored directly,

hich helps to reduce the size of candidate set.

Next, let us still take SPqn4
as example. Suppose we adopt BM to

heck whether o5 is a valid answer for RST2NN(q) or not, specifically,

e need to compute ST2NN(o5) first, based on ST2NN(o5) = {o3, o4},
e can infer o5 �∈ RST2NN(q). Obviously, the verification is costly, yet

t can be avoided. Given the fact o5.d = {b} ⊂ {a, b} = o3.d = o4.d =
.d, as well as o3, o4 and o5 are located on SPqn4

, i.e., θ (q.d, o5.d) =
(o3.d, o5.d) = θ (o4.d, o5.d) and δ(q.l, o5.l) > δ(o3.l, o5.l) > δ(o4.l,

5.l), we easily infer o5 �∈ RST2NN(q). Next, we give a lemma that pro-

ides the pruning rule used in such example with a guarantee.

emma 2. Given a query point q = 〈q.l, q.d, q.k〉 and a spatial-textual

bject o located on the road networks. Let SPqo be the shortest path

rom q to o, Sck be the set of spatial-textual objects o′ located on SPqo,

nd their keyword set is the subsets of q.d, moreover, their keyword is

lso the superset of o.d, i.e., Sck = {o′ ∈ O|o.d ⊆ o′.d ⊆ q.d ∧ o′ ∈ SPqo}. If

Sck| ≥ k, it infers o �∈ RSTkNN(q). If o ∈ RSTkNN(q), then |Sck| < k. Sim-

larly, let S′
ck

denote the set of spatial-textual objects satisfying condi-

ion: S′
ck

= {o′ ∈ O|q.d ⊆ o′.d ⊆ o.d ∧ o′ ∈ SPqo}. If |S′
ck
| ≥ k, it indicates

�∈ RSTkNN(q). If o ∈ RSTkNN(q), then |S′
ck
| < k.

roof. We prove the first statement by contradiction. Suppose the

rst statement is incorrect. Now, suppose |S | ≥ k, it infers o
ck
RSTkNN(q). Based on Sck = {o′ ∈ O|o.d ⊆ o′.d ⊆ q.d ∧ o′ ∈ SPqo}, we

ave (i) dN(o, o′) < dN(o, q), i.e., δ(o.l, o′.l) < δ(o.l, q.l), and (ii) θ (o.d,
′.d) ≥ θ (o.d, q.d). If a STkNN query is issued at o, then ∀o′ ∈ Sck, τ (o,
′) > τ (o, q). As |Sck| ≥ k, therefore, q �∈ STkNN(o), i.e., o �∈ RSTkNN(q),

hich contradicts our assumption. Hence, the first statement is cor-

ect.

Next, we prove the second statement by contradiction as well. As-

ume the second statement is invalid, i.e., o ∈ RSTkNN(q), we have |Sck|

k. Based on the fact Sck = {o′ ∈ O|o.d ⊆ o′.d ⊆ q.d ∧ o′ ∈ SPqo}, and

Sck| ≥ k, if a STkNN query is issued at o, there are at least k spatial-

extual objects o′ ∈ Sck satisfying τ (o, o′) > τ (o, q). Hence, we can

nfer q �∈ STkNN(o), namely, o �∈ RSTkNN(q), which contradicts our as-

umption. Thus, the second statement in lemma is correct.

Finally, we prove the second conclusion in a similar way: based

n the given fact S′
ck

= {o′ ∈ O|q.d ⊆ o′.d ⊆ o.d ∧ o′ ∈ SPqo}, it is cer-

ain that (i) δ(o.l, o′.l) < δ(o.l, q.l), and (ii) θ (o.d, o′.d) ≥ θ (o.d, q.d).

herefore, if |S′
ck
| ≥ k, we infer o �∈ RSTkNN(q). If o ∈ RSTkNN(q), it is

ertain |S′
ck
| < k. The proof completes. �

Let us take Fig. 3 as an example. If a RST2NN (k=2) query is is-

ued at q. Suppose we need to verify o6, the shortest path from q to

6 is SPqo6
. According to Lemma 2, the corresponding set Sck for o6

s: Sck = {o1, o2, o3, o4, o5}. Obviously, |Sck| = 5 and |Sck| > k. Hence,

6 �∈ RST2NN(q). As a result, we can prune o6 directly. For o5, we can

andle it in a similar way.

Next, let us take Fig. 4 to illustrate the second conclusion given

n Lemma 2, i.e., S′
ck

= {o′ ∈ O|q.d ⊆ o′.d ⊆ o.d ∧ o′ ∈ SPqo}, if |S′
ck
| ≥ k,

t indicates o �∈ RSTkNN(q). For example, if a RST2NN (k=2) query

s issued at q, suppose o5 is visited, o3 and o4 are located on

Pqo5
. The corresponding S′

ck
for o5 is: S′

ck
= {o3, o4}. As |S′

ck
| ≥ 2, we

an infer o5 �∈ RST2NN(q). In fact, owing to Eq. (1), suppose α = 1,

(o5, o4) = 4/5
1+1 = 2/5. τ (o5, o3) = 3/5

1+2 = 1/5, and τ (o5, q) = 2/5
1+3 =

/10. Hence, q �∈ ST2NN(o5) and o5 �∈ RST2NN(q), which is consistent

ith the result verified by the second conclusion in Lemma 2.

As shown in Fig. 3, if a RST2NN (k=2) query is issued at q,

5 �∈ RST2NN(q) and o6 �∈ RST2NN(q). We find that: (i) o5 is located on

he shortest path SPqo from q to o6, and (ii) o6.d⊆o5.d. If o5 is not

6

126 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

Fig. 3. Illustration of Lemma 2.

Fig. 4. Supplementary illustration of Lemma 2.

o

w

o

I

w

j

t

o

t

l

a

n

L

w

(

t

P

m

n

a

q

t

k

S

θ
τ
c

t

verified to be an answer object, can it be used to prune o6 directly?

We will answer it with Lemma 3.

Lemma 3. Given a query point q =< q.l, q.d, q.k > and a spatial-textual

object o on the road networks. Let Ssd indicate all the objects o′ sat-

isfying the following conditions: (i) o′.d⊆o.d⊆q.d, and (ii) the shortest

path from q to o′ passes o, i.e., Ssd = {o′|o′.d ⊆ o.d ⊆ q.d ∧ o ∈ SPqo′ }.

If o �∈ RSTkNN(q), it can infer ∀o′ ∈ Ssd, o′ �∈ RSTkNN(q). Similarly, let

S′
sd

denote all the objects o′ satisfying: S′
sd

= {o′|q.d ⊆ o.d ⊆ o′.d ∧ o ∈
SPqo′ }. If o �∈ RSTkNN(q), it is certain that ∀o′ ∈ S′

sd
, o′ /∈ RSTkNN(q).

