
J Supercomput (2016) 72:770–788
DOI 10.1007/s11227-015-1612-8

DSspirit: a data dependence and stride reference
patterns profiling infrastructure

Hairong Yu1 · Guohui Li1 · LihChyun Shu2

Published online: 16 January 2016
© Springer Science+Business Media New York 2016

Abstract Despite the widespread use of multi-core processors in modern computer
systems, developing software tools so as to make best use of available computing
resources has never been more urgent. This is because a considerable amount of spu-
rious dependence and cache misses lurking in general-purpose applications restricts
seriously the extraction of potential parallelism on the nowadays prevalent multi-core
machines. Existing tools are limited in their ability to thoroughly detect data depen-
dence and provide prefetched objects simultaneously. Further, some of the tools are
unable to profile large-scale applications. To address this problem, we propose a novel
profiler, called DSspirit , that performs both data dependence and stride reference pro-
filing. Data dependence profiling employs a hash-based scheme to detect actual data
dependence while filtering out useless dependence via timestamps. Stride reference
profiling employs value profiling to profile the stride pattern for each dynamic load
and select the profitable loads as prefetched objects for compilers. To demonstrate the
effectiveness of DSspirit , we have evaluated it using several SPECCPU2006,MPI2007
and OMP2012 benchmarks on an Intel i7-4700 machine. Experimental results show
that DSspirit produces accurate profiling results, including expected data dependence
and prefetched objects, which in turn contributes to more opportunities for extracting
parallelism.

B LihChyun Shu
shulc@mail.ncku.edu.tw

Hairong Yu
hairongy@hust.edu.cn

Guohui Li
guohuili@hust.edu.cn

1 Huazhong University of Science and Technology, Wuhan, China

2 National Cheng Kung University, Tainan, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1612-8&domain=pdf

DSspirit : a data dependence and stride reference. . . 771

Keywords Profiler · Profiling-based approach · Stride reference patterns ·
Data dependence profiling

1 Introduction

Multi-core processors are ubiquitous nowadays. To make best use of available com-
puting resources, automatic parallelization, such as DSWP [23], PS-DSWP [22] and
HELIX [4], is commonly used to transform single-threaded applications into con-
currently executed multi-threaded applications. Despite so, these conservative static
analysis approaches usually limit the opportunities of potential parallelism to be dis-
covered in general-purpose applications, since a large amount of spurious dependence
cannot be resolved accurately by compilers. Further, the poor space and temporal
locality sometimes exhibited in multi-threaded applications also make static analysis
difficult, since the compiler has limited ability to perform accurate reuse analysis for
general-purpose applications at compile time. Consequently, some researchers have
shifted their focus from static analysis to dynamic analysis.

Profiling is one of the most promising dynamic analysis techniques. A few popular
profiling tools, such as Pin [13], ATOM [7], Valgrind [19], and DynamoRIO [39],
are widely used in practice. To detect accurate data dependence, the techniques
behind the tools can be simply classified into three categories: hash-based depen-
dence profiling [5,35,38], stride-based dependence profiling [10], and objection-based
dependence profiling [37]. Hash-based dependence profiling is the most common
approach that utilizes a hash function to index the address values of memory ref-
erences. Whenever a memory reference occurs, the address value of the memory
reference is checked against the address values recorded in the hash function. Based
on the order of memory references, the types of data dependence can be determined.

Stride-based dependence profiling is an extension of hash-based dependence pro-
filing. The basic idea is that it computes a stride expression for each load (store)
instruction, if all the memory addresses visited by the load (store) instruction can be
inferred using the stride expression, the values of these addresses are not recorded in
the hash function. This technique is usually used in cases when hash-based depen-
dence profiling is not able to have enough memory set aside for profiling purpose, as
it records dependence relationships in a compact way.

Objection-based dependence profiling employs type and alias information [1] to
detect data dependence. This technique is preferable in speculating register promotion
and dynamic data structures expansion [36]. While the above-mentioned profiling
techniques have taken key steps towards producing highly efficient multi-threaded
applications, cachemisses exhibited inmulti-threaded applications shouldbynomeans
be neglected, because cache misses would disrupt pipeline execution, which in turn
offsets the benefits gained from parallelization.

To improve cache performance, existing profiling tools, such as Valgrind [19],
OProfile [12], and perf [14], usually provide some information related to cache miss
rates. While studying the reasons of the high misses rates can inspire better cache
organization, traditional optimization techniques, such as loop interchange, blocking
and software prefetching [1], are usually beneficial to array-based applications, rather

123

772 H. Yu et al.

than general-purpose applications. The reason is because a considerable number of
data structures in general-purpose applications use heap memory space during exe-
cution. As it is well known, heap memory can be allocated anywhere in the memory
space, meaning that traditional optimization techniques are insufficient to perform
reuse analysis accurately at compile time. For this reason, harnessing profiling to help
the compiler to optimize the cache organization is a preferable alternative. Profiling
techniques observe exactly the dynamic behavior of programs by tracking memory
references. Further, they can collect stride reference information for each load instruc-
tion that may cause cache misses. Most importantly, profiling techniques help the
compilers to identify profitable prefetched objects so as to improve prefetching effi-
ciency. Therefore, it is essential for the profiling tools to provide in-depth analysis of
cache effects and memory references simultaneously when it comes to monitoring the
dynamic behavior of programs.

In this paper, we propose a novel profiler, called DSspirit , that performs both
data dependence profiling and stride reference profiling. Data dependence profiling
employs a hash-based scheme to detect true dependence and loop-carried dependence
while removing useless data dependence via timestamps. Stride reference profiling
uses value profiling to compute the stride pattern for each dynamic load instruction.
Thedynamic loadswith highly reliable stride patterns are selected as prefetchedobjects
for compilers to improve prefetching efficiency. To demonstrate the effectiveness of
DSspirit , we have evaluated it using SPEC CPU2006, MPI2007 and OMP2012 bench-
mark suites on an Intel i7-4700 real machine. Experimental results show that our
DSspirit profiler produces accurate profiling results, including expected data depen-
dence and prefetched objects. On average, our profiler DSspirit contributes to 25 % of
performance improvements when it is applied to assist automatic parallelization.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 describes the details of our DSspirit profiler. Section 4 presents the
experimental evaluation of DSspirit , and finally Sect. 5 concludes the paper.

