
Intelligent Data Analysis 17 (2013) 459–484 459
DOI 10.3233/IDA-130589
IOS Press

Comparison and evaluation of source code
mining tools and techniques: A qualitative
approach

Shaheen Khatoon , Guohui Li∗ and Azhar Mahmood
Huazhong University of Science and Technology, Wuhan, Hubei, China

Abstract. Program source code substantially is structured and contains semantically rich programming constructs such as
variables, functions, data structures, and program structures which indicate patterns. Mining source code by using different data
mining techniques to extract the valuable hidden patterns is the new revolution in software engineering. Over last decade many
tools and techniques have been proposed by researcher to extract pertinent information and uncover relationships and trends
from source code about a particular characteristic of Software Engineering (SE) tasks. These efforts have resulted in wide range
of research body but currently there is no comprehensive overview exists.

This paper surveys the tools and techniques which rely only on data mining methods to determine patterns from source
code in context of programming, bug detection, maintenance, program understanding and software reuse. The work provides
comparison and evaluation of the current state-of-the-art source code mining tools and techniques, and organizes the large
amount of information into a coherent conceptual way. Thus the survey provides researchers with a concise overview of source
code mining techniques and assists practitioners the selection of appropriate techniques for their work.

The result of this review shows existing studies focus on one specific pattern being mined from source code such as special
kind of bug detection. Thus, there is a need of multiple tools to test and find potential information from software which
increase cost and time of development. Hence there is a strong need of tool which helps in developing quality software by
automatically detecting different kind of bugs and generates relevant API code automatically to help in decreasing overall
software development time.

Keywords: Source code mining, data mining, patterns, programming rule, copy-paste code, bug detection, API usage

1. Introduction

Data mining focuses on the techniques for non-trivial extraction of implicit, previously unknown and
potentially useful information from very large amounts of data [1–4]. In relation to this, a large amount
of SE data is also produced in software development process such as requirement document, design
specifications, source code files and information about bugs. These sources contain a wealth of valuable
information.

In recent years, software practitioners and researchers have recognized that valuable information can
be extracted from SE data to support software development practices and software engineering research.
In this direction Mining Software Repositories (MSR) is specially promoted because of commonly avail-
ability of software version control repositories, bug tracking repositories and archived communications

∗Corresponding author: Guohui Li, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China. E-mail:
guohuiliwh@gmail.com.

1088-467X/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved

460 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

for most software projects. Practitioners are increasingly applying data mining techniques on MSR to
support software development practice and various SE tasks [5].

Software artifact such as source code is an important source of data that can be mined for interested
patterns. It is typically structured and also contains semantically rich programming constructs such as
variables, functions, data structures, and program structures which indicate patterns. We can uncover
useful and important patterns and information by mining source code. Various data mining applications
in software engineering have employed source code to aid software maintenance, program comprehen-
sion and software components’ analysis.

The primary goal of software development is to deliver high quality software in the least amount of
time. To achieve these goals software engineers are looking for tools which automatically detect different
type of bugs to deliver high quality software and want to reuse existing frameworks or libraries for
rapid software development. To accomplish these tasks practitioners increasingly applying data mining
algorithms to various software engineering data [6] to improve software quality and productivity. To
deliver high quality software automatic detection of bugs remains one of the most active areas in software
engineering research. Practitioners desire tools that would automatically detect bugs and flag the location
of bugs in their current code base so they can fix these bugs. In this direction much work has been done to
develop tools and techniques which analyze large amount of source code data, to uncover the dominant
behavior or patterns and to flag variations from that behavior as possible bugs. One major area in this
direction is Rule Mining Techniques which induces set of rules from source code of existing projects and
anomalies are uncover by looking for violation of specific rule. Most of the studies used static source
code analysis to find programming rules and subsequent rule violation as bugs [7–11].

Another dominant work by mining source code is clone detection. Developers often reuse code frag-
ments by copying and pasting (clone code) with or without minor adaptation to reduce programming
efforts and shorten the development time. It also increase productivity since the code is previously tested
and is less likely to have defects. However, clone code may cause potentially maintainability problem,
for example when a cloned code fragment needs to be changed in case of change requirement or addi-
tional features, all fragments similar to it should be checked for that change. Moreover, the handling of
duplicated code can be very problematic such as an error in one component is reproduced in every copy.
This problem has focused the attention of researcher towards development of clone detection tools which
allow developers to automatically find the locations in code that must be changed when related code seg-
ment changes. Several automated techniques for detecting code clones have been proposed differ by the
level of comparison unit from single source lines to entire AST/PDG sub-trees/sub-graphs [12–17]. Here
we focus only on techniques which are using data mining methods and few others leading techniques
for clone detection.

The reuse of both software library and application framework is an important activity for rapid soft-
ware development at the source level. In recent development setting programmer relies on frameworks
and libraries, such as C++ libraries, Java packages, Eclipse packages, and in-house libraries [18–21]
that privilege the programmer to create high quality, full featured applications on-time. However, due to
rapid change in software these libraries are not well documented and having complex APIs. By mining
API usage patterns one can identify dominant and correct library usage patterns across many projects.
Different mining techniques have been proposed in the literature which provide samples code [20,22–
25]. The techniques are different in the way how the developer queries the target source repository to
retrieve relevant code example.

Data mining can also be applied to source code change histories to predict bugs and locate possible
changes. Many new bugs are introduced by developers who did not notice dependencies between entities,

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 461

and failed to propagate changes correctly. Studies in [26–37] have been conducted to search for possible
bugs and guide software changes by mining source code histories.

Source code also plays an important role in understanding large system because the documentation
for these system rarely exists and if exists is not up-to-date. Practitioners also apply data mining tech-
niques on large software system for program comprehension, architecture recovery or some other tasks
mentioned in Section 3.

In this paper, we provide a comprehensive comparison and evaluation of the state of art static source
code mining techniques. To date little effort has been spent to evaluate on this leading area of research.
Apart from our own initial short survey [38], which examined three approaches, two other surveys have
been presented. Kagdi et al. [39] provided survey of approaches those uses frequent-pattern mining to
mine software repositories for various software evolution tasks. The surveyed approaches require ex-
tensive history of software revisions in repository to be effective. In the other work, Halkidi et al. [40]
surveyed approaches those applying data mining techniques on various sources of software engineer-
ing data. In contrast, this work focus on a survey approaches those examine the relationship between
source code entities, change relationship or reuse of component. This type of investigation is research
on analysis methods to support testing, programming and maintenance task.

This work not only provides significant contributions to the source code mining research, but have
also exposes how challenging to compare different tools due to the diverse nature of the techniques and
target languages.

We aim to identify the essential strengths and weaknesses of individual tools and techniques to make
an evaluation indicative of future potential e.g. when one aims to develop a new integrated or hybrid
technique which address multiple challenges in one tool rather presenting another new tool. Moreover,
by this survey we have made available prominent tools and techniques pertaining to source code mining
to practitioners who are interested to improve software development process or its related challenges.

The rest of this paper is organized as follows. After introducing some background of software mining
in Section 2, we provide a comprehensive overview of existing techniques on mining source code data
in Section 3. Section 4 presents taxonomy of source code mining tools and techniques in term of general
criteria in form of table. The organization of surveyed approaches in term of data mining approach is
presented in Section 5. Comparison of source code mining tools in term of several evaluative criteria is
presented in Section 6. Critiques on evaluated tools in term of strength and weaknesses are presented in
Section 7. Finally, discussion and future trends are highlighted in Section 8 and the paper is concluded
in Section 9.

2. Software mining

Software mining encompasses the use of data mining to improve software productivity and quality. We
speak of software mining when Software Engineering (SE) data is used as input to data mining algorithm
to extract latent valuable information from SE data. There are various sources of software engineering
data such as code bases, execution traces, historical code changes, mailing lists, software metrics or bug
databases on which data mining can be applied to support various SE tasks.

We specifically speak of source code mining when software engineering data pertaining to static
source code is used as input to data mining technique. Static analysis of source code has several well-
known benefits. Examining the source code without actually executing the code makes the quality of test
suites, an active area of research [41,42]. Static analysis also allows code to be tested that is difficult to
run in all environments, such as device drivers.

462 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

Fig. 1. Code mining process. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-130589)

2.1. General code mining process

This section discusses an overall summary of the code mining process discussed in paper. The overall
data mining process applied on code bases is shown in Fig. 1. The overall code mining process included
more or less following steps:

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 463

– Collecting target data. Collecting source code to local repository and determine what type of dataset
to mine and what type of SE tasks can be assisted by mining.

– Preprocessing. It include extracting relevant data such as static methods, call sequences from source
code and removing uninteresting elements which cause noise. Moreover, including them in the data
set would significantly increase the computation of mining algorithms.

– Code transformation. Transforming data in a way adoptable to particular data mining algorithm.
For example input format for frequent itemset mining is itemset database where each function is
an itemset. To accomplish this task we have to replace each element of method call with a distinct
number in the itemset database being fed to mining algorithm.

– Mining techniques. Choosing the appropriate mining algorithm to perform the desired function to
find the pattern in data. Various data mining functions such as clustering, classification, association
discovery, pattern mining and pattern matching are used to mine SE data.

– Post processing. It transforms mining results into appropriate format required to assist SE task. For
example in the preprocessing step, each distinct method call replaces with set of numbers in itemset
database being fed to the mining algorithm. In this step numbers are converted back into distinct
method call.

– Ranking. Candidate results produced by mining algorithm are too many and often irrelevant. Rank-
ing applies manual analysis or automated heuristics to separate valid patterns from coincidence or
uninteresting patterns.

Software patterns mined by source code mining process can be used in following different ways.

– They can be stored in a specification database so that programmers can refer in future project
development to improve the efficiency of software systems.

– Frequently appeared patterns can be used to discover implicit programming rules.
– The mined patterns can be used to discover related defects.
– Relevant patterns can be used for code optimization.
– Pattern mining could help to determine code reusability.