Proof. We prove the first statement by contradiction. Suppose the

statement is invalid. That is, if o �∈ RSTkNN(q), there is at least one ob-

ject o′ ∈ Ssd belonging to RSTkNN(q), i.e.,o �∈ RSTkNN(q) → ∃o′ ∈ Ssd, o′ ∈
RSTkNN(q). Because of o �∈ RSTkNN(q), we have q �∈ STkNN(o). For each

object oi ∈ STkNN(o), we can arbitrarily assume their spatial proximity

and textual relevance, as long as they guarantee q �∈ STkNN(o). Then

we can suppose each oi satisfies the following relationship: ∀oi ∈
STkNN(o), o.d⊆oi.d⊆q.d∧dN(o.l, oi.l) < dN(o.l, q.l). That is, o.d⊆oi.d⊆q.d

→ θ (o, oi) ≥ θ (o, q), and dN(o.l, oi.l) < dN(o.l, q.l) → δ(o.l, oi.l) < δ(o.l,

q.l). Therefore, ∀oi ∈ STkNN(o), τ (o, oi) > τ (o, q), which indicates our

hypothesis can ensure q �∈ STkNN(o). Then, if a STkNN query is issued

at o′, based on the fact o′ ∈ Ssd, i.e., o′.d⊆o.d⊆q.d, and ∀oi ∈ STkNN(o),

so we have o′.d⊆o.d⊆oi.d⊆q.d. As a result, ∀oj ∈ {STkNN(o) ∪ o}, we

have θ (oj.d, o′.d) ≥ θ (q.d, o′.d)∧δ(o′.l, oj.l) < δ(o′.l, q.l), which indi-

cates that at least k + 1 objects oj satisfy τ (o′, oj) > τ (o′, q). Thus,

o′ �∈ RSTkNN(q), which contradicts our assumption. Hence, the first

statement o �∈ RSTkNN(q) → ∀o′ ∈ Ssd, o′ �∈ RSTkNN(q) is correct.

Next, we can adopt the similar method to prove the sec-

ond state (i.e., o /∈ RSTkNN(q) → ∀o′ ∈ S′
sd

, o′ /∈ RSTkNN(q)). Based on

o �∈ RSTkNN(q), we assume that ∀oi ∈ STkNN(o), q.d⊆oi.d⊆o.d∧dN(o.l,

oi.l) < dN(o.l, q.l). That is, ∀oi ∈ STkNN(o), we have τ (o, oi) > τ (o,

q), which can guarantee o �∈ RSTkNN(q). Based on fact S′
sd

= {o′|q.d ⊆
o.d ⊆ o′.d ∧ o ∈ SPqo′ }, ∀o′ ∈ S′

sd
, we have q.d⊆oi.d⊆o.d⊆o′.d → θ (o′.d,

oi.d) ≥ θ (o′.d, q.d), and dN(o′.l, oi.l) < dN(o′.l, q.l) → δ(o′.l, oi.l)

< δ(o′.l, q.l), which can ensure for each o′ ∈ S , there are k + 1
sd
bjects oj ∈ {STkNN(o) ∪ o} satisfying τ (o′, oj) > τ (o′, q). In other

ords, o′ �∈ RSTkNN(q). Therefore, ∀o′ ∈ Ssd, if o �∈ RSTkNN(q), it infers
′ �∈ RSTkNN(q). The proof completes. �

Let us take Fig. 5 to illustrate how to prune objects by Lemma 3.

f a RST2NN (k=2) query is issued at q, suppose we need to check o3,

e find ST2NN(o3) = {o2, o10}, so o3 �∈ RST2NN(q). Then, the set of ob-

ects {o4, o6, o7, o13} can be pruned by the first state of Lemma 3. And

he set of objects {o5, o8, o9} can be pruned based on the second state

f Lemma 3. Therefore, once o3 is verified that it is an invalid answer,

he network expansion via SPqn5
will be terminated immediately.

However, not all candidate objects can be pruned by the above

emmas. Obviously, it is unnecessary to expand the whole network

s BM dose. The terminated condition for the expansion of the road

etworks is given in the lemma as follows.

emma 4. Given a query point q =< q.l, q.d, q.k > on the road net-

orks, SPqn is the shortest path from q to a node n. If there are k objects

excluding q) located on SPqn whose keyword sets are same as q.d, then

he network expansion via SPqn can be terminated safely.

roof. If the networks expansion via SPqn can be terminated, it

eans there is no qualified answer for RSTkNN(q) on the pruned road

etworks. We prove this lemma by contradiction. Suppose there is

t least one object o′ ∈ RSTkNN(q), but the shortest path SPqo′ from

to o′ passes the road node n, i.e., dN(o′, q) > dN(q, n). Based on

he fact that k objects (not including q) are located SPqn and their

eyword set is the same as q.d. Let S denote such k objects, i.e.,

= {oi|oi.d = q.d ∧ oi ∈ SPqn} and |S| = k, and thus we have ∀oi ∈ S,

(o′.d, oi.d) ≥ θ (o′.d, q.d) and δ(o′.l, oi.l) < δ(o′.l, q.l). Hence, ∀oi ∈ S,

(o′, oi) > τ (o′, q), therefore, q �∈ STkNN(o′) → o′ �∈ RSTkNN(q), which

ontradicts our assumption. The proof completes. �

Next, we present the framework of our RSTkNN algorithm in de-

ail.

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 127

Fig. 5. Illustration of Lemma 3.

5

fi

p

T

t

o

a

d

F

d

m

t

p

<

q

n

q

j

u

p

i

n

t

i

t

o

s

i

b

o

v

s

t

s

m

.2. RSTkNN algorithm

The framework of RSTkNN algorithm consists of three phases:

ltering, refinement and pruning. Specifically, (i) filtering aims to

rune the unqualified spatial-textual objects for an RSTkNN query.

he pruning methods in the last subsection can be adopted to reduce

he search space; (ii) refinement, in which each remaining candidate

c that cannot be pruned will be examined by verifying q ∈ STkNN(oc);

nd (iii) pruning, employing the verified oc to further prune the can-

idate object in Sc.

Algorithm 1: obtain the candidate set Sc of RSTkNN(q).

Input: q, k, a set O of the data objects on road networks

Output: Sc for RSTkNN(q)

1 initial Sc = ∅, Queue Q = ∅
2 locate the edge (ni, n j) that q is located

3 Q = {< (q, ni), dN(ni, q) >,< (q, n j), dN(n j, q) >}
4 while Q is not empty do

5 e = (n, n′) = de-queue(Q)

6 if q is located on the edge e then

7 foreach o ∈ e is relevant to q do

8 n′[o.d].count = 0

9 else

10 foreach o ∈ e is relevant to q do

11 n′[o.d].count = n[o.d].count

12 foreach object o on e do

13 if o.d ∩ q.d �= ∅ ∧ n′[o.d].count < k then

14 n′[o.d].count + + /* */Lemma 1

15 search the corresponding set Sck and S′
ck

on SPqo for o

16 if |Sck| < k ∧ |S′
ck
| < k then /* */Lemma 2

17 Sc = Sc ∪ {o}

18 if n′[q.d].count < k then /* */Lemma 4

19 foreach unvisited adjacent edge (n′, n′′) in the edge set E

do

20 en-queue< (n′, n′′), dN(q, n′′) > to Q

21 return Sc

Algorithm 1 presents the filtering phase of RSTkNN algorithm.