2 Related work

There is a wide range of research on profiling techniques. We mention some repre-
sentative studies that are most relevant to our work.

Profiling is one of themost promising techniques to discover potential opportunities
for automatic parallelization, including profiling-based parallelization [25,26,29,33]
and speculative parallelization [6,21,28,31,32,40]. Among themany approaches, data
dependence profiling is the most common technique used in the community of auto-
matic parallelization. Chen et al. [5] proposed a data dependence profiling technique
for speculative optimizations. To detect data dependence, a shadow space [18] was
employed to store information, and a simple hashing scheme was introduced to facili-
tate address comparison. Further, to increase speculation efficiency, the probability of
dependence edgeswas incorporated into the profiling results. Despite all the data struc-
tures and schemes used, profiling results may still be inaccurate, since the authors had
employed sampling techniques to do profiling to reduce the profiling overhead. Dif-
ferent from Chen et al.’s work [5], our profiler DSspirit offers accurate profiling results

123

DSspirit : a data dependence and stride reference. . . 773

while keeping profiling overhead low. To achieve this, we omit data dependences
that do not prevent parallelization, such as WAW and WAR. Further, we employ time
stamps to filter out useless data dependences to reduce time and space complexity. The
idea of using timestamps to handle data dependence is inspired by Xin and Zhang et
al.’s work [35,38]. Different from their work, which produces incorrect results in the
presence of recursions, our profiler DSspirit produces correct results for any data struc-
tures. This is because DSspirit uses circular buffers to deal with loop iterations, rather
than index trees. Kim et al. [10] proposed a stride-based data dependence profiling.
This approach is an extension of hash-based scheme, which stores data dependences
in a compressed format. While DSspirit also computes stride information, there are
two differences between SD3 and DSspirit . First, computing stride in SD3 is to reduce
profiling overhead, whereas computing stride in DSspirit is to perform reuse analysis
for dynamic loads. Second, SD3 focuses on all memory references, whereas DSspirit
only emphasizes the dynamic loads in loops. Ketterlin et al. [9] developed a profiler,
called Parwiz, that instruments binary code to guide parallelization. Since instrument-
ing binary code may not consider the code exactly when it is executed in the system
calls, our profiler DSspirit instruments Immediate Representation (IR) for more actuate
analysis. While data dependence profiling has made a great contribution to automatic
parallelization, the problem of reducing cache misses exhibited in multi-threading
applications has not received much attention in the design of the mainstream profiling
tools, which leaves us room for improvement.

3 DSspirit

In this section, we explain ourDSspirit profiler inmore detail. Figure 1 shows the frame-
work of DSspirit . It consists of three stages, viz. instrumentation, memory accesses
monitoring, and post-processing. We describe each of the DSspirit stages in the fol-
lowing subsections, using a piece of C code in Fig. 2 as a running example.

3.1 Instrumentation

Instrumentation refers to the act of adding extra code to a program for observing the
dynamic behavior of the program [17,19]. In our case, a pass is written to instrument

Fig. 1 The framework of
DSspirit

123

774 H. Yu et al.

Fig. 2 Running example in C
code

(a) (b)

Fig. 3 The disassembled code of the running example before and after instrumentation. a The control flow
graph of the running example before instrumentation. b The control flow graph of the running example
after instrumentation

memory references, nested loops, and function calls.We explain the detailed procedure
below.

– Instrumenting memory references: a memory reference refers to one of the follow-
ing instructions: store, load, allocation, de-allocation, and library call. Thememory
references are instrumented to keep track of memory accesses.

– Instrumenting nested loops: the elements associated with nested loops are one of
the following: pre-header, exit block, header, and latch block. Instrumenting pre-
header and exit block is to indicate the start and end of loops, while instrumenting
header and latch block is to indicate the beginning and ending of loop iterations.

– Instrumenting function calls: the function calls are instrumented to indicate which
caller calls this function, and where this function returns.

Eachoperand is assigned to aunique identifier that is generated in sequence. Figure 3
shows the disassembled code of the running example before and after instrumentation.
To be clear, the pieces of code associated with the instrumented memory references,
the start and end of the loops, and the beginning and ending of loop iterations are
marked in bold, and the corresponding identifiers are marked in square.

3.2 Memory accesses monitoring

We have designed several key data structures to manage profiling information,
including Loop Nest Stack, Counter, Loop Iteration Queue, Last Write Table,

123

DSspirit : a data dependence and stride reference. . . 775

Fig. 4 Overview of profiling components

Compound Map Set and Stride Set, as shown in Fig. 4. We now describe the
functionalities of the key data structures below:

– Loop nest stack (LNS): LNS is used to record the loop nesting information.
Whenever a loop starts, the loop is pushed into LNS, and then its identifier is
incremented by 1. Likewise, whenever a loop ends, the loop is popped off from
LNS, and then its identifier is decremented by 1.

– Counter: Counter maintains a global timestamp for all elements of the key data
structures. It is initialized to be 0, and incremented by 1.

– Loop iteration queue (LIQ): LIQ utilizes a circular buffer to maintain loop
iterations for computing loop-independent dependence and loop-carried depen-
dence. Combing with Counter and LNS, the two kinds of dependence are
computed as follows. Firstly, compute the difference between T(LIQ1) and T(LIQ2),
denoted by ΔT 1, where T(LIQ1) is the timestamp of LIQ1 when the source of
a dependence happens, and T(LIQ2) is the timestamp of LIQ2 when the sink
of the dependence happens. Secondly, compute the difference between T(LNS1)

and T(LNS2), denoted by ΔT 2, where T(LNS1) is the timestamp of LNS1 when
the loop containing the source of a dependence is pushed into LNS1, and
T(LNS2) is the timestamp of LNS2 when the loop containing the sink of the
dependence is pushed into LNS2. Thirdly, compute the difference between ΔT 1
and ΔT 2, denoted by ΔT . If ΔT equals zero, then the pair of dependence
is a loop-independent dependence. Otherwise, it is a loop-carried dependence.
Figure 4 gives an illustration. Two squares marked in dark and gray colors
across iteration boundaries represent a loop-carried dependence. Since loop-
independent dependence only determines the order in which code is executed
within loops, it does not prevent parallelization. Hence, we omit loop-independent
dependence.