3. Overview of static source code mining tools and techniques

Various approaches have been developed to benefit software engineering tasks by using data mining
that deal with different types of SE data. The main contribution of this work is to investigate how data
mining techniques used on source code data to improve software quality and productivity. This survey is
based upon the nature of information mined from target source code which subsequently used to improve
software development. For example to reveal underlying correlation among the data set, one may go for
mining such rules which show some association between data element. These rules subsequently can
be used to detect software bugs as a possible rule violation. Clone mining techniques helps Software
engineers to find duplicate code which can subsequently used in maintenance phases, code optimization
etc. First we focus on those approaches that are relying on rule mining to detect software anomalies, data
mining methods to find clone code and relevant API usage patterns as well as mining version histories
to detect bugs and change prediction. Moreover, we also highlight on other areas that use data mining
approaches on source code data. Hence, by reading this survey paper researchers are directed to specific
source code activity they want to do in future. This list is by no means exhaustive but represents a number
of different prominent investigations.

464 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

3.1. Mining rules to detect bugs

Rule mining techniques induce set of rules from existing projects which can be used to uncover poten-
tial bugs as violation of specific program rule. Several methods were proposed to mine program source
code and detect software anomalies as a possible rule violation.

Engler et al. [7] developed a static verification tool by using compiler extensions called checkers
(written in the Metal language) to match rule templates, derived from knowledge of typical programming
errors, against a code base. Proposed tool extracts programming beliefs from acts at different location of
source code by exploiting all possible paths between function call and cross check for violated beliefs
e.g. a dereference of a pointer, p, implies a belief that p is non-null, a call to “unlock (1)” implies
that 1 was locked etc. Rule template represent general programming rules such as such as “<a> must
be paired with ” and Checkers, match rule templates to find the rules instance and discover code
locations where it violates a rule that match an existing template. Two types of rules categories: MUST-
rules (inferred from acts that imply beliefs code “must” have) and MAY-rules (Inferred from acts that
imply beliefs code “may” have) are identified. For MUST rules internal consistency is checked and
contradictions is directly flagged as bugs; for MAY-rules, a statistically based method is used to identify
whether a possible rule must hold. Proposed approach applies statistical analysis, based on how many
times the rule holds and how many it does not to rank deviations from programmer beliefs inferred from
source code.

PR-Miner (Programming Rule Miner) [8] uses item-set mining to automatically extract general pro-
gramming rules from software code written in an industrial programming language such as C and detect
violations. It transforms a function definition into an item-set by hashing program elements to numbers.
In this conversion process, similar program elements are mapped to the same number, which is accom-
plished by treating identifiers with the same data types as identical elements, regardless of their actual
names. By using the frequent item-set mining algorithm called FPclose, PR-Miner extracts rules from
possible combination of multiple program elements of different types including functions, variables, data
types, etc. that are frequently used together and find association among them. For efficiency PR-Miner
generates only closed rules from a mined pattern. The rules extracted by PR-Miner are in general forms,
including both simple pair-wise rules and complex ones with multiple elements of different types. By
identifying which elements are used together frequently in the source code, such correlated elements can
be considered a programming rule with relatively high confidence.

Chronicler [9] applies inter-procedural path-sensitive static analysis to automatically infer accu-
rate function precedence protocols which specify ordering among function calls e.g. A call to
pthread_mutex_init must always be present on program paths before a call to pthread_mutex_lock.
Precedence relationship is computed using program’s control-flow structure and stored into a reposi-
tory which analyses using sequence mining techniques to generate a collection of feasible precedence
protocols. CHRONICLER first generates the control flow graph for each procedure and reverses the
direction of all edges in control-flow graph to construct the precedence relation. The graphs obtained
are fed into the relation builder and a cycle of relation, constraint, and constraint summary calculations
is executed. The sequences obtained as a result of this process are then fed to a sequence mining tool.
MAFIA [43] to generate the item sets that appear frequently based on a given confidence threshold. The
protocols output by the sequence miner and the associated violations are ranked by processing them
according to the confidence, length and frequency of occurrence of the protocol. The output of the entire
process is a ranked order of function precedence protocols. Deviations from these protocols found in the
program are tagged as violations and also represent potential sources of bugs.

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 465

Some complex rules may indicate variable correlations, i.e. these variables should be accessed together
or modified in a consistent manner. In this direction Lu et al. [11] developed a tool called MUVI to mine
variable pairing rules which applied the frequent itemset mining technique to automatically detect two
types of bug i.e. (1) multi-variable inconsistent update bugs and (2) multi-variable related concurrency
bugs, which may result due to inconsistent update of correlated variables, the variables that need to
be accessed together. For example “thd->db_length” describes the length of the string “thd->db”, so
whenever “thd->db” is updated, “thd->db_length” should be updated consistently. The “access together”
variables are those which appear in the same function with less than maximum distance statement apart,
and collected by statically analysis of each function to form Acc-Set. MUVI’s applied FPclose algorithm
to Acc_Set database, consisting of the Acc_Sets of all functions from the target program and output set of
variable accessed more than minimum support number of functions. MUVI only focused on two kinds
of variables: global variables and structure/class fields.

A new approach to mine implicit conditional rules is proposed by Chang et al. [10]. The proposed
work detects neglected conditions by applying frequent sub graph mining on C code. Neglected con-
ditions are missing conditions, cases or path which if not carefully revealed software open to many
security vulnerabilities. Software open to security vulnerabilities often exploited by the attackers such
as buffer overflow, SQL injection, Cross-site scripting, format string attacks. In proposed approach pro-
gram units are represented as Program Dependency Graphs (PDGs) generated by CodeSurfer a static
analysis tool. The PDGs are enhanced by adding directed edges, called shared data dependence edges
path. The resulting graphs are called enhanced PDGs (EPDGs). Potential rules are represented by graph
minors by contracting some paths edges. Because EPDG minors represent transitive (direct and indirect)
intra-procedural dependences between program statements, they capture essential constraints between
rules element. Rules are modeled as graph minors of enhanced procedure dependence graphs (EPDGs),
in which control and data dependence edges are augmented by edges representing shared data depen-
dences. The next step is to mine the resulting EPDGs to identify candidate rules. Rules are found by
mining a database of near transitive closure of EPDGs, using frequent sub-graph mining algorithm, to
find recurring graph minors on the assumption that the more a programming pattern is used, the more
likely it is to be a valid rule. After valid rules are discovered and confirmed the graph database is searched
again using a heuristic graph matching algorithm, to find rule violations corresponding to neglected con-
ditions.

Kagdi et al. [44] presented two approaches for mining call usage patterns from source code. The
first approach is based on the idea of itemset mining. It identifies frequent subsets of items that satisfy
at least a user defined minimum support. As a result unordered patterns related to functions calls are
generated. Sequential pattern mining applies on partial ordered list of function calls that produces more
accurate results and less number of false positive. In general terms these approaches can assist with
mining patterns of call usage and thus identifying potential bugs in a software system.

3.2. Mining code clones patterns

Reusing code fragments by copying and pasting with or without minor adaptation is a common activity
in software development for quick performance gains during development and maintenance. Studies
shows that 20–50% of large software systems contain so called clones “similar program structures”
repeated many times within or across programs in variant forms [12,45,46]. Independently of the reasons
why they arise, such cloned structures hinder future maintenance. They complicate programs, make
it difficult to trace the impact of change and increase the risk of update anomalies. Other problems

466 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

triggered by clones include replication of unknown bugs, code bloat and dead code [12]. Many software
engineering tasks such as program understanding (clones may carry domain knowledge), code quality
analysis (fewer clones may mean better quality code), aspect mining (clones may indicate the presence
of an aspect), plagiarism detection, copyright infringement investigation, software evolution analysis,
code compaction (in mobile devices), virus detection, and bug detection may require the extraction of
syntactically or semantically similar code fragments which makes clone detection an important and
valuable part of software analysis [47]. There is a multitude of techniques for detecting code clones have
been proposed in literature. Clone detectors [12,13,15–17,46,48–55] identify similar code automatically.
Each technique is differ by the level of comparison unit of source code such as parameterized tokens
strings [12,13] AST [14,15,50,54] and PGDs [16,17]. Here we focus on work which used data mining
and few other basic tools in this area.

A string based approach to locate code duplication is proposed by Baker [12]. It uses sequence of lines
as a representation of source code and detects line-by-line clones. A tool called Dup is developed which
detects two type of matching code that is either exactly the same or name of parameters such as variable
and constant are substituted. It performs the following sub processes: 1) Lines of source files are first
divided into tokens by a lexical analyzer, 2) replacement of tokens (identifiers of functions, variables,
and types) into a parameter identifier, 3) parameter tokens are encoded using a position index for their
occurrence in the line. 4) All prefixes of the resulting sequence of symbols are then represented by a
suffix tree, a tree where suffixes share the same set of edges if they have a common prefix. 5) Extraction
of matches by a suffix-tree algorithm, if two suffixes have a common prefix, clearly the prefix occurs
more than once and can be considered a clone.

CCFinder [13] is another token based clone detection technique with additional transformation rules to
remove minor difference in source code. It transforms source code into tokens sequence through lexical
analyzer to detect clone code portions that have different syntax but have similar meaning. It also ap-
plies rule-based transformation such as regularization of identifiers, identification of structures, context
information and parameter replacement of the sequence. Source normalizations is used to remove super-
ficial differences such as changes in statement bracketing (e.g. if (a) b = 2; vs. if (a) {b = 2;}). Finally,
clone pairs, i.e., equivalent substrings in the token sequence, are identified using suffix-tree matching
algorithm.

CP-Miner [53] applies data mining to identify copy-paste defect in operating system code. By using
frequent subsequence mining and tokenization technique it detects copy-paste-related wrong variable-
name bugs. It transforms a basic block into number by tokenizing its component such as variable, oper-
ators, constants, functions etc. Once all the components of a statement are tokenized, a hash value digest
is computed using the hashpjw hash function. As a result program become a large sequence which is
broken into small sequence by choosing basic block as a unit to get each basic block as a sequence. The
CloSpan algorithm is applied to the resulting sequence database to find basic copy-pasted segments. By
identifying abnormal mapping of identifiers among copy-paste segments, CP-Miner detects copy-paste
related bugs, especially those bugs caused by the fact that the programmer forgot to modify identifiers
consistently after copy-pasting.