irst, it initializes the parameters. Sc is used to preserve the candi-

ate objects for RSTkNN algorithm. A priority queue Q is adopted to

aintain all the visited edges sorted in ascending order of their dis-

ances to q. The algorithm should find the edge on which q lies. Sup-

ose q lies on (ni, nj), and we assume q is closer to node ni. Thus,
(q, ni), dN(ni, q) > is firstly stored in Q, and then < (q, nj), dN(nj,

) > is preserved. Second, the algorithm starts to expand the road

etworks from q until Q is empty (Lines 4–20). At each step, Q de-

ueues its first element, i.e., e = (n, n′) = de-queue(Q). For each ob-

ect o ∈ e, if o.d is relevant to q.d, i.e., o.d ∩ q.d �= ∅, n′[o.d].count is

sed to count the number of spatial-objects located on the shortest

ath SPqn′ with their keyword sets that are the same as o.d. Specif-

cally, if q is located on the popped edge e, the counter value of
′[o.d].count should be initialized to zero (Line 8). Otherwise, using

he counter value of the former node to initialize that of the later one,

.e., n′[o.d].count = n[o.d].count (Line 11). For each object o located on

he popped e, if o.d ∩ q.d �= ∅ and n′[o.d].count < k, we can infer that

is a candidate object by Lemma 1. Thus, the value of n′[o.d].count

hould be increased (Line 14). Furthermore, according to Lemma 2,

t needs to retrieve two sets Sck and S′
ck

for o to judge whether o can

e pruned or not (Line 15). If |Sck| < k and |S′
ck
| < k, we are certain

is a candidate object and preserve it in Sc (Line 17). If the counter

alue of q.d is smaller than k, as guided by Lemma 4, the algorithm

hould expand the road networks continuously (Lines 18–20). Finally,

he candidate set Sc is returned.

Algorithm 2: STkNN Algorithm.

Input: q, k, a set O of the data objects on a road network

Output: STkNN(q)

1 initial MaxHeap H = ∅, ε = 0, Queue Q = ∅
2 locate the edge (ni, n j) that q is located

3 use the polyline of (ni, n j) to compute dN(ni, q) and dN(n j, q)

4 Q = {< (q, ni), dN(ni, q) >,< (q, n j), dN(n j, q) >}
5 while Q is not empty and 1

1+α·δ(ni.l,q.l)
≤ ε do

6 if |H| < k then

7 expand network and retrieve k relevant objets

(q.d ∩ o.d �= ∅) to initial H

8 ε ← kth score of the objects in H

9 e = (ni, n j) ← de-queue(Q)

10 else if S = {oc|∀oc ∈ (ni, n j) ∧ dN(oc.l, q.l) ≤ 1−ε
αε } then

11 C ← FindCandidate(S, q, ε)

12 update H and ε with oc ∈ C

13 foreach unvisited adjacent edge (n j, n j
′) of n j in edge set

E do

14 en-queue < (n j, n j
′), dN(q, n j

′) > to Q

15 return STkNN(q) ← H

Algorithm 2 aims to check whether each object in Sc is a valid an-

wer for an RSTkNN query. It first initials the parameters (Line 1). The

axheap H is used to store STkNN results. ε is the threshold that is set

128 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

1

2

2

n

e

n

t

c

<

n

s

n

i

o

n

a

o

i

<

m

n

q

u

o

w

i

p

a

S

S

i

o

s

b

c

e

i

5

s

c

o

o

n

O

v

t

V

e

s

c

L

V

t

f

c

g

b

t

p

to the k-th score of objects in H. A priority queue Q is used to maintain

all edges to be examined, which is the same as in Algorithm 1. In or-

der to retrieve STkNN, it first has to find the edge (ni, nj) on which

q lies, then starts to expand the road networks and maintains the

edges to be examined (Lines 2–4). The network expansion will ter-

minate when the entire networks are expanded, or there is no valid

answer in the unvisited networks any more (Line 5). In other words,

the scores of all objects in the unvisited networks are not bigger than

ε. The reason is that, when edge (ni, nj) is de-queued from Q, sup-

pose the keyword set of ni is the same as q.d, i.e., θ (q.d, ni.d) = 1, so

τ (ni, q) = 1
1+α.δ(ni.l,q.l)

. ∀oi ∈ (ni, nj), dN(oi, q) ≥ dN(ni, q), if τ (ni, q)

≤ ε, we have τ (q, oi) ≤ 1
1+α.δ(ni.l,q.l)

≤ ε, which indicates the objects

in the rest of networks are invalid answers. At the beginning of re-

finement, the number of objects in H is less than k, we need to find

k objects relevant to q.d to initialize H (Line 7), and update the value

of ε (Line 8). Once |H| ≥ k, the FindCandiate procedure is employed to

retrieve the candidate set C. Meanwhile, H and ε should be updated

with oc ∈ C, and the unexamined adjacent edges are en-queued to Q

(Lines 10 - 14)

Note that, not all the objects located on the de-queued edge (ni,

nj) are needed to be examined, only objects in S are worthy of being

verified (Line 10). The reason is that, ∀oc ∈ (ni, nj), suppose oc has the

maximum textual relevance to q.d (i.e., θ = 1). If 1
1+α·dN (oc .l,q.l)

≤ ε,

we can only examine the objects in a limited distance dN(oc.l, q.l) ≤
1−ε
αε .

To better explain how the FindCandiate procedure works (Line 11),

let’s first describe the indexing components depicted in Fig. 1(c) and

(d). Specifically, Fig. 1(c) stores the key for each keyword item on an

edge, i.e., {< IDedge, ti >,λ−
ti
}, where IDedge and ti stand for edge id

and a keyword item id, λ−
ti

is the maximum impact of ti among the

descriptions of the objects located on edge IDedge, which are mapped

to the inverted file component shown in Fig. 1(d). It stores the in-

formation {< IDedge, ti >, oi, dN(ni, oi), λti,oi
}, where dN(ni, oi) is the

distance between oi and the reference node of the edge, λti,oi
is the

impact of the term ti in the description of oi. The FindCandiate proce-

dure first accesses Fig. 1(c) to compute an upper score τ− utilizing λ−
ti

and the minimum network distance between the edge and q.l. Then,

if τ− > ε, the inverted lists in Fig. 1(d) are accessed. The lists contain-

ing the objects are retrieved and the objects whose scores are higher

than ε are returned.

For each object o ∈ Sc, if q ∈ STkNN(o) is verified in Algorithm 2, it

means o is an RSTkNN result. Otherwise, as guided by Lemma 3, o can

be utilized to prune the objects in the candidate set Sc. The refine-

ment steps are shown in Algorithm 3. Specifically, if o �∈ RSTkNN(q),

the candidate objects in both Ssd and S′
sd

sets should be pruned (Line

7).

Algorithm 3: Refinement for RSTkNN(q) Algorithm.