– Last Write Table (LWT): LWT uses the triple of 〈addr, id, timestamp〉 to maintain
the last write access, where addr is the address of the last write access, id is the
identifer, and timestamp is the timestamp of the last write. This data structure is
used to compute true dependence. Since LWT records the last write access, when
a read access is encountered, then the pair of dependence is a true dependence.
Because output, input, and anti- dependences do not prevent parallelization, they
are filtered out. Further, when the dependence distance between the source of a

123

776 H. Yu et al.

dependence and the sink of the dependence is greater than a threshold, the pair of
dependence is also be filtered out.

– Compound Map Set (CMS): CMS uses the quadruple of 〈load_id, store_id,
loop_id, type〉 to record pairs of data dependence, where load_id, store_id, and
loop_id are the identifers of load, store, and loop, and type is the type of data
decadence, including loop-carried dependence and true dependence.

– Stride Set (SS): SS uses the 2-tuple of 〈load, 〈stride, ∗〉〉 to record prefetched
objects, where load is the identifer of prefetched objects, and 〈stride, ∗〉 records the
dominate stride value while reflecting the stride patterns of prefetched objects. The
prefetched objects refer to the dynamic loads in loops (the trip counts of the loop
are at least greater than 200). A dynamic load in our terminology is a load whose
input base address is produced by another load. The purpose of this definition is
to distinguish from array loads. A dynamic load can be selected as a prefetched
object only if its non-zero stridemeets one of the following two conditions: (1)
The frequency of a single stride is greater than 75. (2) The frequency of multiple
dominate strides is greater than 30. Here, stride refers to the difference between
two successive access addresses of a dynamic load, as illustrated in Fig. 4. For the
first case, 〈stride, ∗〉 only records the most dominate stride value. For the second
case, 〈stride, ∗〉 records the first two dominate stride values, i.e., stride records
the first dominate stride value, and ∗ records the second dominate value.

Once profiling is completed, an annotation file that contains both data dependence
and prefetched objects is dumped. Figure 5a shows the profiling results. The upper half
represents the data dependence and the lower half represents the prefetched objects.
For the data dependence, the mapping relationship is identical to the data structure
CMS, i.e., 〈load_id, store_id, loop_id, type〉. For the prefetched objects, the mapping
relationship is identical to the data structure SS, i.e., 〈load, 〈stride, ∗〉〉. One can see
that the contents of the annotation file are recorded in the form of identifiers, hence they
are meaningless for programmers. For this reason, we utilize an automatic approach to
translate the profiling results into human-readable form, which is illustrated as below.

3.3 Post-processing

We write another pass to translate the profiling results into an Immediate Represen-
tation (IR) fashion. This pass performs an opposite process as instrumentation does.

(a) (b)

Fig. 5 Profiling results of the running example before and after post-processing. a Profiling results.
b Profiling results after post-processing

123

DSspirit : a data dependence and stride reference. . . 777

Figure 5b shows the profiling results after post-processing. For the results of data
dependence profiling, the dependence relationships are the following: 6 → 2, 5 →
4, 4 → 4, 5 → 5, 5 → 3, 6 → 6, and 6 → 1, which corresponds to the statements of
running example in Fig. 2. For the results of stride reference profiling, the prefetched
objects are i tm− > data, and i tm− > next , which corresponds to the pointer i tm
(lines 4–5) in Fig. 2. Each prefetched object has only one dominate stride, and its
stride value is 16.

Once the prefetched objects are identified, we first use the stride patterns of
prefetched objects to compute their future addresses (denoted by Addr f uture), and
then insert prefetching intrinsic llvm.prefetch(Addr f uture, r, 0) before the prefetched
objects. The future address of each prefetched object is computed as follows.

– For a dynamic load with one dominate stride value, its future address is com-
puted using the following formula: Addr f uture = Addrbase + α ∗ stride, where
Addrbase is the based address of the dynamic load, α is the prefetched distance
determined by compilers, and stride is the dominate stride value.

– For a dynamic load with multiple dominate stride values, its future address is
computed by the following steps:
– (1) Insert a move instruction before the dynamic load, and save its address to
a temporary register.

– (2) Insert a subtract instruction after the move instruction to subtract the value
in the temporary register from the current address value of the dynamic load.
The difference is denoted by stridei . Next, insert another move instruction
after the subtract instruction, and save stridei to another temporary register.

– (3) Compute the future address of the dynamic load using the following for-
mula: Addr f uture = Addrbase + α ∗ stridei .

To be clear, we show the disassembled code of the running example before and
after prefetching in Fig. 6. In Fig. 6b, each of the prefetching intrinsics llvm.prefetch
is marked in rectangle, and two prefetched objects, i tm− > data, and i tm− > next ,
are marked in bold.

(a)

(b)

Fig. 6 The disassembled code of the running example before and after prefetching. a Before prefetching.
b After prefetching

123

778 H. Yu et al.

3.4 Profiling costs

Since profiling is an execution-driven approach, it must bear time and space over-
head. Table 1 summarizes the time and space overhead. From the perspective of
time overhead, the overhead of LNS and LIQ is O(1), since we employ linear data
structure to manage LNS and LIQ. The overhead of the remaining data structures is
O(log(N)), (N ∈ θ, η, and ξ), since we employ RB-tree data structure to manage
CMS, LWT and SS. From the perspective of space overhead, the space overhead of
LNS, LIQ, CMS, LWT and SS is determined by their storage spaces, viz., the depth
of the stack, the length of the queue, the number of the last write accesses, and the
number of the dynamic loads.