Another clone detection tool is CloneDetection proposed by Wahler et al. [15]. This tool first converts
source code into Abstract Syntax Tree (AST) which contains complete information about source code
by using parser. AST is than transformed into XML representation. XML files are further configured to
define metadata to show how statements are nested and considered as clones. Frequent itemset mining
algorithm inputs XML configuration file and find frequent consecutive statements. Proposed technique
only finds exact and parameterized clones at a more abstract level.

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 467

Qu et al. [17] Proposed a framework for pattern mining of clone code using spatial and graph base
analysis of source code. Source code is first transformed into Program Dependency Graph (PDG), each
line of code is encoded to a hash value by converting each node and edge of PDG into index string by
applying hashing algorithm. Hence, original source code is converted into encoded graphic sequence.
Spatial search is performed on encoded graphic sequence by using Winnowing algorithm to find pair
wise matches which serves as input to graph based pattern mining. For graph base pattern mining PDG
for each line pair is retrieved and graph based pattern matching VF algorithm applied to find matched
sub graph inside the PDG pair. False positive pruning and pattern composition techniques are used to
update the pattern database and discover more accurate and meaningful patterns of cloned codes. Finally
the detected software patterns can be used for various applications such as pattern analysis, related defect
discovery and code optimization.

Rysselberghe and Demeyer [55] present a technique to identify frequently applied changes by mining
version histories based on clone detection. CVS deltas are examined and their corresponding source
code changes are recorded in a text file. A clone-detection tool CCFinder using parameterized token
matching is applied to this text file to find similar pairs of source code changes i.e. clones. The CVS
deltas corresponding to these clones are considered as the Frequently Applied Changes (FACs). It is
observed these FACs are typically caused by a ‘well-established’ solution at one place being replicated
at other locations (later eliminated by a function) moving code (considered deleted and then added) and
temporary addition of code that was later deleted. These changes are then studied to identify possible
maintenance activities, such as refactoring. They also proposed matching frequently applied changes to
bug reports helping to identify bugs in the code and solutions to these bugs. The technique is evaluated
on the three-year version history of an open-source system, Tomcat. Both high and low threshold values
on the number of matching tokens are experimented to detect FACs.

Basit and Jarzabek [54] introduced the concept of structure clone and proposed a tool called Clone
Miner. Proposed tool first extracts simple clones form the source code (similar code fragments) by using
simple clone detector, as a default front-end tool [56]. Then by using frequent closed item sets mining to
detect recurring groups of simple clones in different method and files. File clone sets and method clone
sets are found by the process of clustering from the lower level structural clones respectively. Using
this mechanism highly similar group of files and methods are found which consist of groups of cloned
entities at successively higher levels of abstraction. Evaluation of proposed technique on several case
studies shows the procedure of detecting structural clones can assist with understanding the design of
the system for better maintenance and reengineering.

3.3. Mining API usage pattern

Another line of related research is how to write APIs code. A software system interacts with third-
party libraries through various APIs. Using these library APIs often needs to follow certain usage pat-
terns. These patterns aid developers in addressing commonly faced programming problems such as what
checks should precede or follow API calls, how to use a given set of APIs for a given task or what API
method sequence should be used to obtain one object from another. Much research has been conducted
to extract API usage rules or patterns from source code by proposing tools and approaches that help
developers to reuse existing frameworks and libraries more easily including [22–25,57,58].

In this direction Michail [58] developed a tool named CodeWeb which described how data mining
can be used to discover library reuse patterns in existing applications. It mines association rules such
as what application classes inheriting from a particular library class often instantiate another class or

468 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

one of its descendants. Based on itemset and association-rule mining CodeWeb uncover entities such as
components, classes and functions that occur frequently together in library usages. Michail explains by
browsing generalized association rules, a developer can discover usage patterns in a way which takes
into account inheritance relationship.

Holmes et al. [20] have developed Strathcona, an Eclipse plug-in, that enables localization of relevant
code in an example repository. Their approach is based on six heuristics that match the structural context
descriptions (parents, invocations and types) encapsulated in the developer code with that encapsulated
in the example code. Each heuristic is used to query the code repository, returning a set of methods and
classes where the result context matches the query’s context. The result is a set of examples (source code
examples) that occur most frequently when applying all heuristics.

Mandelin et al. [23], developed a tool called Prospector for automatically synthesize the list of candi-
date jungloid code based on simple query that described the required code in term of input and output. A
Jungloids is a simple unary expression which helps to determine a possible call chain between a source
type and a target type. A jungloid query is a pair (Tin, Tout) where Tin and Tout are source and target ob-
ject types respectively. The Jungloid graph is created using both API method signatures and a corpus of
sample client programs, and consists of chains of objects connected via method calls. Prospector mines
signature graphs generated from API specifications and jungloid graphs. The retrieval is accomplished
by traversing a set of paths (API method call sequences) from Tin to Tout where each path represents a
code fragment and a set of paths in turn composes all code fragments to form a code snippet. The code
snippets returned by this traversal process are ranked using the length of the paths with the shortest path
ranked first from Tin to Tout.

Sahavechaphan and Claypool [22] developed a context-sensitive code assistant tool XSnippet, an
Eclipse plug-in that allows developers to query for relevant code snippets from a sample code repos-
itory to find code fragments relevant to the programming task at hand. XSnippet extends Prospector
and adds additional queries, ranking heuristics and mining algorithms to query a code snippet from a
sample code repository for code snippets relevant to the object instantiation at hand. XSnippets [22]
transforms source classes into corresponding source code model instances using directed acyclic graph
which captures class structure represented by inheritance hierarchy, fields, method and class behavior.
Code relevance is defined by the context of the code, both in terms of the parents of the class under
development as well as lexically visible types for a given method contained in class. A range of instan-
tiation queries are invoked from java editor including generic query TQG that returns all possible code
snippets for the instantiation of a type, to the specialized type-based TQT and parent based queries TQP,
that return either type-relevant or parent-relevant results. User input the type of query, code context in
which query is invoked and a specific code model instance to graph based XSnippet system. Mining
algorithm BFSMINE, a breath first mining algorithm traverses a code model instance and produces as
output, a set of paths that represent the final code snippets meet the requirement of the specified query.
Paths can be either within the method scope or outside of the method boundaries, ensuring that relevant
code snippets that are spread across methods are discovered. Ranking heuristics are applied to resultant
code to remove duplicate, non compilable and non executable path and rank the code on the basis of con-
text, frequency and length of snippet. The pruned mining paths are passed to the Snippet Formulation
process that transforms each path to corresponding code snippet.

MAPO [25] developed by Xie and Pei, mines frequent usage patterns of API through class inheritance.
It uses API’s usage history to identify methods call in the form of frequent subsequences. The code
search engine receives a query that describes a method, class, or package for an API and then searches
open source repositories for source files that are relevant to the query. The code analyzer analyzes the

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 469

relevant source files returned by the code search engine and produces a set of method call sequences,
each of which is a callee sequence for a method defined in the source files. The sequence preprocessor
inlines some call sequences into others based on caller-callee relationships and removes some irrelevant
call sequences from the set of call sequences according to the given query. The frequent-sequence miner
discovers frequent sequences from the preprocessed sequences. The frequent-sequence postprocessor
reduces the set of frequent sequences in some ways.

PARSEWeb [24] developed by Thummalapenta and Xie uses Google code search for collecting rel-
evant code snippets dynamically and mines the returned code snippets to find solution jungloids. The
proposed technique is based upon the simple query which described the desired code in the form of
“Source Destination” which search for relevant code sample of source and destination object usage and
download to form a local source code repository. PARSEWeb analyzes the local source code repository
and constructs a Directed Acyclic Graph (DAG). By searching the nodes in DAG PARSEWeb identifies
nodes that contain the given Source and Destination object types and extracts a Method-Invocation Se-
quences (MISs) that can transform an object of source type to object of destination type by calculating
the shortest path between nodes. Similar MISs are clustered using a sequence postprocessor to form
solution for given query. The final MISs are sorts using several ranking heuristic and serves as a solution
for the given query. The suggested MIS contains all necessary information for the programmer to write
code for getting the Destination object from the given Source object. Parseweb also suggest the relevant
code sample as well as MISs and uses an additional heuristic called query splitting that helps to address
the problem where code samples for the given query are split among different source files.

3.4. Mining co-changes and bug fix changes patterns

As stated in 1st law of software evolution by Lehman and Belady [59], a system has to undergo
continuous change in order to remain satisfactory for its stakeholders. Source code is one of the important
artifacts that can be accessed from source code repository at any stage (i.e. version) in the history of the
software evolution. Source code version histories contain wealth of information that how source code
evolve during development. Information regarding changes made to fix a problem, accommodating new
changes, adding new feature are recorded. When a programmer is changing a piece of code, they want
to determine which related files or routines are updated to be consistent with these changes. To help
identifying the relevant parts of the code for a given task, there is need of tools and techniques that
statically or dynamically analyzes dependencies between parts of the source (e.g. [60–62]).

Approaches in [26–35], applies data mining techniques on source code control change histories, such
as CVS to identify and predict software change. These studies shows that suggestions based on historical
co-changes are useful to correctly propose the entities which must co-change.

Zimmermann et al. [28,32], developed a tool called Rose which can guide programmers to locate
possible changes by mining historical changes such as source code and related files. The proposed tool
uses the association rules extraction technique to identify co-occurring changes by exposing relationship
between the modifications of software entities. It aim to answer the question, when a particular source
code entity (e.g. a function A) is modified, what other entities are also modified (e.g. the functions with
names B and C)? The proposed tool parses the source code and maps the line numbers to the syntactic
or physical level entities. These entities are represented as a triple (filename, type, id). The subsequent
entity changes in the repository are grouped as a transaction. An association rule mining techniques
is then applied to determine rules of the form B,C ⇒ A. This information prevents errors due to
incomplete changes and finds couplings undetectable by program analysis.