Input: q, k, Sc

Output: the result set Sr of an RSTkNN(q)

1 initial Sr = φ
2 foreach o ∈ Sc do

3 if q ∈ STkNN(o) then /* Refinement */
4 Sr = Sr ∪ {o}
5 else /* Lemma 3 */
6 search the corresponding sets Ssd and S′

sd
for object o

7 Sc = Sc − Ssd − S′
sd

8 return Sr

To better understand RSTkNN query processing, let’s take Fig. 2

as an example. Suppose d (n , q) = 1/2, d (n , q) = 1, d (n , n) =
N 1 N 2 N 1 0
.2, dN(n2, n3) = 2, dN(n2, n4) = 5, dN(n4, n5) = 1.5, dN(n5, n10) =
, dN(n2, n7) = 6,dN(n4, n8) = 5.5, dN(n7, n8) = 6.5, dN(n7, n6) =
.5, dN(n8, n9) = 2. We use the counter ni[d].count to record the

umber of objects whose keyword set is d at node ni. Suppose an

dge (ni, nj) is examined, a new counter will be constructed at node

j if there is an object o ∈ (ni, nj) having a different keyword set with

hat counted at node ni. If an RST2NN (k=2) query is issued at q, be-

ause q is closer to n1 than n2, we have Q = {< (q, n1), dN(q, n1) >,

(q, n2), dN(q, n2) >}. The first de-queued edge is < (q, n1), dN(q,

1) > . There is no object located on (q, n1), hence it is unneces-

ary to construct a counter at n1. (n1, n0) is the adjacent edge of

1, and dN(n1, n0) = 1.2 > 1 = dN(n2, q), the algorithm en-queues

t into Q, i.e., Q = {< (q, n2), dN(q, n2) > £¬ < (n1, n0), dN(q, n0) >}.

1 is located on (q, n2), once (q, n2) is de-queued, the counter

2[a].count for keyword a is constructed, we have n2[a].count = 1

nd Sc = {o1}. Furthermore, we need to en-queue the adjacent edges

f n2 into Q, i.e., (n2, n3), (n2, n4) and (n2, n7) are en-queued

nto Q. We have Q = {< (n1, n0), dN(q, n0) >, < (n2, n3), dN(q, n3) >,

(n2, n4), dN(q, n4) >, < (n2, n7), dN(q, n7) >}. Then, the first ele-

ent (n1, n0) is de-queued. As o7 is located on (n1, n0), we have

o[b, c].count = 1. Obviously, o7 belongs to RST2NN(q). The next de-

ueued edge is (n2, n3). There is no object on it. The queue Q contin-

ously de-queues the next element (n2, n4). It locates five candidate

bjects, i.e., o2{a}, o3{a, b}, o4{a, b}, o5{b}, o6{a}. Due to o2.d = {a},
e have n4[a].count = 2. Similarly, we have n4[a, b].count = 2 own-

ng to o3.d = o4.d = {a, b}. As guided by Lemma 2, o5 and o6 can be

runed by o4. Since the counter value for the keyword set {a, b} which

re the same as q.d reaches to 2, the road networks expansion via

Pqn4
can be terminated as guaranteed by Lemma 4. Thus, we have

c = {o1, o7, o2, o3, o4}.

Subsequently, the priority queue is updated, i.e., Q = {<
(n2, n7), dN(q, n7) >}. When (n2, n7) is de-queued, we find that o8

s irrelevant to q.d and thus can be ignored. Furthermore, based on

9.d = {a, b, e} and o10.d = {a, b, d}, when o11 is examined, the corre-

ponding set Sck
′ for o11 is : Sck

′ = {o9, o10}, so |Sck
′| ≥ k. Thus, o11 can

e pruned by Lemma 2. The counters for the new keyword sets are

onstructed, i.e., n7[a, b, c].count = 1 and n7[a, b, d].count = 1. The

valuation proceeds until Q = ∅ or the condition listed in Lemma 4

s satisfied.

.3. Network Voronoi diagram based verification

As discussed in the last subsection, when an RSTkNN query is is-

ued, even if k is small, the candidate set Sc is not small. In order to

heck each candidate object oc ∈ Sc whether it is a valid answer point

r not, we have to employ Algorithm 2 to verify it. However, the cost

f verification process is not low. Because it needs to expand the road

etworks from each candidate oc to check whether q ∈ STkNN(oc).

bviously, the networks will be expanded |Sc| times. To make the

erification process more efficient, Network Voronoi Diagram (NVD)

echnique is employed in this procedure. NVD is a specialization of

oronoi diagrams, where the locations of objects are restricted to the

dges of the graph and the distance between objects is defined as the

hortest path connecting them in the network instead of their Eu-

lidean distance.

An NVD divides the network into network Voronoi Cells (VCs).

et VC(oi) be the network voronoi cell of an object oi. The network

oronoi Cell VC(oi) contains all points on edges that are closer to oi

han to any other objects. It is actually a shortest path tree generated

rom oi [54], and hence oi is also called the generator of VC(oi). An NVD

an be constructed by the methods in literatures [54,55]. Concretely,

iven a set of objects on the road network, one can construct the NVD

y expanding shortest path tree from each object simultaneously un-

il the shortest path trees meet. The meeting points, termed as border

oints, are also on the edges of the road network with the property

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 129

Fig. 6. Road network and NVD.

Fig. 7. NVD indexing.

t

t

e

d

n

g

w

t

o

t

w

e

e

v

t

c

e

r

r

s

a

b

b

a

a

t

b

S

c

t

t

o

k

v

f

e

w

e

n

b

t

6

m

e

e

b

N

e

3

V

6

t

U

d

i

d

1 http://www.dis.uniroma1.it/challenge9/data/tiger/
hat the costs (e.g., road network distances) from the meeting point

o the two neighboring objects are equal to each other.

Fig. 6(a) presents a road network, its NVD is shown in Fig. 6(b),

ach network voronoi cell is depicted by the dotted lines, and bi

enotes a border point. Due to q ∈ VC(o1), o1 is thus the nearest

eighbor of q. Jing et al. [56] have proven an important property:

iven the NVD of the dataset O and a query point q on a road net-

ork, let o1, o2, . . . , ok−1 be the k − 1 nearest neighbors of q. Then,

he kth nearest neighbor of q is among the voronoi neighbors (VN) of

1, o2, . . . , ok−1. For example, the 2nd nearest neighbor of q is among

he set V N(o1) = {o2, o4, o6}. An NVD indexing is shown in Fig. 7,

hich comprises two components. The first component maps each

dge to the corresponding VC. Specifically, the record associated with

ach VC in Fig. 7(b) contains the keyword set of the generator, and

oronoi neighbors, as well as the vertices of VC in a common sequen-

ial order.

When an NVD is constructed, for each voronoi cell, we pre-

ompute the distance between all the border points of VC to its gen-

rator as well as the distances of border point-to-border point. As a

esult, when visiting a new VC, we can quickly extend the searched

egion to the border points without expanding all the internal road

egments.