4 Evaluation

In this section, we evaluate the performance of the proposed DSspirit profiler. Specifi-
cally, Sect. 4.1 describes the experimental setup, and Sect. 4.2 reports the experimental
results.

4.1 Experimental setup

Wedescribe our experimental platform, benchmarks used throughout for the evaluation
and our methodology below.

Platform We consider a real system: Intel Core i7-4700 with a qual-core processor.
Themaximumnumber of available threads is 8. A brief description of the experimental
platform is given in Table 2.

Table 1 Profiling cost
Main data structures Time overhead Space overhead

Loop nest stack (LNS) O(1) O(α)

Loop iteration queue (LIQ) O(1) O(γ)

Compound map set (CMS) O(logθ) O(θ)

Last write table (LWT) O(logη) O(η)

Stride set (SS) O(logξ) O(ξ)

Table 2 Detail description of
platform Core i7

Processor Intel(R) Core(TM) i7-4700

L1I cache: 32 KB∗8, 8-way set associative, 64-byte line size

L1D cache: 32 KB∗8, 8-way set associative, 64-byte line size

L2 cache: 256 KB∗8, 8-way set associative, 64-byte line size
Shared L3 cache 8192 KB, 16-way set associative, 64-byte line size

Main memory DDR3 1333 Mhz, 16 GB

OS Linux 2.6.32-28-generic-pae

123

DSspirit : a data dependence and stride reference. . . 779

Table 3 Benchmark details

Program Description Function name % of
runtime
(%)

L1 cache
miss
rates (%)

429.mcf Network algorithm global_opt 90 35

456.hmmer Hidden Markov model main_loop_serial 90 2

470.lbm Lattice Boltzmann method LBM_performStreamCollide 90 17

462.libquantum Shor algorithm quantum_qft 80 2

401.bzip2 Compression algorithm handle_compress 70 2

464.h264re f Video compression code_a_picture 85 1

104.milc Quantum chromodynamics g_measure 40 13

142.dmilc Quantum chromodynamics g_measure 45 7

352.nab Molecular modeling md 90 <1

358.botsalgn Protein alignment align 85 <1

359.botsspar Sparse LU sparselu_par_call 95 <1

372.smithwa Pattern matching main 100 <1

Table 4 Instrumentation information and benchmark overhead statistics

Program Loads/stores/
calls

Original
runtime (s)

Runtime
increased

Original
space

Profiling space
(G)

429.mcf 1508/588/63 16.65 436050× 15 M 150

456.hmmer 25334/7840/1663 147 8816× 12 M 200

470.lbm 2220/305/50 0.31 278709× 3 M 70

462.libquantum 3427/1618/158 3.56 159685× 11 M 60

401.bzip2 9999/3349/387 12.6 27348× 11 M 50

464.h264re f 11357/6930/385 31.1 27948× 42 M 70

104.milc 8654/3526/653 139 11810× 284 M 10

142.dmilc 9539/3941/738 168 10285× 482 M 15

352.nab 16129/5895/1536 155 6789× 11 M 1.5

358.botsalgn 1373/571/453 3.09 390193× 1 M <1

359.botsspar 726/190/165 3.74 300320× 174 M 2

372.smithwa 3829/1139/597 0.12 15120000× <1 M 2.5

Benchmarks To evaluate our profiling tool DSspirit , we have chosen several paralleliz-
able programs from SPEC2006 [8], MPI2007 [16] and OMP2012 [15] benchmarks,
respectively. The basic characteristics of these benchmarks are given in Table 3. In the
table, column 3 shows the function name containing the parallelizable loops, column
4 indicates the runtime of the loops normalized with respect to the total execution
time of the program, and the last column shows the L1 cache misses rates (tested with
perf [14]). Table 4 gives the basic information about instrumentation and profiling
overhead. In the table, column 2 gives the numbers of loads, stores and function calls,
respectively. Column 3 shows the original runtime of each benchmark program, fol-

123

780 H. Yu et al.

lowed by the increased runtime needed by DSspirit in columns 4. Column 5 shows the
original space needed to run each benchmark program, followed by the space needed
by DSspirit in columns 6.

Methodology DSspirit , an off-line profiling, is completely developed on top of the
LLVMcompiler infrastructure [11].Our profiling results can be used in profiling-based
parallelism [29,33] and speculative parallelism [21,27,31,40,41]. The two techniques
can be divided into three parallelism paradigms: independence multi-threading (IMT)
techniques, cyclic multi-threading (CMT) techniques and pipeline multi-threading
(PMT) techniques, based on the patterns of inter-thread communication [3]. Our pro-
filing results are used for profiling + IMT (CMT and PMT) techniques and speculative
+ IMT (CMT and PMT) techniques. We use DOALL [24], HELIX [4], and DSWP
[20] as the baselines of IMT, CMT and PMT techniques, respectively.We use profiling
+ DOALL (HELIX and DSWP) and speculative + DOALL (HELIX and DSWP) as
the enhanced versions of IMT, CMT and PMT, respectively. Each of these algorithms
is written as a project added to the LLVM compiler.

We use a machine learning approach [30,34] to determine the parallelization
scheme. We employ support vector machines (SVM) with a radical basis function
as a kernel to classify the considered parallelization schemes, and we set parallelism
with static analysis as the default parallelization scheme (i.e., the baseline). We say
profiling-based parallelism (or speculative parallelism) is preferable only if it brings
about at least 15 % performance gains than the default scheme. The reason is because
both profiling-based and speculative techniques incur extra overhead. For convenience,
we denote the default parallelization scheme as S, profiling-based parallelism as A,
and speculative parallelism as B. In this way, two groups of binary classifications are
built, i.e., (class S vs. classA) and (class S vs. class B). Notice that we will separately
predict whether the output belongs to (classes S vs.A) or belongs to (classes S vs. B).