470 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

Ying et al. [26], also proposed a technique that also uses association rule mining on CVS version
archives. It identifies the change patterns from the source code change history of a system and predict
source code change prediction at file level. Each change pattern consists of sets of the names of source
files that have been changed together frequently in the past. To provide a recommendation of files rel-
evant to a particular modification task at hand, the developer needs to provide the name of at least one
file fs to generate a set of recommended files fR. The files to recommend are determined by querying
the patterns to find those that include the identified starting file(s). The usefulness of recommended files
fR is analyzed in term of predictability and interestingness.

Hassan and Holt [29] proposed a method for tracking changes of entities. A variety of heuristics (de-
veloper based, history based, code layout based, file based and process based) are proposed which are
used to predict the entities that are candidates for a change on account of a given entity being changed.
CVS annotations are lexically analyzed to derive the set of changed entities from the source code repos-
itories.

There is the rich literature regarding bug detection and prediction by mining historical data [36,37,63–
68]. These studies mine history data to find pattern in bug fix changes. The tool developed by Williams
and Hollingsworth [36], DynaMine by Livshits and Zimmermann [63] mines simple rules from soft-
ware revision histories. These rules involve mostly method pairs. Williams and Hollingsworth [36,37]
proposed method automatically mine bug-fix information from source code repository to improve bug
finding/fixing tools. The type of bug considered was a function-return-value check. It is a two step ap-
proach. The first step in the process is to identify the types of bugs that are being fixed many times in
source code. The second step is to build a bug detector driven by these findings. The idea is to develop
a function return value checker based on the knowledge that a specific type of bug has been fixed many
times in the past. Briefly, this checker looks for instances where the return value from a function is used
in the source code before being tested. The checker does a data flow analysis on the variable holding the
returned value only to the point of determining if the value is used before being tested. It simply identi-
fies the original variable and determines the next use of that variable. Code checker is used to determine
when a potential bug has been fixed by a source code change. It runs over both versions of the source
code. If for a particular function called in the changed file the number of calls remains the same and the
number of warnings produced by tool decreases, the change is said to fix a bug.

Livshits and Zimmermann [63] use source code versions to mine call usage patterns by using itemset
mining. A tool DYNAMINE is proposed which determine useful usage patterns e.g. call pairs. They
classified the mined patterns into valid patterns, likely error patterns, and unlikely patterns with addi-
tional dynamic analysis. A candidate pattern mined from the version archive considered to be a valid
pattern if it is executed a specified number of times and an unlikely pattern otherwise. Likewise, if a
valid pattern is also violated (i.e., only a proper subset of the calls are executed) a large number of
times, it is considered as an error pattern. Their approach is more specific in finding violation patterns
on method usage pairs. For example, blockSignal() and unblockSingal() should always be paired in the
source code. In addition to the standard ranking methods they also presented a corrective ranking (i.e.
based on past changes that fixed bugs) to order the mined patterns. The approach is validated on Eclipse
and jEdit systems. The results indicate that their approach along with the corrective ranking is effective
in reporting error patterns.

Williams et al. [64] proposed a method that automatically mine function usage patterns and detect
software bugs via static analysis of a single version and evolutionary changes. The patterns specifically
considered are the patterns called after (i.e. a function B is called after function A) and conditionally
called after (i.e. a function B is called after function A, but guarded by a condition). Mining the source

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 471

code repository identifies the instances of such usage patterns. The goal was to find new instances in the
current version. Function calls are identified by using C parser. A function usage pattern is the pair of
function call found within a distance specified by the number of lines of code. When a function returns
a value, using the value without checking it may be a bug.

Kim et al. [69] built BugMem a project-specific bug finding tool which detects potential bugs by
analyzing the history of bug fixes and suggests corresponding fixes. It mines bug fixes from software
repositories to reconstruct pairs of bug and fix patterns. To construct patterns of defects and their fixes it
checks all kind of component in changed region and suggest correct code to repair detected buggy code.

3.5. Mining source code for other purpose

This section provides an overview of mining approaches used to assist with various SE tasks by using
any kind of software engineering data.

An approach is proposed in [70] that exploits association rules extraction techniques to analyze defect
data. Software defects include bugs, specification and design changes. The collected defect data under
analysis are nominal scale variables such as description of defect, priority to fix a defect and its status
as well as interval and ratio scale variable regarding defect correction effort and duration. An extended
association rule mining method is applied to extract useful information and reveal rules associated with
defect correction effort.

Tjortjis et al. [71] employ association rule mining on source code for grouping together similar entities
within a software system. The item set used by them consists of variables, data types and calls to blocks
of code (modules), where modules may be functions, procedures or classes. The transaction set thus
consists of variables, types accessed and calls made by modules. In their algorithm large item sets are first
generated by finding item sets that have a higher support than a user-defined threshold. From this item
set association rules with confidence greater than a user-defined threshold are generated. Finally groups
of modules are created based on the number of common association rules. A variety of techniques are
proposed by applying data mining on source code entities for program comprehension and architecture
recovery to support software maintenance [72–80].

Kanellopoulos et al. [73] Proposed a framework for knowledge acquisition from source code in order
to comprehend an object oriented system and evaluate its maintainability. Clustering techniques are used
to understand the structure of source code and assessing its maintainability. The proposed framework
works by extracting entities and attribute from source code and constructs input model. Another part
of the framework is an extraction process which aim to extract elements and metrics from source code.
Extracted information is stored in a relational database to apply data mining techniques. Clustering
techniques are applied to analyze the input data and provide a rough grasp of the software system for
maintenance engineer. Clustering produces overviews of systems by creating mutually exclusive groups
of classes, member data and methods based on their similarities.

Pinzger and Gall [72] uses code patterns to recover software architecture. In their approach user spec-
ify the code patterns (text and structural information of source code) by describing their association.
Based on specified pattern definition input patterns are matched with source files to reconstruct higher-
level patterns that describe the software architecture.

Mancoridis et al. [80] Proposed an automatic technique that creates a hierarchical view of the system
organization based solely on the components and relationships that exist in the source code. The tech-
nique extracts the Modular Dependency Graph (MDG) from source code in order to identify significant
connection among the system modules and stores in database. A textual representation of MDG is ob-
tained by querying the database. Clustering is performed on MDG that aims to partition the components
of a system into compact and well separated clusters.

472 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

Sartipi et al. [81] uses both association rule mining and clustering to identify structurally related
fragments in the architecture recovery process of legacy system. The source code of a legacy system is
analyzed and a set of frequent itemsets is extracted by using clustering and pattern matching techniques.
The proposed algorithm defined the components of the legacy system and the best matching component
of the system is selected upon user query. Also scores are associated with each possible answer (match)
to the user query and thus a ranking of design alternatives can be presented to the user for further
evaluation.

4. Analysis of surveyed tools and techniques

The approaches surveyed in Section 3 have a number of common characteristics. They all are working
on source code data at some level of software granularity e.g. functions, procedures, classes, variables,
data types, structure and files. All extract pertinent information from source code analyzes this informa-
tion and derive conclusions within the context of particular SE tasks. We have organized the surveyed
approaches in term of four main facets: mining approach, input, results and SE task benefited. Table 1
organized the survey approaches on following four common facets.

– Mining approach entails the algorithm used by proposed technique. Different algorithm used in
source code mining research from data mining domain. For example, Frequent item-set mining [2,
82,83] which find frequent item-set in large database, frequent subsequence mining [4] which find
all the frequent subsequences from sequential database Suffix tree based matching and graph match-
ing algorithms.

– Input criterion shows which elements of source code are used as input by data mining tool such as
functions, classes, variables, data types etc.

– The criterion Results reflects which type of mining information are extracted by each approach e.g.
programming rules, copy paste code, reuse component.

– We also included the specific SE task that each approach addressed. This gives a general context to
researchers who are interested in specific task being benefited from these approaches.

5. Data mining techniques used to mine source code

This section organizes the surveyed approaches in term of data mining technique used. To apply
mining algorithm source code is first transformed into format suitable for particular mining algorithm.
This is done by extracting relevant data from the raw source code data for example, static method call
sequences or call graphs. This data is further processed by cleaning and properly formatting it for the
mining algorithm. For example, the input format for transaction data can be a transaction database where
each transaction contains sets of items. In general, mining algorithms fall into following main categories:

– Frequent pattern mining. Finding frequently occurring patterns.
– Association rules mining. Find association among frequently occurring patterns
– Sequential pattern mining. Finding commonly occurring sequential patterns.
– Pattern matching. Finding data instances for given patterns.
– Clustering. Grouping data into clusters
– Graph mining. Graph mining algorithms includes: frequent sub-graph mining, graph matching,

graph classification, and graph clustering.
– Classification. Predicting labels of data based on the already labeled data.

Table 2 organizes the surveyed approaches in term of data mining techniques they used.

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 473

Table 1
Analysis of surveyed approaches

One sentence description Mining approach input Result SE task Author/Ref.
Mining rules to detect bugs
Checking rules against pro-
gram code and cross check for
contradiction

Statistical analysis Functions Pair-wise pro-
gramming rules

Programming,
defect detection

Engler at el. [7]

Extract implicit programming
rules and detect their viola-
tions

Item-set mining Functions,
variable,
data types

Pair-wise and
complex rules

Programming,
defect detection

Li and Zhou [8]

Infer function precedence pro-
tocols and their violation

Frequent sub-
sequence mining

Functions Function calls
ordering rules

Programming,
defect detection

Ramanathan
et al. [9]

Identify conditional rules and
their violations

Frequent item-set
sub-graph mining

PDG Graph minor as
conditional rules

Programming,
defect detection

Chang et al. [10]

Extract variable correlations
rules

Frequent item-set
mining

Functions,
variables

Variable pairing
rules

Programming,
defect detection

Lu et al. [11]

Itemset vs. sequential pattern
mining to the number of pat-
terns, and violations

Frequent pattern,
association rule

Function
definition.