When we start to check a candidate oc whether q ∈ STkNN(oc), if

generator oi associated with VC(oi) has no relevance to oc.d, it will

e ignored. The verification process starts from VC(oc), and chooses

est object o′ from VN(oc) (i.e., o′ = arg max{τ (oi, oc)|oi ∈ V N(oc)})

s the nearest neighbor spatial-textual object of oc. Thus, o′ can be

dded to the candidate set STkNN(oc). And then the search expands

o the neighboring cells of VC(o′). That is, the objects in VN(o′) will

e examined. The verification continues until no better candidate for

TkNN(oc) exists in unvisited voronoi cells. Concretely, the stopping

ondition of expansion is set as follows, when we plan to examine

he neighboring cells, suppose the keyword sets of the border points

hat are on the boundary of the visited VC match all the keyword set

f oc. If the border point with the highest score is not better than the
th object in STkNN(oc), we can infer all the objects in the unvisited

oronoi cells cannot become the valid answers for STkNN(oc). There-

ore, the NVD expansion can be safely terminated.

The verification process employing the NVD method is differ-

nt from that proposed in Algorithm 2, which is based on the net-

ork expansion in a similar way as Dijkstra’s approach. The network

xpansion-based verification is sensitive to the connectivity of road

etworks and the density of spatial-textual objects. However, NVD-

ased method can avoid that problem, and the verification only needs

o visit from one voronoi cell to another.

. Experimental evaluation

We systematically evaluate the efficiency and scalability of our

ethods and the baseline (BM). Specifically, our method can be cat-

gorized into two classes according to different verifying techniques

mployed to check each candidate object: (i) NE-RSTkNN, which is

ased on the network expansion. (ii) VD-RSTkNN, which is based on

etwork Voronoi Diagram. The experiments are conducted on a mod-

st commodity desktop that is equipped with a Intel-i5 Dual-core

.4GHz CPU and 8GB RAM. We implement all the algorithms with

C++6.0. The page size is 4KB.

.1. Experimental setup

The experiments are conducted on both the real-world and syn-

hetic datasets. (i) Real-world datasets. The road networks of three

S states (DE, ND, LA)1 are utilized as real-world datasets. For each

ataset, the objects with real keyword set are randomly generated

n the same way as [28]. Table 1 presents the characteristics of each

ataset. (ii) Synthetic datasets. Two synthetic datasets are generated

http://www.dis.uniroma1.it/challenge9/data/tiger/

130 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

Table 1

Real datasets.

Data Vertex Edge Objects Keywords

DE 49,109 60,512 0.48M 1,452,288

ND 210,801 260,902 2.0M 6,261,648

LA 413,574 499,254 3.9M 11,982,096

Table 2

Parameter setting.

Parameter Range Default

k 10,15,20,25,30 20

No. of query keywords 2,3,4,5,6 4

Query parameter α 0.01,0.1,1,10,100 1

Avg. no. of objects keywords 3,4,5,6,7 4

Avg. no. of objects per edge 4,6,8,10,12 8

Synthetic Dataset1 K1,K2,K3,K4,K5

Synthetic Dataset2 C1,C2,C3,C4,C5

m

s

a

r

w

b

T

b

n

f

p

t

a

a

r

6

o

y

b

o

i

v

o

b

b

L

o

e

o

f

w

s

t

a

by combining ND dataset with Twitter2 messages (tweets) by follow-

ing the method in [28]. The first synthetic dataset is to evaluate the

influence of the size of the keyword set of each object on the search

performance. We preserve the road networks and the location of the

objects of ND to create five datasets, i.e., K1, K2, K3, K4, K5. The aver-

age number of keywords associated with an object in each set is 3, 4,

5, 6, 7 respectively. The second synthetic dataset aims to investigate the

impact of object density on the performance of our approaches. We

change the number of objects in each edge of the road networks of ND

to generate five datasets, i.e., C1, C2, C3, C4, C5. The average number

of objects on each edge is 4, 6, 8, 10, 12 respectively, and the default

number of keywords associated with an object is 3. Table 2 lists pa-

rameters used through the experiments. The default values are listed

in the last column.

6.2. Experimental results

We first evaluate the efficiency of the proposed pruning meth-

ods by measuring the number of objects pruned by each pruning
2 http://twiter.com

p

g

o

Fig. 8. Pruning performanc

Fig. 9. Pruning performan
ethod. Next, we evaluate the system performance. In the field of

patial keyword queries, we find that many relevant studies usually

dopt query time to measure the performance of the proposed algo-

ithms [19,22,33,44,51]. Hence, we use a similar measurement. In our

ork, we observe that the query times of RSTkNN queries are affected

y page accesses and edges expanded during the retrieval procedure.

hus, in the experiments, we measure (i) query time; (ii) the num-

er of page accesses by our algorithms during the search; and (iii) the

umber of edges expanded, i.e., the number of edges expanded be-

ore obtaining an RSTkNN query result. The experiments evaluate the

erformance of the proposed algorithms under a variety of parame-

ers listed in Table 2. In each experiment, we vary only one parameter

nd fix other parameters at their default values. 50 random queries

re evaluated in every experiment, and their average performance is

eported.

.2.1. Effectiveness of pruning methods

This experiment evaluates the efficiency of three pruning meth-

ds (i.e., Lemma 1, 2, 3) proposed in Section 5.1. Fig. 8, where the

-axis is in logarithmic scale, shows the number of objects pruned

y three lemmas when varying |q.d|. As |q.d| increases, the number

f objects pruned by the three lemmas increases rapidly. The reason

s that, as the number of q.d increases, the number of objects rele-

ant to q.d (i.e., o.d ∩ q.d �= ∅) increases dramatically. Hence, the size

f candidate objects pruned by the three lemmas given in Section 5.1

ecomes larger. Furthermore, we observe that Lemma 2 achieves the

est performance on both DE and LA datasets. And when |q.d| is small,

emma 1 outperforms other two lemmas on ND. While the efficiency

f Lemma 3 is not so high as others. This is because, our methods first

mploy both Lemma 1 and Lemma 2 to prune the plenty of relevant

bjects, and obtain the candidate set Sc. Then Lemma 3 is utilized to

urther prune objects in Sc using the verified object oc ∈ Sc. Compared

ith the number of objects pruned by Lemma 1 and Lemma 2, Sc is

maller. Therefore, Lemma 3 cannot prune so many objects as other

wo lemmas do.

Fig. 9 shows the number of objects pruned by the three lemmas

s a function of k. Compared with other two lemmas, Lemma 3 solely

rune a small number of objects. The reason is similar to the one

iven in the last experiment. As the value of k increases, the number

f objects pruned by Lemma 2 is bigger than that of objects pruned
e of Lemmas vs. |q.d|.

ce of Lemmas vs. k.

http://twiter.com

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 131

Fig. 10. Testing on synthetic datasets.

Fig. 11. Page accesses vs. k.