We use the most common method, called “leave-one-out” cross-validation, to eval-
uate our parallelization scheme. The procedure is stated as follows. First of all, we
leave one program out from all the benchmark programs, and then train a model on the
remainingprograms. Second, for the left-out program (also called the unseenprogram),
we only extract its features (including instructions, loads/stores, branches, and so on),
followed by presenting the features to the SVM predictor, with the parallelization
scheme of the program produced as the prediction result. We repeat this procedure for
eachprogram in turn,meaning that eachprogramwill be predicted once.Theprediction
results of each program are shown in the fifth column inTable 5 (called parallelization).

4.2 Evaluation results

In this section, we discuss the implementations of our profiler DSspirit in SPEC
CPU2006, MPI2007 and OMP2012 benchmark suits.

4.2.1 Practical implementation in SPEC CPU2006

With our DSspirit profiler, the simple flow group of the extracted pipeline for each
selectedCPU2006benchmark programs is depicted Fig. 7. The speedupswith different

123

DSspirit : a data dependence and stride reference. . . 781

Table 5 Profiling information statistics

Program Total Dep. True Dep. Loop-carried
Dep.

Parallelization Stride patterns

(Without
prefetch)

(With prefetch)

429.mcf 902 761 141 S B,S Yes

456.hmmer 2965 2223 742 A,B A,B Yes

470.lbm 854 752 102 A,S A,S Yes

462.libquantum 1630 1252 378 A,S A,S No

401.bzip2 3648 2635 1013 A,B A,B Yes

464.h264re f 11,375 6930 385 A,B A,B Yes

104.milc 3874 2764 1110 A,S A,S Yes

142.dmilc 4752 3521 1231 A,S A,S Yes

352.nab 738 409 329 S S No

358.botsalgn 1032 547 485 S S No

359.botsspar 254 218 36 S S No

372.smithwa 586 439 87 S S Yes

(a) (b) (c) (d) (e) (f)

Fig. 7 Simple flow group of the extracted pipeline in SPEC CPU2006. a 429.mc. b 456.hmmer. c 470.lbm.
d 462.libquantum. e 401.zip2. f 464.h264ref

parallelization techniques are given in Figs. 8 and 9.We present an in-depth discussion
of DSspirit below.

1.429.mcf. This benchmarkutilizes a network simplex algorithm tomangepublicmass
transportation.We start from the highly parallelizable function, global_opt, to per-
form various analysis. This function ismainly composed of three subroutine calls, viz.,
primal_net_simplex, refresh_potential, and price_out_impl, as
depicted in Fig. 7a. Because of pointer passing between functions, the inter-procedural
dependence analysis [1] reveals that pointer net causes a considerable amount of
loop-carried dependences and prohibits the potential opportunities for parallelization.
Further, the program suffers from seriously cache misses (the L1 cache miss rates are
35 %), since the heap memory spaces are widely used in this program. In particular,
function primal_net_simplex takes approximately 80 % of the cache misses.

Our profiler DSspirit aims to overcome these limitations from two aspects. First,
data dependence profiling tries its best to analyze exactly data dependence. By study-
ing the results of data dependences, we note that spurious dependences account for a
small portion of the total dependences. Thus, harnessing profiling-based parallelism

123

782 H. Yu et al.

Fig. 8 Speedup with PMT parallelization techniques in SPEC CPU2006

Fig. 9 Speedup with CMT parallelization techniques in SPEC CPU2006

in this program may not be an optimal solution. By contrast, speculative parallelism
is a preferable alternative. This is because there are several dependences that rarely
manifest, e.g., loop-carried dependences are caused by node node− > potential
in function refresh_potential. Using speculation, such dependences can be
ignored safely by compilers, allowing more potential parallelism to be discovered.
Nevertheless, speculative parallelism assisted using the results of data dependence pro-
filing alone cannot outperform the default parallelization scheme in terms of speedup
by 15 %, as demonstrates in the 5th column of Table 5.

Second, we employ the stride reference profiling to create new opportunities
for improving cache efficiency. As it is well known, when a perfect cache is
combined with pipeline parallelism, it can improve the efficiency of parallel exe-
cution significantly. According to the results of stride reference profiling, functions
primal_net_simplex, refresh_potential and price_out_impl con-
tain prefetched objects, such as pointers bea, acrin and tail. With prefetching, both
speculative parallelism and profiling-based parallelism achieve significant perfor-
mance improvements over the defaults parallelization scheme, as Figs. 8 and 9
demonstrate.

2. 456.hmmer. This benchmark profiles the hidden Markov models for researching
the pattern of DNA sequences. The considered target for parallelization is function
main_loop_serial. Figure 7b shows the primary three stages: (1) Generate
random numbers. (2) Perform the Viterbi algorithm. (3) Add to the histogram for
getting a score. To maximize parallelism, we use commutative annotations [2] in the
first stage.

Based on the DSspirit results, we also analyze the program from two aspects. First,
data dependence profiling plays a key role in eliminating spurious dependence. For

123

DSspirit : a data dependence and stride reference. . . 783

example, pointer operations, such as xmx = mx− > xmx,mx− > xmx_mem[0] =
mx− > xmx_mem, and mx− > xmx_mem[i] = mx− > xmx_mem + padding,
can be eliminated in function P7Viterbi. Then, DOALL parallelization [24] is
amenable to the second stage. Compared to speculative parallelism, profiling-based
parallelism is more preferable. The reasons are twofold: (1) Speculating loop-carried
dependences would lead to high mis-speculation rates. (2) The percentage of infre-
quent basic blocks is small, according to the frequency of dependence edges. Due
to the fact that speculating the frequent dependence edges would offset the bene-
fits from parallelization, speculative parallelism is less efficient than profiling-based
parallelism.

By observing the results of stride reference profiling, we found that the prefetched
objects mainly appear in function P7Viterbi, such as variables hmm and xmx.
In practice, the L1 cache miss rates are not manifested in this program, prefetching
only contributes to approximately 2 % performance improvements, as Figs. 8 and 9
demonstrate.