Call usage
patterns

Programming,
defect detection

Kagdi et al. [44]

Mining code clones patterns
Suffix trees for tokens per line Suffix tree based

matching
Sequence
of lines

Line by line
clones

Maintenance Baker [12]

Token normalizations, then
suffix-tree based search

Token comparison,
tree matching

Sequence
of tokens

Clone pairs Maintenance Kamiya
et al. [13]

Data mining for frequent token
sequences

Frequent
subsequence and
tokenization

Statement
sequence

Copy-paste
code fragment

Programming,
defect detection

Li et al. [53]

Searching clones in general
tree structures

Frequent item set
mining

XML of ASTs Clone pairs Maintenance,
refactoring

Wahler
et al. [15]

Searching similar sub graphs
in PDGs

Spatial search,
graph matching
algorithm

PDG Matching
sub-graph

Maintenance
defect detection

Qu et al. [17]

Mining for frequently applied
changes in a version control
system

Parameterized
token matching

Source code
changes from
CVS deltas

Similar pairs
of source code
changes

Development,
maintenance

Rysselberghe
and
Demeyer [55]

Structural clone detection at
different level of abstraction

Frequent item-set,
clustering

Source code
files

Structure clone Maintenance,
refactoring

Basit and
Jarzabek [54]

Mining API Usage patterns
Application classes inheriting
from a particular library class
often instantiate another class
or one of its descendants.

Item-set and
association-rule
mining

Components,
classes, and
functions

Library reuse
pattern

Code reuse A. Michail [58]

Locates a set of relevant code
examples from an example
repository.

Heuristic matching Structural
context of
code

List of relevant
code example un-
der development

Code reuse,
programming

Holmes and
Murphy [20]

Synthesize API code from
source method to destination

Signature graph
matching

API method
signature/class
type

Synthesize API
code

Code reuse,
programming

Mandelin
et al. [23]

Mining sample code
repository for relevant code

Graph mining Inheritance hi-
erarchy, fields
and methods

API code snippets Code reuse Sahavechaphan
et al. [22]

Mines segments returned by a
code search engine

Frequent sequence
mining

Method, class
or package

Sequencing
information among
method calls

Code reuse Xie and Pei [25]

474 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

Table 1, continued

One sentence description Mining approach input Result SE task Author/Ref.
Mining API Usage patterns
Search web dynamically for
related code and mine the re-
turn code to build MISs

Clustering Objects MIS and relevant
code sample

Code reuse,
programming

Thummalapenta
and Xie [24]

Mining co – change and bug fixes change pattern
Searches for a commonly fixed
bug

Static analysis,
text retrieval

Function
return value

Functions involved
in a potential bugs

Programming,
bug detection

Williams and
Hollingsworth
[36,37]

Call usage patterns and their
violation

Itemset mining Methods Call usage patterns Programming,
bug detection

Livshits and
Zimmermann [63]

Detect function usage patterns
and detect software as
violation of usage patterns

Static analysis Function calls Function usage
pattern

Programming,
bug detection

Williams
et al. [64]

Mines version archives to
make changes recommenda-
tions for programmers.

Frequent pattern
mining and
association rules

Files,
function,
variables

Prediction of fail-
ures, Correlations
between entities

Development,
maintenance

Zimmermann
et al. [28,32]

Extracts source files that tend
to change together

Frequent pattern
and correlation
set mining

Files Prediction of the
set of co- changed
files

Development
maintenance

Ying et al. [26]

Propose several heuristics to
identify how change propagate

Mining via
heuristic

Function,
variable, or
data type

Predicting candi-
date entities for
change

Development
maintenance

Hassan and
Holt [29]

Detecting project specific bugs
by analyzing the history of bug
fixes

Static analysis Project change
history

Warning message
and suggest
changes

Bug detection,
development

Kim et al. [69]

Mining code for other purpose
Defect analysis to reveals rules
associated with defect correc-
tion efforts

Frequent pattern
and association
rules

Defect data Defect correction
effort rules

Defect
correction

Morisaki [70]

Grouping together similar en-
tities within a software system.

association rules Functions,
procedures,
classes

Groups of similar
modules

Maintenance Tjortjis
et al. [71]

Program comprehension by
recovering structure of source
code

Clustering Classes,
method and
attributes

Groups of similar
classes, methods,
data

Maintenance Kanellopoulos
et al. [73]

Recovering software archi-
tecture by extracting
code patterns

String matching Variables,
functions and
structures

Higher-level views
of the software
system

Architecture
recovery

Pinzger and
Gall [72]

Partition the software system Clustering MDGs Modular structure Development,
maintenance

Mancoridis
et al. [80]

Identify structurally related
fragments in the architecture
recovery process

Frequent pattern,
association rules

Legacy system Design alternatives Architecture
recovery

Sartipi et al. [81]

6. Comparison of source code mining tools

An overall analysis of the tools and techniques with respect to several general characteristics is shown
in Table 1. This section compares those approaches which developed a supporting tool as a plug-in for the
programming environment. Source code is provided as input to tool and it applies data mining technique
to detect frequently co-occurring patterns. Such a tool can predict and suggest probable changes to the
source code.

Tool Availability indicates whether there is documented IDE support for the method/tool. Only a few

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 475

Table 2
Organization of surveyed approaches by data mining techniques

Mining technique Approaches
Itemset mining Li and Zhou [8], Chang et al. [10], Lu et al. [11], Li et al. [53], Wahler et al. [15], Zimmermann

et al. [28,32], Kagdi et al. [44], Ying et al. [26], Livshits and Zimmermann [63], Basit and
Jarzabek [54], Sartipi et al. [81], Morisaki [70], Kagdi et al. [44], Basit and Jarzabek [54],
Michail [58]

Association rules Michail [58], Zimmermann et al. [28,32], Sartipi et al. [81], Tjortjis et al. [71], Morisaki [70],
Song et al. [66], Kagdi et al. [44]

Sequential pattern mining Kagdi et al. [44], Xie and Pei [25], Li et al. [53]
Clustering Basit and Jarzabek [54], Kanellopoulos et al. [73], Mancoridis et al. [80], Basit and Jarzabek [54],

Thummalapenta and Xie [24]
Graph mining Chang et al. [10], Sahavechaphan et al. [22], Mandelin et al. [23], Qu et al. [17]
Pattern matching Pinzger and Gall [72], Baker [12], Mandelin et al. [23], Kamiya et al. [13], Rysselberghe and

Demeyer [55]
Static analysis Williams and Hollingsworth [36,37], Engler at el. [7]
Mining via heuristic Holmes and Murphy [20], Hassan and Holt [29]

Note: The data in Tables 1–3 is based on material published in papers.

methods provide direct IDE support. Most of the tools are not freely available hence hampers the quan-
titative analysis of tools.

The External Dependencies indicates whether the tool requires other language, environment or tools to
work, for example PR-Miner [8] and MUVI require parser to convert source code into item-set database.
CCFinder requires language-dependent transformation rules and likewise other tools also have some
external dependency.

Language support indicates the languages supported by tools. We can observe that there are very few
tools that are aimed at OO-languages (e.g., C++).

Algorithm/technique, Identifies the different algorithms used in source code mining research from
other domains. For example, the suffix-tree algorithm computes all of the same subsequences in a se-
quence composed of a fixed alphabet (e.g. characters, tokens and hash values of lines) in linear time and
space. It can only handle exact sequences. On the other hand data mining algorithms are well suited to
handle arbitrary gaps in the subsequences. Apart from data mining techniques other analysis techniques
are also observed such as Engler et al. work uses two techniques Internal Consistency which finds errors
where programmers have violated beliefs that must hold and Statistical Analysis extracts beliefs from a
much noisier sample where the extracted beliefs can be either valid or coincidental.

The Empirical Validation criterion shows the kind of validation that has been reported for each tool
and Availability of Empirical Results indicates whether the results of the validations are available. The
last criterion, Evaluation, indicates the common systems that have been used as experiment to run the
tool. Table 3 compares the surveyed approach in term of tool developed.

7. Critique on source code mining approaches

Table 1 shows most of approaches used frequent pattern mining techniques to identify patterns from
source code. By making comparison between these techniques we can identify strength and limitations
of these techniques.

476 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

Table 3
Comparison of surveyed approach in term of tool developed

Tool Avail. Ext. Lang. Algorithm Empirical Result Evaluation
Depend. validation availability

Y N Y N O
O

P A
pr

io
ri

FP
C

lo
se

C
lo

Sp
an

FP
-g

ro
w

th
C

lu
st

er
in

g
Pa

tte
rn

m
at

ch
in

g
G

ra
ph

m
in

in
g

St
at

ic
al

ly
an

al
ys

is
M

od
er

at
e

Pa
rt

ia
l

V
al

id
at

e
w

el
l

Fu
ll

Pa
rt

ia
l

N
ot

co
nc

lu
si

ve

Pr
el

im
in

ar
y

C
as

a
st

ud
y

In
du

st
ri

al
O

th
er

Engler at el. [7] Checker ◦ ◦ ◦ ◦ ◦ ◦ ◦

Li and Zhou [8] PR – miner ◦ ◦ ◦ ◦ ◦ ◦ ◦

Ramanathan et al. [9] Chronicler ◦ ◦ ◦ ◦ ◦ ◦ ◦

Lu et al. [11] MUVI ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Baker [12] Dup ◦ ◦ ◦ ◦ ◦ ◦ ◦

Kamiya et al. [13] CCFinder ◦ ◦ ◦ ◦ ◦ ◦ ◦

Li et al. [53] CP Miner ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Wahler et al. [15] CloneDetection ◦ ◦ ◦ ◦ ◦ ◦ ◦

Basit and
Jarzabek [54]

Clone Miner ◦ ◦ ◦ ◦ ◦ ◦ ◦

Michail [58] CodeWeb ◦ ◦ ◦ ◦ ◦ ◦ ◦

Holmes and
Murphy [20]

Strathcona ◦ ◦ ◦ ◦ ◦ ◦ ◦

Mandelin et al. [23] Prospector ◦ ◦ ◦ ◦ ◦ ◦ ◦

Sahavechaphan
et al. [22]

XSnippet ◦ ◦ ◦ ◦ ◦ ◦

Xie and Pei [25] MAPO ◦ ◦ ◦ ◦ ◦ ◦ ◦

Thummalapenta
and Xie [24]

ParseWeb ◦ ◦ ◦ ◦ ◦ ◦ ◦

Williams at al. [36] Static checker ◦ ◦ ◦ ◦ ◦ ◦ ◦

Livshits and
Zimmermann [63]

DYNAMINE ◦ ◦ ◦ ◦ ◦ ◦ ◦

Kim et al. [69] BugMem ◦ ◦ ◦ ◦ ◦ ◦ ◦

Note: Avail = Availability, Ext. Depend. = External dependency, Lang. = Language support, OO = Object Oriented, P =
Procedural and Y = Yes, N = No.