Fig. 12. Query time vs. k.

b

p

b

6

o

j

a

a

p

g

B

j

W

o

6

s

F

q

i

m

i

o

a

c

l

6

c

a

n

i

a

t

s

g

b

w

o

a

s

s

y Lemma 1. This is because, when the value of k grows larger, the

runing condition given in Lemma 2 (i.e., |Sck| ≥ k and |S′
ck
| ≥ k) can

e easily satisfied. Thus, more candidate objects will be pruned.

.2.2. Effect of the average number keywords per object

Synthetic Dataset1 is employed to evaluate the performance of

ur approaches under different average number of keywords per ob-

ect (i.e., |o.d|). In this set of experiments, we set q.d = 4 and k = 20,

nd vary |o.d| from 3 to 7. Fig. 10(a) depicts that the query times of

ll algorithms increase as |o.d| grows. Particularly, VD-RSTkNN out-

erforms other two algorithms. The main reason is that, when |o.d|

rows, the number of the relevant object (i.e., o.d ∩ q.d �= ∅) increases.

oth BM and NE-RSTkNN adopt the network-expanding method to

udge the candidate objects, they need more time to do judgement.

hile VD-RSTkNN adopts NVD-based method to verify the candidate

bjects, which has a lower cost.

.2.3. Effect of object density on each edge

Synthetic Dataset2 is utilized to explore the impact of object den-

ity on each road segment. The experiment results are depicted in

ig. 10(b). As the density of objects on a road becomes larger, the

uery time of BM grows significantly. The query time of NE-RSTkNN

ncreases slightly. While the query time of VD-RSTkNN almost re-

ains unchanged. The reason is as follows, as the density of objects
s increasing, BM needs more time to filter the unqualified candidate

bjects. Although NE-RSTkNN could employ the pruning methods to

ccelerate filtering process, verifying each candidate object in it is still

ostly. However, NVD-based verifying method can avoid such prob-

em, hence, VD-RSTkNN gains a steady performance.

.2.4. System evaluation

Since for a query object q =< q.l, q.d, q.k >, and the score is cal-

ulated as τ (o, q) = θ (o.d,q.d)
1+α·δ(o.l,q.l)

, in this set of experiments, we try to

nalyze how system performance is affected by three parameters: the

umber of returned top results q.k (i.e., k), the number of keywords

n queries q.d, and the combination ratio α.

Effect of varying k. Figs. 11 and12 show the number of page

ccesses and query times w.r.t k respectively. We vary k from 10

o 30 and fix other parameters at their default values. The results

how that the page accesses and the runtime of our algorithms

row with the increase of k. Particularly, VD-RSTkNN performs the

est, followed by NE-RSTkNN, BM is the worst. The reason is that,

hen the value of k increases, the larger number of the candidate

bjects should be examined, therefore, the required I/O of three

lgorithms increase. Furthermore, BM has to verify all the relevant

patial keyword object (i.e., o.d ∩ q.d �= ∅), thus, its runtime increases

ignificantly. Although NE-RSTkNN employs the pruning methods

132 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134

Fig. 13. Edges expanded vs. |q.d|.

Fig. 14. Query time vs. |q.d|.

Fig. 15. Query time vs. α.

Table 3

System evaluation on synthetic datasets.

Datasets Alg. Page access(K) Edges expanded Time(Sec)

K1 BM 225 11,450 64.2

NE-RSTkNN 90 5080 13.4

VD-RSTkNN 62 4274 10.1

K5 BM 280 14,675 81.6

NE-RSTkNN 118 8598 22.2

VD-RSTkNN 76 5985 14.3

C1 BM 165 15,560 45.4

NE-RSTkNN 125 8790 25.7

VD-RSTkNN 90 7468 20.3

C5 BM 320 9878 100

NE-RSTkNN 170 7056 42.8

VD-RSTkNN 85 5460 24.5

r

s

K

c

F

d

c

proposed in Section 5.1 to obtain the candidate object set Sc, it adopts

network-expansion method to verify each oc ∈ Sc, which has to ex-

pand the road network multi-times. However, VD-RSTkNN can avoid

these problems, its verification processing only needs to visit from

one VC to another. Therefore, VD-RSTkNN outperforms other two

algorithms.

Effect of the number of query keywords |q.d|. Figs. 13 and14

demonstrate the number of edges expanded and query times w.r.t

|q.d| respectively. As |q.d| grows, the number of relevant objects in-

creases remarkably. As expected, our methods need to expand more

edges to examine these candidate objects. BM is not as effective as

others. The reason is that, both NE-RSTkNN and VD-RSTkNN em-

ploy the pruning methods and the terminated condition for the net-

work expansion to accelerate query processing. Thus, they need not

to expand so many edges as BM does. According to the results de-

picted in Fig. 13, it is easy to understand the results presented in

Fig. 14. Furthermore, VD-RSTkNN obtains a better performance than

NE-RSTkNN in these two experiments. The reason is that, as discussed

in Section 5, once the candidate set Sc is obtained in Algorithm 1, our

methods need to verify each candidate object oc ∈ Sc. NE-RSTkNN

adopts the network-expansion method to verify each oc, it has to

expand network multi-times, whose performance is influenced by

the connectivity of road networks and the density of objects lo-

cated on the road segments. Nevertheless, increasing the density

of objects on each road segment has little impact on NVD-based

verification process. Hence, VD-RSTkNN outperforms other two

algorithms.

Effect of parameter α. Eq. (1) gives how to fuse the net-

work proximity and textual relevance into τ (o, q). A small value

of α gives more preference to the textual description of the ob-

jects, while a high value of α gives more preference to the net-

work proximity. To evaluate the impact of α, we vary α from

0.01 to 100 on ND data set. Fig. 15 illustrates that as the value

of α grows, the query times only decrease slightly, which indi-

cates that the impact of varying α on the query times is not

notable.

System performance on synthetic datasets. The experiments

shown in above in this subsection are reported based on real-

world datasets. We also conduct extensive experiments on syn-

thetic datasets. Due to space limitation, Table 3 only depicts the
 p
esults on four synthetic datasets (i.e., K1, K5, C1 and C5). We

et q.d = 4, k = 20 and α = 1. From the experiment results on

1 and K5, we observe that as |q.d| grows, BM increases its

ost significantly, while NE-RSTkNN and VD-RSTkNN scale well.

urthermore, according to the results on C1 and C5, as the

ensity of the objects on each road segments grows, BM in-

reases its cost remarkably. Nevertheless, VD-RSTkNN has steady

erformance.