3. 470.lbm. This benchmark simulates incompressible fluid in 3D using a Lattice
Boltzmann Method. It comprises three stages: (1) Handling input (output) flow. (2)
Performing stream collision. and (3) Outputs. Figure 7c gives an illustration. This
program extensively utilizes macros to hide the details of the data access, such as
X(dstGrid) = Y(srcGrid), which copies pointer from srcGrid to dstGrid.

We emphasize on function LBM_performStreamCollide, since it possesses
a considerable amount of opportunities for parallelization. Because srcGrid and dst-
Grid cause pointer alias [1], they bring a big challenge to the compiler, since pointer
alias cannot be resolved exactly at compile time. Profiling, however, provides a means
to analyze accurate pointer alias and remove spurious data dependence. In our exper-
iments, profiling-based parallelism brings about nearly 20 % of performance gains,
compared to the default parallelization scheme. However, for speculative parallelism,
this approach is impractical. The reason is that the dependences caused by srcGrid
and dstGrid are too manifest to benefit from speculation. According to the cache
miss rates, we learn that this program suffers from poor cache locality (the L1 cache
miss rates are up to 17 %). Prefetching is an effective way to improve cache effects.
With prefetching, parallelization techniques benefit from on average 15 % of more
performance gains. Figures 8 and 9 show the overall performance of this benchmark
program.

4. 462.libquantum. This benchmark utilizes the Shor’s algorithm to solve the
problem of quantum computation in polynomial time. The key part occurs in func-
tion quantum_qft. Figure 7d shows the simplified flow graph.

According to the results of data dependence profiling, a considerable number of
dependences are caused by pointer variable reg. With the help of profiling, a small
portion of code in function quantum_gate1 can be parallelized in DOALL, as
illustrated in Fig. 7d. Since dependences caused by reg are remarkable, speculative
parallelism is less effective. Notice that while function quantum_gate1 suffers
from cache misses, stride-based prefetching is not an optimal solution, since there are
no prefetched objects to be detected during profiling. To avoid useless prefetching,
which would result in the premature eviction of useful cache lines, and increase the

123

784 H. Yu et al.

needlessly memory traffic, this program does not provide prefetching. The overall
performance of this benchmark program is shown in Figs. 8 and 9.

5. 401.bzip2. This benchmark performs a block-based compression algorithm. It com-
prises two parts: compression and decompression. We mainly consider compression
part, which occurs in function handle_compress. Figure 7e shows the sim-
ple flow graph. According to the DSspirit results, function BZ2_compressBlock
except sendMTFValues is amenable to DOALL parallelism, as depicted in Fig. 7e.
Further, prefetching contributes to approximately 5 % of performance improvements.
The overall performance with different parallelization techniques is given in Figs. 8
and 9.

6. 464.h264ref. This benchmark is a video compression program. We focus on func-
tion code_a_picture. Figure 7f depicts the flow graph of the extracted pipeline.
Function encode_one_macroblock contains the opportunities of DOALL par-
allelization. Further, this function has various stable access patterns, e.g., X+ =
Y [re f ptr + + ⊕ orgptr + +], where orgptr and re f ptr are the pointers of the
original and reference blocks, respectively. In this function, both profiling-based paral-
lelism and speculative parallelism are profitable. Prefetching brings about nearly 2 %
of improvements. The overall performance with different parallelization techniques is
given in Figs. 8 and 9.

4.2.2 Practical implementation in MPI2007

With our DSspirit profiler, the simple flow group of the extracted pipeline for each
selected MPI2007 benchmark programs is depicted Fig. 10a, b. The speedup with dif-
ferent parallelization techniques is given in Fig. 11. We present an in-depth discussion
of DSspirit below.

7. 104.milc. This benchmark performs quantum Chromodynamics. We emphasize
on function g_measure. Figure 10a shows the simple flow graph for the extracted
pipeline. With our profiling results, we perform various analysis on this function. First
of all, data dependence profiling shows that a majority of loop-carried dependence is
caused by structure pointer s, whichmainly appears in function path_product. For
this reason, speculative parallelism is not applied, since speculating frequent depen-
dence edges would incur high mis-speculation rates. By contrast, profiling-based
parallelism is beneficial to more aggressive parallelism, since profiling can disam-
biguate pointer alias and remove spurious dependence. On the other hand, according

(a) (b) (c) (d) (e) (f)

Fig. 10 Simple flow group of the extracted pipeline in SPEC MPI2007 and OMP2012. a 104.milc. b
142.dmilc. c 352.nab. d 358.botsalgn. e 359.botsspar

123

DSspirit : a data dependence and stride reference. . . 785

to the results of stride reference profiling, two subroutines, viz., mult_su3_nn
and mult_su3_na, contain prefetched objects. Prefetching contributes to approxi-
mately 5 % of performance improvements, since function g_measure only takes a
small portion of overall execution time. Figure 11 shows the overall performance with
different parallelization schemes.

8. 142.dmilc. This benchmark also performs quantum Chromodynamics. It is almost
identical to 104.milc, with someminor differences, as shown in Fig. 10b. Likewise, this
program is also suitable for profiling-based parallelism. Figure 11 shows the overall
performance.

4.2.3 Practical implementation in OMP2012

With our DSspirit profiler, the simple flow group of the extracted pipeline for each
selected OMP2012 benchmark programs is depicted Fig. 10c–f. The speedup with
DOALL parallelization techniques is given in Fig. 12. We present an in-depth discus-
sion of DSspirit below.

9. 352.nab. This benchmark is a molecular modeling, floating point intensive applica-
tion. The key part occurs in functionmd. The simplifiedflowgraph is shown in Fig. 10c.
According to our DSspirit results, the loops in function md are amenable to DOALL
parallelization, since there are no loop-carried dependences. There are no prefetched
objects to be detected by our profiling tool. This is because this programmainly adopts
array-based accesses, hence a majority of loads do not meet the requirements of our
stride reference profiling. Figure 12 shows the overall performance.