7.1. Mining rules to detect bugs

Engler et al. [7] approach relies on developers to supply rule templates such as function A must be
paired with function B and corresponding checkers. Since such template-based methods only cover the
given or explicit rules known in advance, it may miss many violations due to the existence of implicit
rules. Moreover, It only performs one type of pattern analysis such as: “function A should be paired with
function B” and does not consider other semantic dependencies.

PR-Miner [8] find implicit programming rules and rule violations that is based on frequent item-set
mining and does not require specification of rule templates. It can detect simple function pair-wise rules,
complex rules as well as variable correlation rules. However, PR-Miner does not consider relevant con-
straints between rule elements and so apparently will identify a set of elements that frequently appear
together in functions as a possible rule without other evidence that the elements are semantically related.
It computes the association in entire program elements by just counting the together occurrences of any
two elements and not considering data flow or control flow which leads to increase number of false neg-
ative of violations in control path. Also numbers of false positives are increased as no inter-procedural
analysis is used. Both Engler et al. work and PR-Miner discover patterns involving pairs of methods

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 477

calls and functions, variables, data types that frequently appear in same methods and do not contain
control structures or conditions among them, also the order of method calls is not considered. However,
compared with Engler et al. work that extracts only function-pair based rules, PR-Miner extracts sub-
stantially more rules by extracting rules about variable correlations. Moreover, PR-Miner requires full
parser to replace to work with other programming languages.

These limitations are addressed by inter-procedural path-sensitive static analysis tool CHRONI-
CLER [9] which is fundamentally different from PR-Miner as it ensures path-sensitivity hence generate
less number of false negative as compared to PR miner. Since CHRONICLER computes association of
specific function rather than entire program hence reduces the number of protocol generated by elimi-
nating false positive as reported by PR- Miner. It differ from Engler et al. [7] approach as it computes
the precedence relationship based on program’s control flow structure whereas, Engler et al. work de-
tects relations between pairs of functions by exploiting all possible paths. However, CHRONICLER
does not take data flow or data dependency into account. A new approach to discovering implicit con-
ditional rules [10] addresses this limitation by transforming program units into program dependency
graph which captures data and control flow dependencies as well as other essential constraint among
program elements. The approach requires the user to indicate minimal constraints on the context of the
rules to be sought, rather than specific rule templates. However, frequent sub-graph mining algorithm
does not handle directed graphs, multi-graphs (multiple edge between given pair of node) and require
the modification of graphs. Modifications such as ignoring edge directions or replacing a call site graph
with a single node may cause information loss so that precision is sacrificed in rule discovery. Moreover
the approach considered only a small set of nodes in PDGs, and the patterns are only control points in a
program.

All of the approaches mentioned above focused on procedures and component interfaces instead of
variable correlations where as MUVI [11] mines variable correlations and generate variable-pairing
rules. Engler et al. [7] also detect variable inconsistency through logical reasoning for example, some
statement indicates that a pointer might be NULL but a subsequent statement assumes that pointer must
not be NULL so a conflict arise where as MUVI [11] detect inconsistencies using pattern analysis on
multi-variable access correlations.

7.2. Mining code clones patterns

Dup [12] uses an order-sensitive indexing scheme to normalize for detection of consistently renamed
syntactically identical clones whereas, CCFinder [13] applies additional transformations of source code
that actually change the structure of the code so that minor variations of the same syntactic form treated
as similar. However, token-by-token matching is more expensive than line-by-line matching in terms
of computational complexity since a single line is usually composed of several tokens. Token based
methods have intrinsic limitation for pattern mining of cloned codes due to using only spatial space
analysis such as reordered or inserted statements can break a token sequence which may otherwise
be regarded as a duplicate to another sequence. CloneDetection search clones in general tree structure
and works on abstract level as compared to others. Dup, CCFinder and CloneDetection identify clone
code that can be helpful in software amenability to identify section of code that should be replaced by
procedure but do not detect copy paste related bugs. On the other hand CP miner [53] applies data mining
technique to identify similar sequence of tokenized statements rather than token comparison and detect
copy paste related bugs. Compared to CCFinder, CP-Miner is able to find 17.52% more copy-pasted
segments because CP-Miner can tolerate statement insertions and modifications. whereas, Graph based

478 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

analysis [17] can capture more complicated changes such as statement reordering, insertion and control
replacement, compared with the common token-based approaches by capturing software’s inherit logic
relationship through PDG. However, graph-based techniques are limited in scalability. All the mentioned
clone detection techniques detects simple clones i.e. fragment of duplicated code and not looking at the
big picture where these fragments of duplicated code are possibly part of a bigger replicated program
structure. In contrast Clone Miner [54] performs further analysis on simple clones that co-exists and
relates to each other in certain way.

Simple clone detectors usually detect clones larger than a certain threshold (e.g., clones longer than 5
LOC). Higher thresholds risk false negatives, while lower thresholds detect too many false positives. In
comparison, Clone Miner can afford to have a lower threshold for simple clones, than a stand-alone sim-
ple clone detector, without returning too many false positives. This is because it can use the grouping as
a secondary filter criterion to filter out small clones that do not contribute to structural clones. However,
like other approaches it also detects clone based on physical location of clones and not detect semantic
associations among clones.

7.3. Mining API usage patterns

CodeWeb demonstrate how the library classes have been reused in existing applications. To get this
information, a developer must populate CodeWeb with applications that are similar to the one which they
are developing. To use CodeWeb developer must find similar applications of interest in advance. It also
uses the structural attributes to compare complete projects against one another instead of enabling the
use of fragments of projects. The need to find applications in advance suggests that a developer would
be more likely to engage in the use of CodeWeb at the beginning of the development process as it is
based on browsing rather than querying.

Given an API sample, Strathcona, Prospector, XSnippet, MAPO and Parseweb provide example code
of that API. Strathcona suggest similar code examples stored in an example repository by matching
the context of the code under development with the samples stored in the example repository. Strathcona
generates relevant solutions when the exact API is included in the search context but mostly programmer
has no knowledge of which API has to be used for solving the query. It is based on heuristics which are
generic and generate many irrelevant examples.

Prospector tries to solve the queries related to a specific set of frameworks or libraries by using API
signatures. As API signatures are used for addressing the query, Prospector returns many irrelevant
examples. Strathcona, for example, does not specialize the heuristics it employs based on the developer’s
context and its results straddle the extremities – in some cases providing too many irrelevant results while
in others over-constraining the context to provide too few or no results. Prospector, while performing
better than Strathcona in general has its own limitations. First, its over-reliance on API information can
result in too many irrelevant results. For example, two unrelated paths can be connected by generic
classes such as Object and ArrayList discounting the diversity in their semantics. Second, the context
description is limited to only visible input types of fields declared in the boundary of method and class
while context information such as the “parent” is ignored thereby missing a set of potentially qualified
hits. Prospector can generate compilable code for its suggested solutions.

XSnippet simply returns the set of all code samples contained in the sample repository that instantiate
the given destination object type, irrespective of the source object type. Moreover, XSnippet is also
limited to the queries of a specific set of frameworks or libraries. Strathcona and XSnippet use the code
relevance to define the code context which best fit the required code. However Strathcona only use the

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 479

lexically visible types to define the code relevance where as XSnippet uses parents of the class under
development as well as lexically visible types for a given method contained in class to define code
relevance. The major problem with both of approaches is the availability of limited code samples stored
in the repository.

MAPO defines a query that describes a method, class, or package for an API, the tool can gather
relevant code samples from open source repositories and conduct data mining. It can extract common
patterns among the list of relevant code examples returned by a code search engine. It does not synthe-
sized code that can be directly inserted into developers’ code. For using MAPO Programmers need to
know the API to be used to identify usage patterns of that API.

PARSEWeb like MAPO takes queries of the form “source object type to destination object type” as an
input and suggests what API method sequence should be used to obtain one object from another potential
solution. PARSEWeb search web dynamically for relevant solution and not limited to the queries of any
specific set of frameworks or libraries like Prospector and XSnippet. Parseweb uses code sample for
solving given query hence identifying more relevant code sample. Prospector which solves the queries
through API signatures and has no knowledge of which MISs is often used compared to other MISs that
can also serve as a solution for the given query. PARSEWeb performs better in this scenario because it
tries to suggest solutions from reusable code samples and is able to identify MISs that are often used
for solving a given query. However, PARSEWeb suggests only the frequent MISs and code samples,
but cannot directly generate compilable code. Neither PARSEWeb nor Prospector considers the code
context.