C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134 133

7

r

t

m

e

r

T

o

e

t

p

a

p

h

N

A

S

6

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

. Conclusion

In this paper, we first address the problem of RSTkNN query on

oad networks. RSTkNN query fuses the network proximity and tex-

ual relevance together, and it is a score-based spatial keyword query,

aking it more challenging than Boolean spatial keyword query. Two

fficient approaches are developed to support RSTkNN queries on

oad networks, in which a road network is modeled by a large graph.

he pruning techniques are proposed to prune plenty of unqualified

bjects at the filter step so that the search space can be minimized

fficiently. Increasing the number of the keywords or the density of

he spatial-textual object on each road segment has the greater im-

act on the performance of NE-RSTkNN, however, they do not present

significant impact on query time of VD-RSTkNN. An extensive ex-

erimental evaluation with both real-world and synthetic datasets

as been conducted to verify that VD-RSTkNN is more efficient than

E-RSTkNN.

cknowledgments

This work was substantially supported by the National Natural

cience Foundation of China under Grants Nos. 61332001, 61173049,

1300045.

eferences

[1] F. Korn, S. Muthukrishnan, Influence sets based on reverse nearest neighbor

queries, in: ACM SIGMOD Record, 29, ACM, 2000, pp. 201–212.
[2] I. Stanoi, D. Agrawal, A. El Abbadi, Reverse nearest neighbor queries for dynamic

databases., in: Proceedings of the ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, 2000, pp. 44–53.
[3] W. Wu, F. Yang, C.-Y. Chan, K.-L. Tan, Finch: evaluating reverse k-nearest-neighbor

queries on location data, Proc. VLDB Endowm. 1 (1) (2008) 1056–1067.
[4] M.A. Cheema, X. Lin, W. Zhang, Y. Zhang, Influence zone: efficiently processing

reverse k nearest neighbors queries, in: IEEE 27th International Conference on
Data Engineering (ICDE), 2011, IEEE, 2011, pp. 577–588.

[5] Y. Tao, D. Papadias, X. Lian, Reverse knn search in arbitrary dimensionality, in:

Proceedings of the Thirtieth international conference on Very large data bases-
Volume 30, VLDB Endowment, 2004, pp. 744–755.

[6] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, M. Renz, Efficient reverse k-
nearest neighbor search in arbitrary metric spaces, in: Proceedings of the 2006

ACM SIGMOD international conference on Management of data, ACM, 2006,
pp. 515–526.

[7] Y. Tao, M.L. Yiu, N. Mamoulis, Reverse nearest neighbor search in metric spaces,

IEEE Trans. Knowl. Data Eng. 18 (9) (2006) 1239–1252.
[8] M.L. Yiu, D. Papadias, N. Mamoulis, Y. Tao, Reverse nearest neighbors in large

graphs, IEEE Trans. Knowl. Data Eng. 18 (4) (2006) 540–553.
[9] M.L. Yiu, N. Mamoulis, Reverse nearest neighbors search in ad hoc subspaces, IEEE

Trans. Knowl. Data Eng. 19 (3) (2007) 412–426.
[10] M.A. Cheema, X. Lin, Y. Zhang, W. Wang, W. Zhang, Lazy updates: An efficient

technique to continuously monitoring reverse knn, Proc. VLDB Endowm. 2 (1)

(2009) 1138–1149.
[11] M.A. Cheema, W. Zhang, X. Lin, Y. Zhang, X. Li, Continuous reverse k nearest neigh-

bors queries in euclidean space and in spatial networks, VLDB J. Int. J. Very Large
Data Bases 21 (1) (2012) 69–95.

[12] M.A. Cheema, W. Zhang, X. Lin, Y. Zhang, Efficiently processing snapshot and con-
tinuous reverse k nearest neighbors queries, VLDB J. 21 (5) (2012) 703–728.

[13] G. Cong, C.S. Jensen, D. Wu, Efficient retrieval of the top-k most relevant spatial

web objects, Proc. VLDB Endowm. 2 (1) (2009) 337–348.
[14] D. Wu, G. Cong, C.S. Jensen, A framework for efficient spatial web object retrieval,

VLDB J.ÃíÃ¬ Int. J. Very Large Data Bases 21 (6) (2012) 797–822.
[15] D. Wu, M.L. Yiu, C.S. Jensen, G. Cong, Efficient continuously moving top-k spatial

keyword query processing, in: IEEE 27th International Conference on Data Engi-
neering (ICDE), 2011, IEEE, 2011, pp. 541–552.

[16] Z. Li, K.C. Lee, B. Zheng, W.-C. Lee, D.L. Lee, X. Wang, Ir-tree: an efficient index for

geographic document search, IEEE Trans. Knowl. Data Eng. 23 (4) (2011) 585–599.
[17] I. De Felipe, V. Hristidis, N. Rishe, Keyword search on spatial databases, in: IEEE

24th International Conference on Data Engineering, 2008., IEEE, 2008, pp. 656–
665.

[18] Y. Tao, C. Sheng, Fast nearest neighbor search with keywords, IEEE Trans. Knowl.
Data Eng. 26 (4) (2014) 878–888.

[19] C. Zhang, Y. Zhang, W. Zhang, X. Lin, Inverted linear quadtree: efficient top k spa-
tial keyword search, in: Proceedings of the IEEE 29th International Conference on

Data Engineering (ICDE), 2013, IEEE, 2013, pp. 901–912.

20] D. Wu, M.L. Yiu, G. Cong, C.S. Jensen, Joint top-k spatial keyword query processing,
IEEE Trans. Knowl. Data Eng. 24 (10) (2012) 1889–1903.

[21] D. Zhang, C.-Y. Chan, K.-L. Tan, Processing spatial keyword query as a top-k aggre-
gation query, in: Proceedings of the 37th International ACM SIGIR Conference on

Research & Development in Information Retrieval, ACM, 2014, pp. 355–364.
22] D. Wu, M.L. Yiu, C.S. Jensen, Moving spatial keyword queries: formulation, meth-
ods, and analysis, ACM Trans. Database Syst. (TODS) 38 (1) (2013) 7.

23] L. Chen, G. Cong, C.S. Jensen, D. Wu, Spatial keyword query processing: an experi-
mental evaluation, in: Proceedings of the VLDB Endowment, 6, VLDB Endowment,

2013, pp. 217–228.
[24] R. Hariharan, B. Hore, C. Li, S. Mehrotra, Processing spatial-keyword (sk) queries

in geographic information retrieval (gir) systems, in: Proceedings of the 19th In-
ternational Conference on Scientific and Statistical Database Management, 2007.

SSBDM’07., IEEE, 2007, p. 16.

25] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, T. Suel, Text vs. space: effi-
cient geo-search query processing, in: Proceedings of the 20th ACM International

Conference on Information and Knowledge Management, ACM, 2011, pp. 423–
432.

26] A. Cary, O. Wolfson, N. Rishe, Efficient and scalable method for processing top-
k spatial boolean queries, in: Scientific and Statistical Database Management,

Springer, 2010, pp. 87–95.

[27] X. Cao, G. Cong, C.S. Jensen, Retrieving top-k prestige-based relevant spatial web
objects, Proc. VLDB Endowm. 3 (1-2) (2010) 373–384.

28] J.B. Rocha-Junior, K. Nørvåg, Top-k spatial keyword queries on road networks, in:
Proceedings of the 15th International Conference on Extending Database Tech-

nology, ACM, 2012, pp. 168–179.
29] W. Li, J. Guan, S. Zhou, Efficiently evaluating range-constrained spatial keyword

query on road networks, in: Proceedings of the Database Systems for Advanced

Applications, Springer, 2014, pp. 283–295.
30] L. Guo, J. Shao, H.H. Aung, K.-L. Tan, Efficient continuous top-k spatial keyword

queries on road networks, GeoInformatica 19 (1) (2015) 29–60.
[31] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M.A. Cheema, X. Wang, Diversified spatial

keyword search on road networks., in: Proceedings of the EDBT, 2014, pp. 367–
378.