10. 358.botsalgn. This benchmark aligns protein sequences using theMyers andMiller
algorithm. We mainly focus on function align. Figure 10d depicts the simple flow
graph of the extracted pipeline. Same as 352.nab, this program can also be parallelized

Fig. 11 Speedup with PMT and CMT parallelization techniques in SPEC MPI2007

Fig. 12 Speedup with IMT parallelization techniques in SPEC OMP2012

123

786 H. Yu et al.

in DOALL, since there is no parallelism-preventing dependence. Likewise, there are
no prefetched objects. The overall performance is given in Fig. 12.

11. 359.botsspar. This benchmark is a sparse LU matrix factorization. The consid-
ered target for parallelization is function sparselu_seq_call. The simplified
flow graph of the extracted pipeline is depicted in Fig. 10e. According to the profil-
ing results, functions lu0, fwd, bdiv, and bmod contain loop-carried dependences.
But, by further studying the dependences, we found that these dependences do not
prevent parallelization, since they can be eliminated by privatization [1]. Then, func-
tion sparselu_seq_call can be parallelized in DOALL. There are no prefetched
objects, since a large amount of loads is array loads. Figure 12 shows the overall per-
formance.

12. 372.swithwa. This benchmark is a pattern matching program. We consider main
function that is composed of two key kernels occurring functions pairwiseAlign,
scanBackward, and mergeAlignment, as depicted in Fig. 10f. While loop-
carried dependences are detected in these three functions, they can be removed by
privatization. Hence, the program is amenable to DOALL parallelization. Further,
according to the results of stride reference profiling, prefetched objects are detected
in function insertValidation. Since prefetching plays a marginal role in the
overall performance, the benefits obtained from prefetching are omitted. Figure 12
shows the overall performance of this program.

In summary, the results produced by DSspirit can be used to do profiling + CMT
(IMT and PMT) and speculative + CMT (IMT and PMT) in SPEC CPU2006 bench-
mark programs, and to do profiling + CMT (and PMT) in MPI2007 benchmarks.
Further, programs except 462.libquantum in bothCPU2006 andMPI2007 benchmarks
benefit from prefetching. The OMP2012 benchmarks can be parallelized using IMT
techniques. Except for 372.swithwa, our profiler DSspirit does not detect prefetched
objects from 352.nab, 358.botsalgn, and 359.botsspar. The main reason is that we
do not care about array loads, since cache misses from array-based programs can be
resolved by traditional cache optimization techniques, such as loop interchange and
blocking [1].

5 Conclusions

In this paper, we propose a novel profiler, called DSspirit that performs both data
dependence profiling and stride reference profiling in general-purpose programs. Data
dependence profiling employs a hash-based scheme to detect true dependence and
loop-carried dependence while filtering out useless dependences via the timestamps.
Stride reference profiling employs value profiling to compute stride reference patterns
for each dynamic load and select the profitable loads as the prefetched objects for
compilers to do prefetching. To demonstrate the effectiveness of DSspirit , we have
evaluated it using SPECCPU2006, MPI2007, and OMP2012 benchmark programs on
an Intel i7-4700machine. Experimental results show that our profiler DSspirit produces
accurate profiling results.On average,DSspirit contributes to 25%ofmore performance
improvements when it is applied to assist parallelization.

123

DSspirit : a data dependence and stride reference. . . 787

References

1. Allen R, Kennedy K (2002) Optimizing compilers for modern architectures. Morgan Kaufmann, San
Francisco

2. BridgesM,Vachharajani N, ZhangY, Jablin T,August D (2007) Revisiting the sequential programming
model for multi-core. In: Proceedings of the 40th Annual IEEE/ACM international symposium on
microarchitecture. IEEE Computer Society, pp 69–84

3. BridgesMJ (2008) The velocity compiler: extracting efficient multicore execution from legacy sequen-
tial codes. Ph.D. thesis, Princeton University

4. Campanoni S, Jones T, Holloway G, Reddi VJ, Wei GY, Brooks D (2012) Helix: automatic paral-
lelization of irregular programs for chip multiprocessing. In: Proceedings of the tenth international
symposium on code generation and optimization. ACM, pp 84–93

5. ChenT, Lin J, DaiX,HsuWC,YewPC (2004)Data dependence profiling for speculative optimizations.
In: Compiler construction. Springer, pp 57–72

6. DingC, ShenX,KelseyK,TiceC,HuangR,ZhangC (2007) Software behavior oriented parallelization.
In: ACM SIGPLAN Notices, vol 42. ACM, pp 223–234

7. Eustace A, Srivastava A (1995) Atom: a flexible interface for building high performance program
analysis tools. In: Proceedings of theUSENIX technical conferenceproceedings.USENIXAssociation,
pp 25–25

8. Henning JL (2006) Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput Archit News
34(4):1–17

9. Ketterlin A, Clauss P (2012) Profiling data-dependence to assist parallelization: framework, scope,
and optimization. In: Proceedings of the 2012 45th annual IEEE/ACM international symposium on
microarchitecture. IEEE Computer Society, pp 437–448

10. Kim M, Kim H, Luk CK (2010) Sd3: a scalable approach to dynamic data-dependence profiling. In:
Proc. of the 43rd annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE,
pp 535–546

11. Lattner C, Adve V (2004) Llvm: a compilation framework for lifelong program analysis & transfor-
mation. In: Proc. of the international symposium on code generation and optimization (CGO). IEEE,
pp 75–86

12. Levon J (2004) Oprofile manual. Victoria University of Manchester
13. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K (2005)

Pin: building customized program analysis tools with dynamic instrumentation. In: ACM SIGPLAN
notices, vol 40. ACM, pp 190–200

14. de Melo AC (2010) The new linuxperftools. In: Slides from Linux Kongress
15. Müller MS, Baron J, Brantley WC, Feng H, Hackenberg D, Henschel R, Jost G, Molka D, Parrott C,

Robichaux J, et al (2012) Spec omp2012 an application benchmark suite for parallel systems using
openmp. In: OpenMP in a heterogeneous world. Springer, pp 223–236