7.4. Mining co-changes and bug fix changes patterns

Zimmermann et al. [28] and Ying et al. [26] both uses association rule mining on CVS data to mine co-
change patterns i.e. is potentially relevant piece of code to a given fragment of source code. However, in
Zimmermann et al., approach resultant rules must satisfy some support and confidence. In this way it can
give misleading association rules in cases where some files have changed significantly more often than
others. Whereas, Ying et al. only uses the support value and additional correlation rule mining, which
takes into account how often both files are changing together as well as separately. Both approaches pro-
duce similar quantitative results. The qualitative analyses differ. Zimmermann et al. present some change
associations that were generated from their approach and argue that these associations are of interest. In
contrast, Ying et al. especially evaluated the usefulness of the results by analyzing the recommendations
provided in the context of completed modification tasks. Moreover, Zimmermann et al., approach sug-
gests the fine grained entities (method and classes) that changed together provide better results because
smaller units of source code suggest a similar intention behind the separated code. In contrast Ying et
al. approach change patterns describes files that change together repeatedly. In comparison Hassan and
Holt [29] proposed tracking changes of more fine grained entities, namely, function, variable, or data
type, to determine how changes propagate from one entity to another.

The work by Williams and Hollingsworth [36,37,64] and Dynamine [63] combined revision history
mining and program analysis to discover common error patterns. Williams and Hollingsworth [36,37]
claims if function return value without first checking its validity is used it may lead to a latent bug. In
practice, this approach leads to many false positives, as typical code has many locations where return
values are used without checks. Moreover, they focus on prioritizing or improving only existing error
patterns. Instead Dynamine [63] concentrate on discovering new patterns and dynamic analysis of de-
tected patterns leads to less number of false positive. Additionally, Williams and Hollingsworth [64] also

480 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

mines version histories for detecting bugs in method usage pair by focusing only on pair of function used
together and their violation, in contrast Dynamine uses usage patterns of functions to detect violation.

All the previous bug detection techniques searches for predefined common bug patterns such call usage
or method pair. In contrast BugMem [69] learned from previous bug fix change in specific project so the
bug patterns are project specific, and project-specific bugs can be detected. However, it only considered
bug fixing patterns and does not consider the changes which may introduce new bugs.

8. Discussion and future trends

A wide range of research has been done in the area of checking and enforcing specific coding rules,
the violation of which leads to well-known types of bugs. Since data mining algorithms are traditionally
meant for large dataset stored in database or warehouse and not directly applicable on source code. A
great deal of time and effort has been spent by researcher to find worthwhile rules due to the complexity
of data extraction and preprocessing methods. Most of bug detection techniques are application specific.
As a result lesser known types of bugs and applications remain virtually unexplored in error detection
research. A better approach is needed if we want to test new or unfamiliar applications with error de-
tection tools. Furthermore, the rule mining approaches detects general programming rules from source
code. The performance could be improved if domain specific information is combined and some knowl-
edge about specific rules is provided to rule mining technique to extract only of them from source code.
It could notably increase the accuracy and efficiency. Moreover, bug finding techniques solely relies
on source code data or historical changes. In this way bug reported by the tester become isolated from
development team. Based on our observation a system of bug finding techniques which correlates bug
reports and the corresponding source code changes might be helpful.

There is lot of studies related to find bug fixes from history data. All are focus on one aspect of
change e.g. bug fixes change [69]. All types of change pattern could provide useful information to the
developers when they are changing their code. The developers need to use multiple techniques on one
project to find impact of change. However finding all existing program file change patterns like bug
fixing, bug introducing and bug fix introducing might be helpful. We concludes there is a strong need of
light weight approach to use prior bug finding techniques together to maximize bug detection capability.

Also a variety of architecture recovery techniques are available. A common idea is to integrate several
tools in architecture workbenches. In this way a variety of techniques will available in one umbrella to
examine a system and extract static and dynamic views to reconstruct a system.

We have analyzed the major applications of clone detection. It signals weak points in the program and
encourages the restructuring and refactoring. A fully automatic replacement of clones by higher order
structures is certainly not the best choice. But in this aspect integration with an interactive program
development environment would be very helpful.

9. Conclusion

In this paper we have provided concise but comprehensive survey of state of art source code mining
tools and techniques. So far this is first survey which includes combination of different techniques.
Comparison of techniques and tools shows, there is a no single technique which is superior to all other
in every aspects because all techniques have strength and weaknesses and intended for different task and
context. The comparison also helps how to employ a set of different tools to achieve better results.

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 481

The results of this survey show all the previous studies mines a specific pattern types to accomplish a
certain SE task. Thus, programmers need to employ multiple methods to mine different kind of useful
information which increase computational cost and time. However, SE tasks increasingly demand the
mining of multiple correlated patterns together to achieve the most effective result. Based on our ob-
servation a hybrid light weight tool is required. The tool should extract multiple patterns from source
code and applies data mining techniques at different layers to assists in multiple software engineering
tasks over different phases of development life cycle e.g. assisting programming in writing code, bug
detection and software maintenance. In this direction we are working on development of light weight
tool to extracts a variety of patterns from source code as presented in [84]. The work is in its initial stage
and in future further research would enrich in context of pattern findings and their violation.

References

[1] J. Shafer, R. Agrawal and M. Mehta, SPRINT: A scalable parallel classifier for data mining, in: Proceedings of the
Twenty-second International Conference on Very Large Databases (1996), 544–555.

[2] R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, in: Proceedings of the 20th
International Conference on Very Large Data Bases Morgan Kaufmann Publishers Inc (1994), 487–499.

[3] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in: Proc 20th Int Conf Very Large Data Bases,
VLDB (1994), 487–499.

[4] R. Agrawal and R. Srikant, Mining sequential patterns, in: Eleventh International Conference on Data Engineering
(1995), 3.

[5] A.E. Hassan, The road ahead for mining software repositories, in: Proceedings of the Frontiers of Software Maintenance
(FoSM’ 08) (2008), 48–57.

[6] A. Hassan and T. Xie, Mining software engineering data, in: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering 2 (2010), 503–504.

[7] D. Engler, D. Chen, S. Hallem et al., Bugs as deviant behavior: A general approach to inferring errors in systems code,
ACM SIGOPS Operating Systems Review 35(5) (2001), 57–72.

[8] Z. Li and Y. Zhou, PR-Miner: Automatically extracting implicit programming rules and detecting violations in large
software code, in: Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th ACM
Sigsoft International Symposium on Foundations of Software Engineering (2005), 306–315.

[9] M. Ramanathan, A. Grama and S. Jagannathan, Path-sensitive inference of function precedence protocols, in: 29th In-
ternational Conference on Software Engineering (ICSE 2007) (2007), 240–250.

[10] R. Chang, A. Podgurski and J. Yang, Finding what’s not there: A new approach to revealing neglected conditions in
software, in: Proceedings of the 2007, International Symposium on Software Testing and Analysis (2007), 163–173.

[11] S. Lu, S. Park, C. Hu et al., MUVI: Automatically inferring multi-variable access correlations and detecting related
semantic and concurrency bugs, ACM SIGOPS Operating Systems Review 41(6) (2007), 103–116.

[12] B. Baker, On finding duplication and near-duplication in large software systems, in: Second IEEE Working Conf on
Reverse Eng (wcre) (1995), 86–95.

[13] T. Kamiya, S. Kusumoto and K. Inoue, CCFinder: A multilinguistic token-based code clone detection system for large
scale source code, IEEE Transactions on Software Engineering (2002), 654–670.

[14] I. Baxter, A. Yahin, L. Moura et al., Anna and L. Bier, Clone detection using abstract syntax trees, Proc Int l Conf,
Software Maintenance (1998), 368–377.

[15] V. Wahler, D. Seipel, J. Wolff et al., Clone detection in source code by frequent itemset techniques, in: Fourth IEEE
International Workshop on Source Code Analysis and Manipulation (2004), 128–135.

[16] J. Krinke, Identifying similar code with program dependence graphs, in: Proceedings of the 8th Working Conference on
Reverse Engineering, WCRE 2001 (2001), 301–309.

[17] W. Qu, Y. Jia and M. Jiang, Pattern mining of cloned codes in software systems, Information Sciences (2010).
[18] V.R. Basili, L.C. Briand and W.L. Melo, How reuse influences productivity in object-oriented systems, Communications

of the ACM 39(10) (1996), 116.
[19] G.T. Heineman and W.T. Councill, Component-Based Software Engineering: Putting the Pieces Together: Addison-

wesley USA, 2001.
[20] R. Holmes and G.C. Murphy, Using structural context to recommend source code examples, in: Proceedings of the 27th

International Conference on Software Engineering (2005), 117–125.
[21] G.T. Leavens and M. Sitaraman, Foundations of Component-based Systems, Cambridge Univ Press, 2000.

482 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

[22] N. Sahavechaphan and K. Claypool, XSnippet: Mining for sample code, ACM SIGPLAN Notices 41(10) (2006), 413–
430.

[23] D. Mandelin, L. Xu, R. Bodí et al., Jungloid mining: helping to navigate the API jungle, ACM SIGPLAN Notices 40(6)
(2005), 48–61.

[24] S. Thummalapenta and T. Xie, Parseweb: A programmer assistant for reusing open source code on the web, in: Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering (2007), 204–213.

[25] T. Xie and J. Pei, MAPO: Mining API usages from open source repositories, in: Proceedings of the International Work-
shop on Mining Software Repositories (2006), 54–57.

[26] A.T.T. Ying, G.C. Murphy, R. Ng et al., Predicting source code changes by mining change history, IEEE Transactions
on Software Engineering 30(9) (2004), 574–586.

[27] J.S. Shirabad, T.C. Lethbridge and S. Matwin, Supporting maintenance of legacy software with data mining techniques,
in: Proc Conf the Centre for Advanced Studies on Collaborative Research (2000), 11.

[28] T. Zimmermann, P. Weisgerber, S. Diehl et al., Mining version histories to guide software changes, IEEE Transactions
on Software Engineering 31(6) (June 2005), 429–445.

[29] A.E. Hassan and R.C. Holt, Predicting change propagation in software systems, in: Proceedings of the 20th IEEE Inter-
national Conference OnSoftware Maintenance (2004), 284–293.

[30] M. Fischer, M. Pinzger and H. Gall, Analyzing and relating bug report data for feature tracking, in: Proc Working Conf
Reverse Eng (2003), 90–99.