32] Y. Gao, X. Qin, B. Zheng, G. Chen, Efficient reverse top-k boolean spatial key-

word queries on road networks, IEEE Trans. Knowl. Data Eng. 27 (5) (2015) 1205–
1218.

[33] J. Lu, Y. Lu, G. Cong, Reverse spatial and textual k nearest neighbor search, in:
Proceedings of the 2011 ACM SIGMOD International Conference on Management

of data, ACM, 2011, pp. 349–360.
34] M. Safar, D. Ibrahimi, D. Taniar, Voronoi-based reverse nearest neighbor query

processing on spatial networks, Multim. Syst. 15 (5) (2009) 295–308.

[35] Q.T. Tran, D. Taniar, M. Safar, Reverse k nearest neighbor and reverse farthest
neighbor search on spatial networks, in: Transactions on Large-Scale Data-and

Knowledge-Centered Systems I, Springer, 2009, pp. 353–372.
36] H.-L. Sun, C. Jiang, J.-L. Liu, L. Sun, Continuous reverse nearest neighbor queries

on moving objects in road networks, in: Proceedings of the Ninth International
Conference on Web-Age Information Management, 2008. WAIM’08., IEEE, 2008,

pp. 238–245.

[37] L. Guohui, L. Yanhong, L. Jianjun, L. Shu, Y. Fumin, Continuous reverse k nearest
neighbor monitoring on moving objects in road networks, Inf. Syst. 35 (8) (2010)

860–883.
38] J.B. Rocha-Junior, O. Gkorgkas, S. Jonassen, K. Nørvåg, Efficient processing of

top-k spatial keyword queries, in: Advances in Spatial and Temporal Databases,
Springer, 2011, pp. 205–222.

39] D. Zhang, K.-L. Tan, A.K. Tung, Scalable top-k spatial keyword search, in: Pro-
ceedings of the 16th International Conference on Extending Database Technology,

ACM, 2013, pp. 359–370.

40] G. Cong, H. Lu, B.C. Ooi, D. Zhang, M. Zhang, Efficient spatial keyword search in
trajectory databases (2012) arXiv:1205.2880.

[41] P. Wang, C.V. Ravishankar, On masking topical intent in keyword search, in:
IEEE 30th International Conference on Data Engineering (ICDE), 2014, IEEE, 2014,

pp. 256–267.
42] X. Cao, G. Cong, C.S. Jensen, B.C. Ooi, Collective spatial keyword querying, in: Pro-

ceedings of the 2011 ACM SIGMOD International Conference on Management of

data, ACM, 2011, pp. 373–384.
43] D. Zhang, B.C. Ooi, A.K. Tung, Locating mapped resources in web 2.0, in: Proceed-

ings of the IEEE 26th International Conference on Data Engineering (ICDE), 2010,
IEEE, 2010, pp. 521–532.

44] D. Zhang, Y.M. Chee, A. Mondal, A.K. Tung, M. Kitsuregawa, Keyword search in
spatial databases: towards searching by document, in: Proceedings of the IEEE

25th International Conference on Data Engineering, 2009. ICDE’09., IEEE, 2009,

pp. 688–699.
45] K. Deng, X. Li, J. Lu, X. Zhou, Best keyword cover search, IEEE Trans. Knowl. Data

Eng. 27 (1) (2015) 61–73.
46] L. Chen, X. Lin, H. Hu, C.S. Jensen, J. Xu, Answering why-not questions on spatial

keyword top-k queries, in: Proceedings of the IEEE 31st International Conference
on Data Engineering (ICDE), 2015, IEEE, 2015, pp. 279–290.

[47] X. Wang, Y. Zhang, W. Zhang, X. Lin, W. Wang, Ap-tree: efficiently support

continuous spatial-keyword queries over stream, in: Proceedings of the IEEE 31st
International Conference onData Engineering (ICDE), 2015, IEEE, 2015, pp. 1107–

1118.
48] G. Li, J. Feng, J. Xu, Desks: Direction-aware spatial keyword search, in: IEEE 28th

International Conference on Data Engineering (ICDE), 2012, IEEE, 2012, pp. 474–
485.

49] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, X. Zhou, Interactive top-k spatial

keyword queries, in: Proceedings of the IEEE 31st International Conference on
Data Engineering (ICDE), 2015, IEEE, 2015, pp. 423–434.

50] L. Chen, G. Cong, X. Cao, K.-L. Tan, Temporal spatial-keyword top-k pub-
lish/subscribe, in: Proceedings of the IEEE 31st International Conference on Data

Engineering (ICDE), 2015, IEEE, 2015, pp. 255–266.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0039
arxiv:/hep-th/1205.2880
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0049
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0050
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0050

134 C. Luo et al. / Knowledge-Based Systems 93 (2016) 121–134
[51] B. Zheng, N.J. Yuan, K. Zheng, X. Xie, S. Sadiq, X. Zhou, Approximate keyword
search in semantic trajectory database, in: Proceedings of the IEEE 31st Interna-

tional Conference on Data Engineering (ICDE), 2015, IEEE, 2015, pp. 975–986.
[52] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Inf.

Process. Manag. 24 (5) (1988) 513–523.
[53] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao, Query processing in spatial network

databases, in: Proceedings of the 29th International Conference on Very Large
Data Bases-Volume 29, VLDB Endowment, 2003, pp. 802–813.
[54] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial tessellations: concepts and ap-
plications of Voronoi diagrams, 501, John Wiley & Sons, 2009.

[55] M. Kolahdouzan, C. Shahabi, Voronoi-based k nearest neighbor search for spatial
network databases, in: Proceedings of the Thirtieth International Conference on

Very Large dData bases-Volume 30, VLDB Endowment, 2004, pp. 840–851.
[56] Y. Jing, L. Hu, W.-S. Ku, C. Shahabi, Authentication of k nearest neighbor query on

road networks, IEEE Trans. Knowl. Data Eng. 26 (6) (2014) 1494–1506.

http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0051
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0052
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0053
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0054
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0055
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0056
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0056
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0056
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0056
http://refhub.elsevier.com/S0950-7051(15)00436-0/sbref0056

	Efficient reverse spatial and textual k nearest neighbor queries on road networks
	1 Introduction
	2 Related work and background
	2.1 RkNN queries on road networks
	2.2 Spatial keyword queries

	3 Preliminaries
	3.1 Problem definition
	3.2 Indexing architecture

	4 Basic approach
	5 RSTkNN query process
	5.1 Pruning methods
	5.2 RSTkNN algorithm
	5.3 Network Voronoi diagram based verification

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Experimental results
	6.2.1 Effectiveness of pruning methods
	6.2.2 Effect of the average number keywords per object
	6.2.3 Effect of object density on each edge
	6.2.4 System evaluation

	7 Conclusion
	 Acknowledgments
	 References