16. Müller MS, van Waveren M, Lieberman R, Whitney B, Saito H, Kumaran K, Baron J, Brantley WC,
Parrott C, Elken T et al (2010) Spec mpi2007 an application benchmark suite for parallel systems using
mpi. Concurr Comput Pract Exp 22(2):191–205

17. NethercoteN (2004)Dynamic binary analysis and instrumentation. Ph.D. thesis, PhD thesis, University
of Cambridge

18. Nethercote N, Seward J (2007) How to shadow every byte of memory used by a program. In: Proceed-
ings of the 3rd international conference on virtual execution environments. ACM, pp 65–74

19. NethercoteN,Seward J (2007)Valgrind: a framework for heavyweight dynamic binary instrumentation.
ACM Sigplan Not 42(6):89–100

20. Ottoni G, Rangan R, Stoler A, August DI (2005) Automatic thread extraction with decoupled software
pipelining. In: Proceedings of the 38th Annual IEEE/ACM international symposium on microarchi-
tecture (MICRO). IEEE, p 12

21. Raman A, Kim H, Mason TR, Jablin TB, August DI (2010) Speculative parallelization using software
multi-threaded transactions. In: ACM SIGARCH computer architecture news, vol 38. ACM, pp 65–76

22. Raman E, Ottoni G, Raman A, Bridges MJ, August DI (2008) Parallel-stage decoupled software
pipelining. In: Proceedings of the 6th annual IEEE/ACM international symposium on code generation
and optimization. ACM, pp 114–123

123

788 H. Yu et al.

23. Rangan R, Vachharajani N, Vachharajani M, August DI (2004) Decoupled software pipelining with the
synchronization array. In: Proceedings of the 13th International conference on parallel architectures
and compilation techniques. IEEE Computer Society, pp 177–188

24. Rauchwerger L, Padua D (1994) The privatizing doall test: a run-time technique for doall loop identifi-
cation and array privatization. In: Proceedings of the 8th international conference on supercomputing.
ACM, pp 33–43

25. Rul S, Vandierendonck H, De Bosschere K (2008) Extracting coarse-grain parallelism in general-
purpose programs. In: Proceedings of the 13th ACM SIGPLAN Symposium on principles and practice
of parallel programming. ACM, pp 281–282

26. Rul S, Vandierendonck H, De Bosschere K (2010) A profile-based tool for finding pipeline parallelism
in sequential programs. Parallel Comput 36(9):531–551

27. Steffan JG, Colohan C, Zhai A, Mowry TC (2005) The stampede approach to thread-level speculation.
ACM Trans Comput Syst (TOCS) 23(3):253–300

28. Tian C, Feng M, Nagarajan V, Gupta R (2008) Copy or discard execution model for speculative
parallelization on multicores. In: Proceedings of the 41st annual IEEE/ACM International symposium
on microarchitecture. IEEE Computer Society, pp 330–341

29. Tournavitis G, Franke B (2010) Semi-automatic extraction and exploitation of hierarchical pipeline
parallelism using profiling information. In: Proceedings of the 19th international conference on parallel
architectures and compilation techniques. ACM, pp 377–388

30. TournavitisG,WangZ, FrankeB,OBoyleM (2009) Towards a holistic approach to auto-parallelization.
In: 2009 Conference on programming language design and implementation (PLDI)

31. Vachharajani N, Rangan R, Raman E, Bridges MJ, Ottoni G, August DI (2007) Speculative decoupled
software pipelining. In: Proceedings of the 16th international conference on parallel architecture and
compilation techniques. IEEE Computer Society, pp 49–59

32. Vachharajani NA (2008) Intelligent speculation for pipelined multithreading. Princeton University
33. Vandierendonck H, Rul S, De Bosschere K (2010) The paralax infrastructure: automatic parallelization

with a helping hand. In: Proceedings of the 19th international conference on parallel architectures and
compilation techniques. ACM, pp 389–400

34. Wang Z, O’Boyle MF (2009) Mapping parallelism to multi-cores: a machine learning based approach.
In: ACM Sigplan notices, vol 44. ACM, pp 75–84

35. Xin B, Sumner WN, Zhang X (2008) Efficient program execution indexing. In: ACM SIGPLAN
notices, vol 43, no 6. ACM, pp 238–248

36. Yu H, Ko HJ, Li Z (2013) General data structure expansion for multi-threading. In: Proceedings of
the 34th ACM SIGPLAN conference on programming language design and implementation. ACM,
pp 243–252

37. Yu H, Li Z (2012) Fast loop-level data dependence profiling. In: Proceedings of the 26th ACM inter-
national conference on supercomputing. ACM, pp 37–46

38. Zhang X, Navabi A, Jagannathan S (2009) Alchemist: a transparent dependence distance profiling
infrastructure. In: Proceedings of the 7th annual IEEE/ACM international symposium on code gener-
ation and optimization, pp 47–58

39. Zhao Q, Sim JE, Wong WF, Rudolph L (2006) Dep: detailed execution profile. In: Proceedings of the
15th international conference on parallel architectures and compilation techniques. ACM, pp 154–163

40. Zhong H, Mehrara M, Lieberman S, Mahlke S (2008) Uncovering hidden loop level parallelism in
sequential applications. In: Proc. of IEEE 14th international symposium on high performance computer
architecture (HPCA). IEEE, pp 290–301

41. Zilles C, SohiG (2002)Master/slave speculative parallelization. In:Microarchitecture, 2002. (MICRO-
35). Proceedings 35th Annual IEEE/ACM international symposium on. IEEE, pp 85–96

123

	DSspirit: a data dependence and stride reference patterns profiling infrastructure
	Abstract
	1 Introduction
	2 Related work
	3 DSspirit
	3.1 Instrumentation
	3.2 Memory accesses monitoring
	3.3 Post-processing
	3.4 Profiling costs

	4 Evaluation
	4.1 Experimental setup
	4.2 Evaluation results
	4.2.1 Practical implementation in SPEC CPU2006
	4.2.2 Practical implementation in MPI2007
	4.2.3 Practical implementation in OMP2012

	5 Conclusions
	References