[31] A. Mockus and D.M. Weiss, Globalization by chunking: A quantitative approach, Software, IEEE 18(2) (2001), 30–37.
[32] T. Zimmermann, P. Weisgerber, S. Diehl et al., Mining version histories to guide software changes, in: Proceedings of

the 26th International Conference on Software Engineering (ICSE’04) (2004), 563–572.
[33] H. Gall, K. Hajek and M. Jazayeri, Detection of logical coupling based on product release history, in: Proceedings of

International Conference on Software Maintenance (1998), 190–198.
[34] H. Gall, M. Jazayeri and J. Krajewski, CVS release history data for detecting logical couplings, in: Proceedings on Sixth

International Workshop on Principles of Software Evolution (2003), 13–23.
[35] J.M. Bieman, A.A. Andrews and H.J. Yang, Understanding change-proneness in OO software through visualization, in:

Proceedings of the 11th Internationa Workshop on Program Comprehension (2003), 44–53.
[36] C.C. Williams and J.K. Hollingsworth, Automatic mining of source code repositories to improve bug finding techniques,

IEEE Transactions on Software Engineering (2005), 466–480.
[37] C.C. Williams and J.K. Hollingsworth, Bug driven bug finders, in: Int’l Workshop Mining Software Repositories (MSR

’04) (May 2004), 70–74.
[38] S. Khatoon, A. Mahmood and G. Li, An evaluation of source code mining techniques, in: Eighth International Confer-

ence on Fuzzy Systems and Knowledge Discovery (FSKD) (2011), 1929–1933.
[39] H. Kagdi, M.L. Collard and J.I. Maletic, A survey and taxonomy of approaches for mining software repositories in the

context of software evolution, Journal of Software Maintenance and Evolution: Research and Practice 19(2) (2007),
77–131.

[40] M. Halkidi, D. Spinellis, G. Tsatsaronis et al., Data mining in software engineering, Intelligent Data Analysis 15(3)
413–441.

[41] T. Ball and S.K. Rajamani, The S LAM project: Debugging system software via static analysis, ACM SIGPLAN Notices
37(1) (2002), 1–3.

[42] D.L. Heine and M.S. Lam, A practical flow-sensitive and context-sensitive C and C++ memory leak detector, in: Pro-
ceedings of the Conference on Programming Language Design and Implementation (PLDI ’03) (June 2003), 168–181.

[43] D. Burdick, M. Calimlim, J. Flannick et al., Mafia: A performance study of mining maximal frequent itemsets, in:
Workshop on Frequent Itemset Mining Implementations (FIMI’ 03) (2003).

[44] H. Kagdi, M. Collard and J. Maletic, Comparing approaches to mining source code for call-usage patterns, in: Inter-
national Conference on Software Engineering: Proceedings of the Fourth International Workshop on Mining Software
Repositories (2007),.

[45] J. Mayrand, C. Leblanc and E.M. Merlo, Experiment on the automatic detection of function clones in a software system
using metrics, in: Proceedings of International Conference on Software Maintenance (1996), 244–253.

[46] S. Ducasse, M. Rieger and S. Demeyer, A language independent approach for detecting duplicated code, in: Proceedings
of the International Conference on Software Maintenance (ICSM) (1999), 109.

[47] C. Roy, J. Cordy and R. Koschke, Comparison and evaluation of code clone detection techniques and tools: A qualitative
approach, Science of Computer Programming 74(7) (2009), 470–495.

[48] B.S. Baker, A program for identifying duplicated code, Computing Science and Statistics (1993), 49–49.
[49] M. Balazinska, E. Merlo, M. Dagenais et al., Advanced clone-analysis to support object-oriented system refactoring, in:

Seventh Working Conference on Reverse Engineering (2000), 98.
[50] I.D. Baxter, A. Yahin, L. Moura et al., Clone detection using abstract syntax trees, in: ICSM (1998), 368.
[51] J.H. Johnson, Identifying redundancy in source code using fingerprints, in: Proceedings of Centre for Advanced Studies

S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques 483

on Collaborative Research: Software Engineering (1993), 171–183.
[52] R. Komondoor and S. Horwitz, Using slicing to identify duplication in source code, Static Analysis (2001), 40–56 .
[53] Z. Li, S. Lu, S. Myagmar et al., CP-Miner: A tool for finding copy-paste and related bugs in operating system code, in:

Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Implementation (2004), 20.
[54] H.A. Basit and S. Jarzabek, A data mining approach for detecting higher-level clones in software, IEEE Transactions on

Software Engineering (2009), 497–514.
[55] F. Van Rysselberghe and S. Demeyer, Mining version control systems for FACs (frequently applied changes), in: Int’l

Workshop on Mining Software Repositories (MSR ’04) (May 2004), 48–52.
[56] H.A. Basit, S.J. Puglisi, W.F. Smyth et al., Efficient token based clone detection with flexible tokenization, in: The 6th

Joint Meeting on European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (2007), 513–516.

[57] M. Acharya, T. Xie, J. Pei et al., Mining API patterns as partial orders from source code: From usage scenarios to
specifications, in: Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM
Sigsoft Symposium on the Foundations of Software Engineering (2007), 25–34.

[58] A. Michail, Data mining library reuse patterns using generalized association rules, in: Proceedings of 22nd International
Conference on Software Engineering (ICSE’00), Limerick, Ireland (2000), 167–176.

[59] M.M. Lehman and L.A. Belady, Program Evolution: Processes of Software Change, Academic Press Professional, Inc,
1985.

[60] H. Agrawal and J.R. Horgan, Dynamic program slicing, ACM SIGPLAN Notices 25(6) (1990), 246–256.
[61] D.W. Binkley and K.B. Gallagher, Program slicing, Advances in Computers 43 (1996), 1–50 .
[62] M. Weiser, Program slicing, in: Proceedings of the 5th International Conference on Software Engineering (1981), 439–

449.
[63] B. Livshits and T. Zimmermann, DynaMine: Finding common error patterns by mining software revision histories, ACM

SIGSOFT Software Engineering Notes 30(5) (2005), 296–305.
[64] C.C. Williams and J.K. Hollingsworth, Recovering system specific rules from software repositories, in: International

Workshop on Mining Software Repositories (MSR’05), St. Louis (2005), 1–5.
[65] K. Pan, S. Kim and E.J. Whitehead, Toward an understanding of bug fix patterns, Empirical Software Engineering 14(3)

(2009), 286–315.
[66] Q. Song, M. Shepperd, M. Cartwright et al., Software defect association mining and defect correction effort prediction,

IEEE Transactions on Software Engineering (2006), 69–82 .
[67] R.Y. Chang, A. Podgurski and J. Yang, Discovering neglected conditions in software by mining dependence graphs,

IEEE Transactions on Software Engineering (2008), 579–596 .
[68] B. Turhan, G. Kocak and A. Bener, Data mining source code for locating software bugs: A case study in telecommuni-

cation industry, Expert Systems with Applications 36(6) (2009), 9986–9990.
[69] S. Kim, K. Pan and E. Whitehead Jr, Memories of bug fixes, in: Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (2006), 35–45.
[70] S. Morisaki, A. Monden, T. Matsumura et al., Defect data analysis based on extended association rule mining, in: Pro-

ceedings of the Fourth International Workshop on Mining Software Repositories (2007), 3.
[71] C. Tjortjis, L. Sinos and P. Layzell, Facilitating program comprehension by mining association rules from source code,

in: Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03) (2003), 125–132.
[72] M. Pinzger and H. Gall, Pattern-supported architecture recovery, in: 10th International Workshop on Program Compre-

hension (IWPC’02) (2002), 53–61.
[73] Y. Kanellopoulos, T. Dimopulos, C. Tjortjis et al., Mining source code elements for comprehending object-oriented

systems and evaluating their maintainability, ACM SIGKDD Explorations Newsletter 8(1) (2006), 33–40 .
[74] C.M. de Oca and D.L. Carver, Identification of data cohesive subsystems using data mining techniques, in: Int’l Conf

Software Maintenance (ICSM 98) (1998), 16.
[75] D. Rousidis and C. Tjortjis, Clustering data retrieved from Java source code to support software maintenance: A case

study, CSMR 05 (2005).
[76] R. Fiutem, P. Tonella, G. Anteniol et al., A cliche-based environment to support architectural reverse engineering, in:

Proceedings of the Third Working Conference on Reverse Engineering (1996), 277–286.
[77] D.R. Harris, H.B. Reubenstein and A.S. Yeh, Reverse engineering to the architectural level, in: Proceedings of the 17th

international Conference on Software Engineering (1995), 186–195.
[78] K. Sartipi, K. Kontogiannis and F. Mavaddat, A pattern matching framework for software architecture recovery and

restructuring, in: 8th International Workshop on Program Comprehension (IWPC) (2000), 37–47.
[79] G.Y. Guo, J.M. Atlee and R. Kazman, A software architecture reconstruction method, in: First Working IFIP Conference

on Software Architecture (WICSA1), San Antonio, Texas, USA (22–24 February 1999), 15.
[80] S. Mancoridis, B.S. Mitchell, C. Rorres et al., Using automatic clustering to produce high-level system organizations of

source code, in: 6th International Workshop on Program Comprehension, IWPC’98 (1998), 45–52.

484 S. Khatoon et al. / Comparison and evaluation of source code mining tools and techniques

[81] K. Sartipi, K. Kontogiannis and F. Mavaddat, Architectural design recovery using data mining techniques, in: Proc
European Conf Software Maintenance and Reengineering (2000), 129–139.

[82] G. Grahne and J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, in: Proceedings of the ICDM Workshop
on Frequent Itemset Mining Implementations (2003).

[83] H. Mannila, H. Toivonen and A.I. Verkamo, Efficient algorithms for discovering association rules, in: Proceedings of the
AAAI Workshop on Knowledge Discovery in Databases (1994), 181–192.

[84] S. Khatoon, G. Li and R.M. Ashfaq, A framework for automatically mining source code, Journal of Software Engineering
5(2) (2011), 64–77.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

